
Architectural design
6

Objectives
The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapter,
you will:

■ understand why the architectural design of software is important;

■ understand the decisions that have to be made about the software
architecture during the architectural design process;

■ have been introduced to the idea of Architectural patterns, well-tried
ways of organizing software architectures that can be reused in
system designs;

■ understand how Application-Specific Architectural patterns may be
used in transaction processing and language processing systems.

Contents
6.1 Architectural design decisions

6.2 Architectural views

6.3 Architectural patterns

6.4 Application architectures

168    Chapter 6  ■  Architectural design

Architectural design is concerned with understanding how a software system should
be organized and designing the overall structure of that system. In the model of the
software development process that I described in Chapter 2, architectural design is
the first stage in the software design process. It is the critical link between design and
requirements engineering, as it identifies the main structural components in a system
and the relationships between them. The output of the architectural design process is
an architectural model that describes how the system is organized as a set of
 communicating components.

In agile processes, it is generally accepted that an early stage of an agile develop-
ment process should focus on designing an overall system architecture. Incremental
development of architectures is not usually successful. Refactoring components in
response to changes is usually relatively easy. However, refactoring the system
architecture is expensive because you may need to modify most system components
to adapt them to the architectural changes.

To help you understand what I mean by system architecture, look at Figure 6.1.
This diagram shows an abstract model of the architecture for a packing robot system.
This robotic system can pack different kinds of objects. It uses a vision component
to pick out objects on a conveyor, identify the type of object, and select the right
kind of packaging. The system then moves objects from the delivery conveyor to be
packaged. It places packaged objects on another conveyor. The architectural model
shows these components and the links between them.

In practice, there is a significant overlap between the processes of requirements
engineering and architectural design. Ideally, a system specification should not

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controllerFigure 6.1 The

architecture of a packing
robot control system

  Chapter 6  ■  Architectural design    169

include any design information. This ideal is unrealistic, however, except for very
small systems. You need to identify the main architectural components as these
reflect the high-level features of the system. Therefore, as part of the requirements
engineering process, you might propose an abstract system architecture where you
associate groups of system functions or features with large-scale components or sub-
systems. You then use this decomposition to discuss the requirements and more
detailed features of the system with stakeholders.

You can design software architectures at two levels of abstraction, which I call
architecture in the small and architecture in the large:

1. Architecture in the small is concerned with the architecture of individual pro-
grams. At this level, we are concerned with the way that an individual pro-
gram is decomposed into components. This chapter is mostly concerned with
program architectures.

2. Architecture in the large is concerned with the architecture of complex enter-
prise systems that include other systems, programs, and program components.
These enterprise systems may be distributed over different computers, which
may be owned and managed by different companies. (I cover architecture in the
large in Chapters 17 and 18.)

Software architecture is important because it affects the performance, robust-
ness, distributability, and maintainability of a system (Bosch 2000). As Bosch
explains, individual components implement the functional system requirements,
but the dominant influence on the non-functional system characteristics is the
system’s architecture. Chen et al. (Chen, Ali Babar, and Nuseibeh 2013) con-
firmed this in a study of “architecturally significant requirements” where they
found that non-functional requirements had the most significant effect on the
system’s architecture.

Bass et al. (Bass, Clements, and Kazman 2012) suggest that explicitly designing
and documenting software architecture has three advantages:

1. Stakeholder communication The architecture is a high-level presentation of the sys-
tem that may be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions
have a profound effect on whether or not the system can meet critical require-
ments such as performance, reliability, and maintainability.

3. Large-scale reuse An architectural model is a compact, manageable description
of how a system is organized and how the components interoperate. The system
architecture is often the same for systems with similar requirements and so can
support large-scale software reuse. As I explain in Chapter 15, product-line
architectures are an approach to reuse where the same architecture is reused
across a range of related systems.

170    Chapter 6  ■  Architectural design

System architectures are often modeled informally using simple block diagrams,
as in Figure 6.1. Each box in the diagram represents a component. Boxes within
boxes indicate that the component has been decomposed to subcomponents. Arrows
mean that data and or control signals are passed from component to component in
the direction of the arrows. You can see many examples of this type of architectural
model in Booch’s handbook of software architecture (Booch 2014).

Block diagrams present a high-level picture of the system structure, which people
from different disciplines, who are involved in the system development process, can
readily understand. In spite of their widespread use, Bass et al. (Bass, Clements, and
Kazman 2012) dislike informal block diagrams for describing an architecture. They
claim that these informal diagrams are poor architectural representations, as they
show neither the type of the relationships among system components nor the compo-
nents’ externally visible properties.

The apparent contradictions between architectural theory and industrial prac-
tice arise because there are two ways in which an architectural model of a program
is used:

1. As a way of encouraging discussions about the system design A high-level
architectural view of a system is useful for communication with system stake-
holders and project planning because it is not cluttered with detail.
Stakeholders can relate to it and understand an abstract view of the system.
They can then discuss the system as a whole without being confused by detail.
The architectural model identifies the key components that are to be devel-
oped so that managers can start assigning people to plan the development of
these systems.

2. As a way of documenting an architecture that has been designed The aim here
is to produce a complete system model that shows the different components in a
system, their interfaces and their connections. The argument for such a model is
that such a detailed architectural description makes it easier to understand and
evolve the system.

Block diagrams are a good way of supporting communications between the peo-
ple involved in the software design process. They are intuitive, and domain experts
and software engineers can relate to them and participate in discussions about the
system. Managers find them helpful in planning the project. For many projects,
block diagrams are the only architectural description.

Ideally, if the architecture of a system is to be documented in detail, it is better to
use a more rigorous notation for architectural description. Various architectural
description languages (Bass, Clements, and Kazman 2012) have been developed for
this purpose. A more detailed and complete description means that there is less scope
for misunderstanding the relationships between the architectural components.
However, developing a detailed architectural description is an expensive and
 time-consuming process. It is practically impossible to know whether or not it is
cost-effective, so this approach is not widely used.

