
Design and
implementation

7

Objectives
The objectives of this chapter are to introduce object-oriented software
design using the UML and highlight important implementation concerns.
When you have read this chapter, you will:

■ understand the most important activities in a general, object-oriented
design process;

■ understand some of the different models that may be used to
document an object-oriented design;

■ know about the idea of design patterns and how these are a way of
reusing design knowledge and experience;

■ have been introduced to key issues that have to be considered when
implementing software, including software reuse and open-source
development.

Contents
7.1 Object-oriented design using the UML

7.2 Design patterns

7.3 Implementation issues

7.4 Open-source development

	 Chapter	7	 ■	 Design	and	implementation	 	 197

Software design and implementation is the stage in the software engineering process
at which an executable software system is developed. For some simple systems,
software engineering means software design and implementation and all other soft-
ware engineering activities are merged with this process. However, for large sys-
tems, software design and implementation is only one of a number of software
engineering processes (requirements engineering, verification and validation, etc.).

Software design and implementation activities are invariably interleaved. Software
design is a creative activity in which you identify software components and their
 relationships, based on a customer’s requirements. Implementation is the process of
realizing the design as a program. Sometimes there is a separate design stage, and this
design is modeled and documented. At other times, a design is in the programmer’s
head or roughly sketched on a whiteboard or sheets of paper. Design is about how
to solve a problem, so there is always a design process. However, it isn’t always neces-
sary or appropriate to describe the design in detail using the UML or other design
description language.

Design and implementation are closely linked, and you should normally take
implementation issues into account when developing a design. For example, using
the UML to document a design may be the right thing to do if you are programming
in an object-oriented language such as Java or C#. It is less useful, I think, if you are
developing using a dynamically typed language like Python. There is no point in
using the UML if you are implementing your system by configuring an off-the-shelf
package. As I discussed in Chapter 3, agile methods usually work from informal
sketches of the design and leave design decisions to programmers.

One of the most important implementation decisions that has to be made at an
early stage of a software project is whether to build or to buy the application soft-
ware. For many