  6.1  ■  Architectural design decisions    171

	 6.1		 Architectural	design	decisions

Architectural design is a creative process in which you design a system organization
that will satisfy the functional and non-functional requirements of a system. There is
no formulaic architectural design process. It depends on the type of system being
developed, the background and experience of the system architect, and the specific
requirements for the system. Consequently, I think it is best to consider architectural
design as a series of decisions to be made rather than a sequence of activities.

During the architectural design process, system architects have to make a number
of structural decisions that profoundly affect the system and its development pro-
cess. Based on their knowledge and experience, they have to consider the fundamen-
tal questions shown in Figure 6.2.

Although each software system is unique, systems in the same application domain
often have similar architectures that reflect the fundamental concepts of the domain. For
example, application product lines are applications that are built around a core architecture
with variants that satisfy specific customer requirements. When designing a system archi-
tecture, you have to decide what your system and broader application classes have in com-
mon, and decide how much knowledge from these application architectures you can reuse.

For embedded systems and apps designed for personal computers and mobile
devices, you do not have to design a distributed architecture for the system. However,
most large systems are distributed systems in which the system software is distrib-
uted across many different computers. The choice of distribution architecture is a

Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What Architectural patterns or
styles might be used?

What will be the fundamental
approach used to structure
the system?

How will the structural
components in the system be
decomposed into
sub-components?

What strategy will be used to
control the operation of the
components in the system?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

?

Figure 6.2 Architectural
design decisions

172    Chapter 6  ■  Architectural design

key decision that affects the performance and reliability of the system. This is a
major topic in its own right that I cover in Chapter 17.

The architecture of a software system may be based on a particular Architectural
pattern or style (these terms have come to mean the same thing). An Architectural
pattern is a description of a system organization (Garlan and Shaw 1993), such as a
client–server organization or a layered architecture. Architectural patterns capture
the essence of an architecture that has been used in different software systems. You
should be aware of common patterns, where they can be used, and their strengths
and weaknesses when making decisions about the architecture of a system. I cover
several frequently used patterns in Section 6.3.

Garlan and Shaw’s notion of an architectural style covers questions 4 to 6 in the
list of fundamental architectural questions shown in Figure 6.2. You have to choose
the most appropriate structure, such as client–server or layered structuring, that will
enable you to meet the system requirements. To decompose structural system units,
you decide on a strategy for decomposing components into subcomponents. Finally,
in the control modeling process, you develop a general model of the control relation-
ships between the various parts of the system and make decisions about how the
execution of components is controlled.

Because of the close relationship between non-functional system characteristics
and software architecture, the choice of architectural style and structure should
depend on the non-functional requirements of the system:

1. Performance If performance is a critical requirement, the architecture should be
designed to localize critical operations within a small number of components,
with these components deployed on the same computer rather than distributed
across the network. This may mean using a few relatively large components
rather than small, finer-grain components. Using large components reduces the
number of component communications, as most of the interactions between
related system features take place within a component. You may also consider
runtime system organizations that allow the system to be replicated and exe-
cuted on different processors.

2. Security If security is a critical requirement, a layered structure for the architec-
ture should be used, with the most critical assets protected in the innermost lay-
ers and a high level of security validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed so
that safety-related operations are co-located in a single component or in a small
number of components. This reduces the costs and problems of safety validation
and may make it possible to provide related protection systems that can safely
shut down the system in the event of failure.

4. Availability If availability is a critical requirement, the architecture should be
designed to include redundant components so that it is possible to replace and
update components without stopping the system. I describe fault-tolerant sys-
tem architectures for high-availability systems in Chapter 11.

  6.2  ■  Architectural views    173

5. Maintainability If maintainability is a critical requirement, the system architec-
ture should be designed using fine-grain, self-contained components that may
readily be changed. Producers of data should be separated from consumers, and
shared data structures should be avoided.

Obviously, there is potential conflict between some of these architectures. For
example, using large components improves performance, and using small, fine-grain
components improves maintainability. If both performance and maintainability are
important system requirements, however, then some compromise must be found.
You can sometimes do this by using different Architectural patterns or styles for
separate parts of the system. Security is now almost always a critical requirement,
and you have to design an architecture that maintains security while also satisfying
other non-functional requirements.

Evaluating an architectural design is difficult because the true test of an architec-
ture is how well the system meets its functional and non-functional requirements
when it is in use. However, you can do some evaluation by comparing your design
against reference architectures or generic Architectural patterns. Bosch’s description
(Bosch 2000) of the non-functional characteristics of some Architectural patterns can
help with architectural evaluation.

	 6.2		 Architectural	views

I explained in the introduction to this chapter that architectural models of a software
system can be used to focus discussion about the software requirements or design.
Alternatively, they may be used to document a design so that it can be used as a basis
for more detailed design and implementation of the system. In this section, I discuss
two issues that are relevant to both of these:

1. What views or perspectives are useful when designing and documenting a sys-
tem’s architecture?

2. What notations should be used for describing architectural models?

It is impossible to represent all relevant information about a system’s architecture
in a single diagram, as a graphical model can only show one view or perspective of
the system. It might show how a system is decomposed into modules, how the
 runtime processes interact, or the different ways in which system components are
distributed across a network. Because all of these are useful at different times, for
both design and documentation, you usually need to present multiple views of the
software architecture.

There are different opinions as to what views are required. Krutchen (Krutchen 1995)
in his well-known 4 +1 view model of software architecture, suggests that there should

174    Chapter 6  ■  Architectural design

be four fundamental architectural views, which can be linked through common use
cases or scenarios (Figure 6.3). He suggests the following views:

1. A logical view, which shows the key abstractions in the system as objects or
object classes. It should be possible to relate the system requirements to entities
in this logical view.

2. A process view, which shows how, at runtime, the system is composed of inter-
acting processes. This view is useful for making judgments about non-func-
tional system characteristics such as performance and availability.

3. A development view, which shows how the software is decomposed for develop-
ment; that is, it shows the breakdown of the software into components that are
implemented by a single developer or development team. This view is useful for
software managers and programmers.

4. A physical view, which shows the system hardware and how software compo-
nents are distributed across the processors in the system. This view is useful for
 systems engineers planning a system deployment.

Hofmeister et al. (Hofmeister, Nord, and Soni 2000) suggest the use of similar views
but add to this the notion of a conceptual view. This view is an abstract view of the system
that can be the basis for decomposing high-level requirements into more detailed specifi-
cations, help engineers make decisions about components that can be reused, and repre-
sent a product line (discussed in Chapter 15) rather than a single system. Figure 6.1, which
describes the architecture of a packing robot, is an example of a conceptual system view.

In practice, conceptual views of a system’s architecture are almost always devel-
oped during the design process. They are used to explain the system architecture to
stakeholders and to inform architectural decision making. During the design process,
some of the other views may also be developed when different aspects of the system
are discussed, but it is rarely necessary to develop a complete description from all
perspectives. It may also be possible to associate Architectural patterns, discussed in
the next section, with the different views of a system.

System
architecture

Logical
view

Physical
view

Process
view

Development
view

Figure 6.3 Architectural
views

  6.3  ■  Architectural patterns    175

There are differing views about whether or not software architects should use the
UML for describing and documenting software architectures. A survey in 2006 (Lange,
Chaudron, and Muskens 2006) showed that, when the UML was used, it was mostly
applied in an informal way. The authors of that paper argued that this was a bad thing.

I disagree with this view. The UML was designed for describing object-oriented
systems, and, at the architectural design stage, you often want to describe systems at a
higher level of abstraction. Object classes are too close to the implementation to be use-
ful for architectural description. I don’t find the UML to be useful during the design
process itself and prefer informal notations that are quicker to write and that can be eas-
ily drawn on a whiteboard. The UML is of most value when you are documenting an
architecture in detail or using model-driven development, as discussed in Chapter 5.

A number of researchers (Bass, Clements, and Kazman 2012) have proposed the
use of more specialized architectural description languages (ADLs) to describe system
architectures. The basic elements of ADLs are components and connectors, and they
include rules and guidelines for well-formed architectures. However, because ADLs
are specialist languages, domain and application specialists find it hard to understand
and use ADLs. There may be some value in using domain-specific ADLs as part of
model-driven development, but I do not think they will become part of mainstream
software engineering practice. Informal models and notations, such as the UML, will
remain the most commonly used ways of documenting system architectures.

Users of agile methods claim that detailed design documentation is mostly
unused. It is, therefore, a waste of time and money to develop these documents. I
largely agree with this view, and I think that, except for critical systems, it is not
worth developing a detailed architectural description from Krutchen’s four perspec-
tives. You should develop the views that are useful for communication and not worry
about whether or not your architectural documentation is complete.

	 6.3		 Architectural	patterns

The idea of patterns as a way of presenting, sharing, and reusing knowledge about
software systems has been adopted in a number of areas of software engineering. The
trigger for this was the publication of a book on object-oriented design patterns
(Gamma et al. 1995). This prompted the development of other types of patterns, such
as patterns for organizational design (Coplien and Harrison 2004), usability patterns
(Usability Group 1998), patterns of cooperative interaction (Martin and Sommerville
2004), and configuration management patterns (Berczuk and Appleton 2002).

Architectural patterns were proposed in the 1990s under the name “architectural
styles” (Shaw and Garlan 1996). A very detailed five-volume series of handbooks on
pattern-oriented software architecture was published between 1996 and 2007
(Buschmann et al. 1996; Schmidt et al. 2000; Buschmann, Henney, and Schmidt
2007a, 2007b; Kircher and Jain 2004).

In this section, I introduce Architectural patterns and briefly describe a selection of
Architectural patterns that are commonly used. Patterns may be described in a stand-
ard way (Figures 6.4 and 6.5) using a mixture of narrative description and diagrams.

176    Chapter 6  ■  Architectural design

Figure 6.4 The
Model-View-Controller
(MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The
system is structured into three logical components that interact with
each other. The Model component manages the system data and
associated operations on that data. The View component defines and
manages how the data is presented to the user. The Controller compo-
nent manages user interaction (e.g., key presses, mouse clicks, etc.) and
passes these interactions to the View and the Model. See Figure 6.5.

Example Figure 6.6 shows the architecture of a web-based application system
organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data.
Also used when the future requirements for interaction and
presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice
versa. Supports presentation of the same data in different ways, with
changes made in one representation shown in all of them.

Disadvantages May involve additional code and code complexity when the data
model and interactions are simple.

Controller View

Model

View
selection

State
change

Change
notification

State query

User events

Maps user actions
to model updates
Selects view

Renders model
Requests model updates
Sends user events to
controller

Encapsulates application
state
Notifies view of state
changes

Figure 6.5 The
organization of the
Model-View-Controller

For more detailed information about patterns and their use, you should refer to the
published pattern handbooks.

You can think of an Architectural pattern as a stylized, abstract description of good
practice, which has been tried and tested in different systems and environments. So,
an Architectural pattern should describe a system organization that has been success-
ful in previous systems. It should include information on when it is and is not appro-
priate to use that pattern, and details on the pattern’s strengths and weaknesses.

Figure 6.4 describes the well-known Model-View-Controller pattern. This pattern
is the basis of interaction management in many web-based systems and is supported
by most language frameworks. The stylized pattern description includes the pattern

  6.3  ■  Architectural patterns    177

name, a brief description, a graphical model, and an example of the type of system
where the pattern is used. You should also include information about when the
 pattern should be used and its advantages and disadvantages.

Graphical models of the architecture associated with the MVC pattern are shown
in Figures 6.5 and 6.6. These present the architecture from different views: Figure 6.5
is a conceptual view, and Figure 6.6 shows a runtime system architecture when this
pattern is used for interaction management in a web-based system.

In this short space, it is impossible to describe all of the generic patterns that
can be used in software development. Instead, I present some selected examples of
patterns that are widely used and that capture good architectural design principles.

 6.3.1 Layered architecture

The notions of separation and independence are fundamental to architectural design
because they allow changes to be localized. The MVC pattern, shown in Figure 6.4,
separates elements of a system, allowing them to change independently. For example,
adding a new view or changing an existing view can be done without any changes to
the underlying data in the model. The Layered Architecture pattern is another way of
achieving separation and independence. This pattern is shown in Figure 6.7. Here, the
system functionality is organized into separate layers, and each layer only relies on
the facilities and services offered by the layer immediately beneath it.

This layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made availa-
ble to users. The architecture is also changeable and portable. If its interface is
unchanged, a new layer with extended functionality can replace an existing layer

Controller View

Model

Form to
display

Update
request

Change
notification

Refresh request

User events

Browser

HTTP request processing
Application-specific logic
Data validation

Dynamic page
generation
Forms management

Business logic
DatabaseFigure 6.6 Web

application architecture
using the MVC pattern

178    Chapter 6  ■  Architectural design

without changing other parts of the system. Furthermore, when layer interfaces
change or new facilities are added to a layer, only the adjacent layer is affected. As
layered systems localize machine dependencies, this makes it easier to provide
multi-platform implementations of an application system. Only the machine-
dependent layers need be reimplemented to take account of the facilities of a different
operating system or database.

Figure 6.8 is an example of a layered architecture with four layers. The lowest
layer includes system support software—typically, database and operating system
support. The next layer is the application layer, which includes the components
concerned with the application functionality and utility components used by other
application components.

The third layer is concerned with user interface management and providing user
authentication and authorization, with the top layer providing user interface facili-
ties. Of course, the number of layers is arbitrary. Any of the layers in Figure 6.6
could be split into two or more layers.

Figure 6.7 The
Layered Architecture
pattern

Name Layered architecture

Description Organizes the system into layers, with related functionality associated with each layer. A layer
provides services to the layer above it, so the lowest level layers represent core services that
are likely to be used throughout the system. See Figure 6.8.

Example A layered model of a digital learning system to support learning of all subjects in schools (Figure 6.9).

When used Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multilevel security.

Advantages Allows replacement of entire layers as long as the interface is maintained. Redundant facilities
(e.g., authentication) can be provided in each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult, and a high-level layer
may have to interact directly with lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple levels of interpretation of a
service request as it is processed at each layer.

User interface

Core business logic/application functionality

System utilities

System support (OS, database, etc.)

User interface management
Authentication and authorization

Figure 6.8 A generic
layered architecture

  6.3  ■  Architectural patterns    179

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage

Logging and monitoring

Application storage

Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Figure 6.9 The
architecture of the
iLearn system

Figure 6.9 shows that the iLearn digital learning system, introduced in Chapter 1,
has a four-layer architecture that follows this pattern. You can see another example
of the Layered Architecture pattern in Figure 6.19 (Section 6.4, which shows the
organization of the Mentcare system.

 6.3.2 Repository architecture

The layered architecture and MVC patterns are examples of patterns where the view
presented is the conceptual organization of a system. My next example, the Repository
pattern (Figure 6.10), describes how a set of interacting components can share data.

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repository.

Example Figure 6.11 is an example of an IDE where the components use a repository of system design
infor mation. Each software tool generates information, which is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of information are
generated that has to be stored for a long time. You may also use it in data-driven systems where
the inclusion of data in the repository triggers an action or tool.

Advantages Components can be independent; they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components. All data
can be managed consistently (e.g., backups done at the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.

Figure 6.10 The
Repository pattern

180    Chapter 6  ■  Architectural design

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

Figure 6.11 A repository
architecture for an IDE

The majority of systems that use large amounts of data are organized around a shared
database or repository. This model is therefore suited to applications in which data is
generated by one component and used by another. Examples of this type of system
include command and control systems, management information systems, Computer-
Aided Design (CAD) systems, and interactive development environments for software.

Figure 6.11 illustrates a situation in which a repository might be used. This diagram
shows an IDE that includes different tools to support model-driven development. The
repository in this case might be a version-controlled environment (as discussed in
Chapter 25) that keeps track of changes to software and allows rollback to earlier versions.

Organizing tools around a repository is an efficient way of sharing large amounts
of data. There is no need to transmit data explicitly from one component to another.
However, components must operate around an agreed repository data model.
Inevitably, this is a compromise between the specific needs of each tool, and it may
be difficult or impossible to integrate new components if their data models do not fit
the agreed schema. In practice, it may be difficult to distribute the repository over a
number of machines. Although it is possible to distribute a logically centralized
repository, this involves maintaining multiple copies of data. Keeping these consist-
ent and up to date adds more overhead to the system.

In the repository architecture shown in Figure 6.11, the repository is passive and
control is the responsibility of the components using the repository. An alternative
approach, which has been derived for artificial intelligence (AI) systems, uses a
“blackboard” model that triggers components when particular data become availa-
ble. This is appropriate when the data in the repository is unstructured. Decisions
about which tool is to be activated can only be made when the data has been ana-
lyzed. This model was introduced by Nii (Nii 1986), and Bosch (Bosch 2000)
includes a good discussion of how this style relates to system quality attributes.

 6.3.3 Client–server architecture

The Repository pattern is concerned with the static structure of a system and does
not show its runtime organization. My next example, the Client–Server pattern
(Figure 6.12), illustrates a commonly used runtime organization for distributed

  6.3  ■  Architectural patterns    181

systems. A system that follows the Client–Server pattern is organized as a set of ser-
vices and associated servers, and clients that access and use the services. The major
components of this model are:

1. A set of servers that offer services to other components. Examples of servers
include print servers that offer printing services, file servers that offer file man-
agement services, and a compile server that offers programming language com-
pilation services. Servers are software components, and several servers may run
on the same computer.

2. A set of clients that call on the services offered by servers. There will normally
be several instances of a client program executing concurrently on different
computers.

 3. A network that allows the clients to access these services. Client–server sys-
tems are usually implemented as distributed systems, connected using Internet
protocols.

Client–server architectures are usually thought of as distributed systems architec-
tures, but the logical model of independent services running on separate servers can
be implemented on a single computer. Again, an important benefit is separation and
independence. Services and servers can be changed without affecting other parts of
the system.

Clients may have to know the names of the available servers and the services
they provide. However, servers do not need to know the identity of clients or how
many clients are accessing their services. Clients access the services provided by a
server through remote procedure calls using a request–reply protocol (such as http),
where a client makes a request to a server and waits until it receives a reply from
that server.

Figure 6.12 The
Client–Server pattern

Name Client–server

Description In a client–server architecture, the system is presented as a set of services, with each service
delivered by a separate server. Clients are users of these services and access servers to make
use of them.

Example Figure 6.13 is an example of a film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because
servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure and so is susceptible to denial-of-service attacks
or server failure. Performance may be unpredictable because it depends on the network
as well as the system. Management problems may arise if servers are owned by
different organizations.

182    Chapter 6  ■  Architectural design

Figure 6.13 is an example of a system that is based on the client–server model.
This is a multiuser, web-based system for providing a film and photograph library.
In this system, several servers manage and display the different types of media.
Video frames need to be transmitted quickly and in synchrony but at relatively low
resolution. They may be compressed in a store, so the video server can handle
video compression and decompression in different formats. Still pictures, how-
ever, must be maintained at a high resolution, so it is appropriate to maintain them
on a separate server.

The catalog must be able to deal with a variety of queries and provide links into
the web information system that include data about the film and video clips, and an
e-commerce system that supports the sale of photographs, film, and video clips. The
client program is simply an integrated user interface, constructed using a web
browser, to access these services.

The most important advantage of the client–server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the system
or to upgrade servers transparently without affecting other parts of the system. I
cover distributed architectures in Chapter 17, where I explain the client–server
model and its variants in more detail.

 6.3.4 Pipe and filter architecture

My final example of a general Architectural pattern is the Pipe and Filter pattern
(Figure 6.14). This is a model of the runtime organization of a system where
functional transformations process their inputs and produce outputs. Data flows
from one to another and is transformed as it moves through the sequence. Each
processing step is implemented as a transform. Input data flows through these
transforms until converted to output. The transformations may execute sequen-
tially or in parallel. The data can be processed by each transform item by item or
in a single batch.

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Figure 6.13 A client–
server architecture for a
film library

  6.3  ■  Architectural patterns    183

The name “pipe and filter” comes from the original Unix system where it was
possible to link processes using “pipes.” These passed a text stream from one pro-
cess to another. Systems that conform to this model can be implemented by combin-
ing Unix commands, using pipes and the control facilities of the Unix shell. The
term filter is used because a transformation “filters out” the data it can process from
its input data stream.

Variants of this pattern have been in use since computers were first used for auto-
matic data processing. When transformations are sequential with data processed in
batches, this pipe and filter architectural model becomes a batch sequential model, a
common architecture for data-processing systems such as billing systems. The archi-
tecture of an embedded system may also be organized as a process pipeline, with
each process executing concurrently. I cover use of this pattern in embedded systems
in Chapter 21.

An example of this type of system architecture, used in a batch processing appli-
cation, is shown in Figure 6.15. An organization has issued invoices to customers.
Once a week, payments that have been made are reconciled with the invoices. For

Figure 6.14 The Pipe
and Filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each processing component
(filter) is discrete and carries out one type of data transformation. The data flows (as in a
pipe) from one component to another for processing.

Example Figure 6.15 is an example of a pipe and filter system used for processing invoices.

When used Commonly used in data-processing applications (both batch and transaction-based)
where inputs are processed in separate stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches the
structure of many business processes. Evolution by adding transformations is
straightforward. Can be implemented as either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed between communicating transformations.
Each transformation must parse its input and unparse its output to the agreed form. This
increases system overhead and may mean that it is impossible to reuse architectural
components that use incompatible data structures.

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

Figure 6.15 An
example of the pipe
and filter architecture

184    Chapter 6  ■  Architectural design

those invoices that have been paid, a receipt is issued. For those invoices that have
not been paid within the allowed payment time, a reminder is issued.

Pipe and filter systems are best suited to batch processing systems and embedded
systems where there is limited user interaction. Interactive systems are difficult to
write using the pipe and filter model because of the need for a stream of data to be
processed. While simple textual input and output can be modeled in this way, graph-
ical user interfaces have more complex I/O formats and a control strategy that is
based on events such as mouse clicks or menu selections. It is difficult to implement
this as a sequential stream that conforms to the pipe and filter model.

	 6.4		 Application	architectures

Application systems are intended to meet a business or an organizational need. All
businesses have much in common—they need to hire people, issue invoices, keep
accounts, and so on. Businesses operating in the same sector use common sector-
specific applications. Therefore, as well as general business functions, all phone
companies need systems to connect and meter calls, manage their network and issue
bills to customers. Consequently, the application systems used by these businesses
also have much in common.

These commonalities have led to the development of software architectures that
describe the structure and organization of particular types of software systems.
Application architectures encapsulate the principal characteristics of a class of sys-
tems. For example, in real-time systems, there might be generic architectural models
of different system types, such as data collection systems or monitoring systems.
Although instances of these systems differ in detail, the common architectural struc-
ture can be reused when developing new systems of the same type.

The application architecture may be reimplemented when developing new sys-
tems. However, for many business systems, application architecture reuse is implicit
when generic application systems are configured to create a new application. We
see this in the widespread use of Enterprise Resource Planning (ERP) systems and
off-the-shelf configurable application systems, such as systems for accounting and
stock control. These systems have a standard architecture and components. The
components are configured and adapted to create a specific business application.

Architectural patterns for control

There are specific Architectural patterns that reflect commonly used ways of organizing control in a system.
These include centralized control, based on one component calling other components, and event-based control,
where the system reacts to external events.

http://software-engineering-book.com/web/archpatterns/

http://software-engineering-book.com/web/archpatterns

  6.4  ■  Application architectures    185

For example, a system for supply chain management can be adapted for different
types of suppliers, goods, and contractual arrangements.

As a software designer, you can use models of application architectures in a num-
ber of ways:

1. As a starting point for the architectural design process If you are unfamiliar
with the type of application that you are developing, you can base your initial
design on a generic application architecture. You then specialize this for the
specific system that is being developed.

2. As a design checklist If you have developed an architectural design for an appli-
cation system, you can compare this with the generic application architecture.
You can check that your design is consistent with the generic architecture.

3. As a way of organizing the work of the development team The application archi-
tectures identify stable structural features of the system architectures, and in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different components within the architecture.

4. As a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to see
whether there are comparable components in the application architecture.

5. As a vocabulary for talking about applications If you are discussing a specific
application or trying to compare applications, then you can use the concepts
identified in the generic architecture to talk about these applications.

There are many types of application system, and, in some cases, they may seem to
be very different. However, superficially dissimilar applications may have much in
common and thus share an abstract application architecture. I illustrate this by
describing the architectures of two types of application:

1. Transaction processing applications Transaction processing applications are
database-centered applications that process user requests for information and
update the information in a database. These are the most common types of inter-
active business systems. They are organized in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems, and booking systems.

Application architectures

There are several examples of application architectures on the book’s website. These include descriptions of
batch data-processing systems, resource allocation systems, and event-based editing systems.

http://software-engineering-book.com/web/apparch/

http://software-engineering-book.com/web/apparch

186    Chapter 6  ■  Architectural design

2. Language processing systems Language processing systems are systems in
which the user’s intentions are expressed in a formal language, such as a pro-
gramming language. The language processing system processes this language
into an internal format and then interprets this internal representation. The best-
known language processing systems are compilers, which translate high-level
language programs into machine code. However, language processing systems
are also used to interpret command languages for databases and information
systems, and markup languages such as XML.

I have chosen these particular types of system because a large number of web-
based business systems are transaction processing systems, and all software devel-
opment relies on language processing systems.

 6.4.1 Transaction processing systems

Transaction processing systems are designed to process user requests for information
from a database, or requests to update a database (Lewis, Bernstein, and Kifer 2003).
Technically, a database transaction is part of a sequence of operations and is treated
as a single unit (an atomic unit). All of the operations in a transaction have to be
completed before the database changes are made permanent. This ensures that failure
of operations within a transaction does not lead to inconsistencies in the database.

From a user perspective, a transaction is any coherent sequence of operations that
satisfies a goal, such as “find the times of flights from London to Paris.” If the user
transaction does not require the database to be changed, then it may not be necessary
to package this as a technical database transaction.

An example of a database transaction is a customer request to withdraw money from a
bank account using an ATM. This involves checking the customer account balance to see
if sufficient funds are available, modifying the balance by the amount withdrawn and
sending commands to the ATM to deliver the cash. Until all of these steps have been com-
pleted, the transaction is incomplete and the customer accounts database is not changed.

Transaction processing systems are usually interactive systems in which users
make asynchronous requests for service. Figure 6.16 illustrates the conceptual archi-
tectural structure of transaction processing applications. First, a user makes a request
to the system through an I/O processing component. The request is processed by
some application-specific logic. A transaction is created and passed to a transaction
manager, which is usually embedded in the database management system. After the
transaction manager has ensured that the transaction is properly completed, it signals
to the application that processing has finished.

Transaction processing systems may be organized as a “pipe and filter” architec-
ture, with system components responsible for input, processing, and output. For

I/O
processing

Application
logic

Transaction
manager Database

Figure 6.16 The
structure of transaction
processing applications

  6.4  ■  Application architectures    187

example, consider a banking system that allows customers to query their accounts
and withdraw cash from an ATM. The system is composed of two cooperating soft-
ware components—the ATM software and the account processing software in the
bank’s database server. The input and output components are implemented as soft-
ware in the ATM, and the processing component is part of the bank’s database
server. Figure 6.17 shows the architecture of this system, illustrating the functions of
the input, process, and output components.

 6.4.2 Information systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled
access to a large base of information, such as a library catalog, a flight timetable, or
the records of patients in a hospital. Information systems are almost always web-
based systems, where the user interface is implemented in a web browser.

Figure 6.18 presents a very general model of an information system. The system
is modeled using a layered approach (discussed in Section 6.3) where the top layer

Input Process Output

ATM Database ATM

Get customer
account id

Query account

Print details

Return card

Dispense cash

Update account

Validate card

Select service

Figure 6.17 The
software architecture
of an ATM system

User interface

User communications

Information retrieval and modification

Transaction management

Database

Authentication and
authorization

Figure 6.18 Layered
information system
architecture

188    Chapter 6  ■  Architectural design

supports the user interface and the bottom layer is the system database. The user
communications layer handles all input and output from the user interface, and the
information retrieval layer includes application-specific logic for accessing and
updating the database. The layers in this model can map directly onto servers in a
distributed Internet-based system.

As an example of an instantiation of this layered model, Figure 6.19 shows the
architecture of the Mentcare system. Recall that this system maintains and manages
details of patients who are consulting specialist doctors about mental health prob-
lems. I have added detail to each layer in the model by identifying the components
that support user communications and information retrieval and access:

1. The top layer is a browser-based user interface.

2. The second layer provides the user interface functionality that is delivered
through the web browser. It includes components to allow users to log in to the
system and checking components that ensure that the operations they use are
allowed by their role. This layer includes form and menu management compo-
nents that present information to users, and data validation components that
check information consistency.

3. The third layer implements the functionality of the system and provides
 components that implement system security, patient information creation and
updating, import and export of patient data from other databases, and report
generators that create management reports.

4. Finally, the lowest layer, which is built using a commercial database manage-
ment system, provides transaction management and persistent data storage.

Information and resource management systems are sometimes also transaction pro-
cessing systems. For example, e-commerce systems are Internet-based resource
management systems that accept electronic orders for goods or services and then
arrange delivery of these goods or services to the customer. In an e-commerce

Web browser

Report
generation

Transaction management

Patient database

Login Form and menu
manager

Data
validationRole checking

Security
management

Patient info.
manager

Data import
and export

Figure 6.19 The
architecture of the
Mentcare system

  6.4  ■  Application architectures    189

 system, the application-specific layer includes additional functionality supporting a
“shopping cart” in which users can place a number of items in separate transactions,
then pay for them all together in a single transaction.

The organization of servers in these systems usually reflects the four-layer generic
model presented in Figure 6.18. These systems are often implemented as distributed
systems with a multitier client server/architecture

1. The web server is responsible for all user communications, with the user inter-
face implemented using a web browser;

2. The application server is responsible for implementing application-specific
logic as well as information storage and retrieval requests;

3. The database server moves information to and from the database and handles
transaction management.

Using multiple servers allows high throughput and makes it possible to handle thou-
sands of transactions per minute. As demand increases, servers can be added at each
level to cope with the extra processing involved.

 6.4.3 Language processing systems

Language processing systems translate one language into an alternative representation
of that language and, for programming languages, may also execute the resulting code.
Compilers translate a programming language into machine code. Other language pro-
cessing systems may translate an XML data description into commands to query a
database or to an alternative XML representation. Natural language processing sys-
tems may translate one natural language to another, for example, French to Norwegian.

A possible architecture for a language processing system for a programming
 language is illustrated in Figure 6.20. The source language instructions define the

Source
language

instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Figure 6.20 The
architecture
of a language
processing system

190    Chapter 6  ■  Architectural design

Syntax
analyzer

Lexical
analyzer

Semantic
analyzer

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Formatter

Editor

Optimizer

Code
generator

Repository

Figure 6.21 A
repository architecture
for a language
processing system

program to be executed, and a translator converts these into instructions for an abstract
machine. These instructions are then interpreted by another component that fetches
the instructions for execution and executes them using (if necessary) data from the
environment. The output of the process is the result of interpreting the instructions on
the input data.

For many compilers, the interpreter is the system hardware that processes machine
instructions, and the abstract machine is a real processor. However, for dynamically
typed languages, such as Ruby or Python, the interpreter is a software component.

Programming language compilers that are part of a more general program-
ming environment have a generic architecture (Figure 6.21) that includes the fol-
lowing components:

1. A lexical analyzer, which takes input language tokens and converts them into an
internal form.

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated.

3. A syntax analyzer, which checks the syntax of the language being translated. It
uses a defined grammar of the language and builds a syntax tree.

4. A syntax tree, which is an internal structure representing the program being
compiled.

5. A semantic analyzer, which uses information from the syntax tree and the sym-
bol table to check the semantic correctness of the input language text.

6. A code generator, which “walks” the syntax tree and generates abstract
machine code.

Other components might also be included that analyze and transform the syntax
tree to improve efficiency and remove redundancy from the generated machine code.

  6.4  ■  Application architectures    191

In other types of language processing system, such as a natural language translator,
there will be additional components such as a dictionary. The output of the system is
translation of the input text.

Figure 6.21 illustrates how a language processing system can be part of an inte-
grated set of programming support tools. In this example, the symbol table and syn-
tax tree act as a central information repository. Tools or tool fragments communicate
through it. Other information that is sometimes embedded in tools, such as the gram-
mar definition and the definition of the output format for the program, have been
taken out of the tools and put into the repository. Therefore, a syntax-directed editor
can check that the syntax of a program is correct as it is being typed. A program
formatter can create listings of the program that highlight different syntactic ele-
ments and are therefore easier to read and understand.

Alternative Architectural patterns may be used in a language processing system
(Garlan and Shaw 1993). Compilers can be implemented using a composite of a
repository and a pipe and filter model. In a compiler architecture, the symbol table is
a repository for shared data. The phases of lexical, syntactic, and semantic analysis
are organized sequentially, as shown in Figure 6.22, and communicate through the
shared symbol table.

This pipe and filter model of language compilation is effective in batch environ-
ments where programs are compiled and executed without user interaction; for
example, in the translation of one XML document to another. It is less effective when
a compiler is integrated with other language processing tools such as a structured
editing system, an interactive debugger, or a program formatter. In this situation,
changes from one component need to be reflected immediately in other components.
It is better to organize the system around a repository, as shown in Figure 6.21 if you
are implementing a general, language-oriented programming environment.

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

Figure 6.22 A pipe
and filter compiler
architecture

Reference architectures

Reference architectures capture important features of system architectures in a domain. Essentially, they include
everything that might be in an application architecture, although, in reality, it is very unlikely that any individual
application would include all the features shown in a reference architecture. The main purpose of reference
architectures is to evaluate and compare design proposals, and to educate people about architectural character-
istics in that domain.

http://software-engineering-book.com/web/refarch/

http://software-engineering-book.com/web/refarch

K e y P o i n t s

■ A software architecture is a description of how a software system is organized. Properties of a
system such as performance, security, and availability are influenced by the architecture used.

■ Architectural design decisions include decisions on the type of application, the distribution of
the system, the architectural styles to be used, and the ways in which the architecture should
be documented and evaluated.

■ Architectures may be documented from several different perspectives or views. Possible
views include a conceptual view, a logical view, a process view, a development view, and a
physical view.

■ Architectural patterns are a means of reusing knowledge about generic system architectures.
They describe the architecture, explain when it may be used, and point out its advantages and
disadvantages.

■ Commonly used Architectural patterns include model-view-controller, layered architecture,
repository, client–server, and pipe and filter.

■ Generic models of application systems architectures help us understand the operation of appli-
cations, compare applications of the same type, validate application system designs, and assess
large-scale components for reuse.

■ Transaction processing systems are interactive systems that allow information in a database to
be remotely accessed and modified by a number of users. Information systems and resource
management systems are examples of transaction processing systems.

■ Language processing systems are used to translate texts from one language into another and to
carry out the instructions specified in the input language. They include a translator and an
abstract machine that executes the generated language.

F u r t h e r 	 r e A d i n g

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on soft-
ware architecture and has a good discussion on different architectural styles that is still relevant.
(M. Shaw and D. Garlan, 1996, Prentice-Hall).

“The Golden Age of Software Architecture.” This paper surveys the development of software archi-
tecture from its beginnings in the 1980s through to its usage in the 21st century. There is not a lot
of technical content, but it is an interesting historical overview. (M. Shaw and P. Clements, IEEE
Software, 21 (2), March–April 2006) http://doi.dx.org/10.1109/MS.2006.58.

Software Architecture in Practice (3rd ed.). This is a practical discussion of software architec-
tures that does not oversell the benefits of architectural design. It provides a clear business
rationale, explaining why architectures are important. (L. Bass, P. Clements, and R. Kazman,
2012, Addison-Wesley).

192    Chapter 6  ■  Architectural design

http://doi.dx.org/10.1109/MS.2006.58

	 Chapter	6	 ■	 Exercises	 	 193

Handbook of Software Architecture. This is a work in progress by Grady Booch, one of the early evan-
gelists for software architecture. He has been documenting the architectures of a range of software
systems so that you can see reality rather than academic abstraction. Available on the web and
intended to appear as a book. (G. Booch, 2014) http://www.handbookofsoftwarearchitecture.com/

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

e x e r c i s e s

  6.1.  When describing a system, explain why you may have to start the design of the system archi-
tecture before the requirements specification is complete.

  6.2.  You have been asked to prepare and deliver a presentation to a nontechnical manager to
 justify the hiring of a system architect for a new project. Write a list of bullet points setting
out the key points in your presentation in which you explain the importance of software
 architecture.

  6.3.  Performance and security may pose to be conflicting non-functional requirements when
 architecting software systems. Make an argument in support of this statement.

  6.4.  Draw diagrams showing a conceptual view and a process view of the architectures of the fol-
lowing systems:

A ticket machine used by passengers at a railway station.

A computer-controlled video conferencing system that allows video, audio, and computer data
to be visible to several participants at the same time.

A robot floor-cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.

  6.5.  A software system will be built to allow drones to autonomously herd cattle in farms. These
drones can be remotely controlled by human operators. Explain how multiple architectural
patterns can fit together to help build this kind of system.

  6.6.  Suggest an architecture for a system (such as iTunes) that is used to sell and distribute music
on the Internet. What Architectural patterns are the basis for your proposed architecture?

  6.7.  An information system is to be developed to maintain information about assets owned by a
utility company such as buildings, vehicles, and equipment. It is intended that this will be

http://www.handbookofsoftwarearchitecture.com
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design

updatable by staff working in the field using mobile devices as new asset information
becomes available. The company has several existing asset databases that should be inte-
grated through this system. Design a layered architecture for this asset management system
based on the generic information system architecture shown in Figure 6.18.

  6.8.  Using the generic model of a language processing system presented here, design the archi-
tecture of a system that accepts natural language commands and translates these into
 database queries in a language such as SQL.

  6.9.  Using the basic model of an information system, as presented in Figure 6.18, suggest the
components that might be part of an information system that allows users to view box office
events, available tickets and prices, and to eventually buy tickets.

6.10.  Should there be a separate profession of ’software architect’ whose role is to work indepen-
dently with a customer to design the software system architecture? A separate software
 company would then implement the system. What might be the difficulties of establishing
such a profession?

r e F e r e n C e s

Bass, L., P. Clements, and R. Kazman. 2012. Software Architecture in Practice (3rd ed.). Boston:
Addison-Wesley.

Berczuk, S. P., and B. Appleton. 2002. Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Boston: Addison-Wesley.

Booch, G. 2014. “Handbook of Software Architecture.” http://handbookofsoftwarearchitecture.
com/

Bosch, J. 2000. Design and Use of Software Architectures. Harlow, UK: Addison-Wesley.

Buschmann, F., K. Henney, and D. C. Schmidt. 2007a. Pattern-Oriented Software Architecture Vol-
ume 4: A Pattern Language for Distributed Computing. New York: John Wiley & Sons.

––––––. 2007b. Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern Lan-
guages. New York: John Wiley & Sons.

Buschmann, F., R. Meunier, H. Rohnert, and P. Sommerlad. 1996. Pattern-Oriented Software Archi-
tecture Volume 1: A System of Patterns. New York: John Wiley & Sons.

Chen, L., M. Ali Babar, and B. Nuseibeh. 2013. “Characterizing Architecturally Significant Require-
ments.” IEEE Software	30 (2): 38–45. doi:10.1109/MS.2012.174.

Coplien, J. O., and N. B. Harrison. 2004. Organizational Patterns of Agile Software Development.
Englewood Cliffs, NJ: Prentice-Hall.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley.

194    Chapter 6  ■  Architectural design

http://handbookofsoftwarearchitecture.com
http://handbookofsoftwarearchitecture.com

  Chapter 6  ■  References    195

Garlan, D., and M. Shaw. 1993. “An Introduction to Software Architecture.” In Advances in Software
Engineering and Knowledge Engineering, edited by V. Ambriola and G. Tortora, 2:1–39. London:
World Scientific Publishing Co.

Hofmeister, C., R. Nord, and D. Soni. 2000. Applied Software Architecture. Boston: Addison-Wesley.

Kircher, M., and P. Jain. 2004. Pattern-Oriented Software Architecture Volume 3: Patterns for
Resource Management. New York: John Wiley & Sons.

Krutchen, P. 1995. “The 4+1 View Model of Software Architecture.” IEEE Software 12 (6): 42–50.
doi:10.1109/52.469759.

Lange, C. F. J., M. R. V. Chaudron, and J. Muskens. 2006. “UML Software Architecture and Design
Description.” IEEE Software 23 (2): 40–46. doi:10.1109/MS.2006.50.

Lewis, P. M., A. J. Bernstein, and M. Kifer. 2003. Databases and Transaction Processing: An
 Application-Oriented Approach. Boston: Addison-Wesley.

Martin, D., and I. Sommerville. 2004. “Patterns of Cooperative Interaction: Linking Ethnomethodol-
ogy and Design.” ACM Transactions on Computer-Human Interaction 11 (1) (March 1): 59–89.
doi:10.1145/972648.972651.

Nii, H. P. 1986. “Blackboard Systems, Parts 1 and 2.” AI Magazine 7 (2 and 3): 38–53 and 62–69.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/537/473

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. 2000. Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. New York: John Wiley & Sons.

Shaw, M., and D. Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline.
Englewood Cliffs, NJ: Prentice-Hall.

Usability Group. 1998. “Usability Patterns”. University of Brighton. http://www.it.bton.ac.uk/
Research/patterns/home.html

http://www.aaai.org/ojs/index.php/aimagazine/article/view/537/473
http://www.it.bton.ac.uk/Research/patterns/home.html
http://www.it.bton.ac.uk/Research/patterns/home.html

	Part 1 Introduction to Software Engineering��
	Chapter 6 Architectural design�������������������������������������
	6.1 Architectural design decisions���
	6.2 Architectural views������������������������������
	6.3 Architectural patterns���������������������������������
	6.4 Application architectures������������������������������������

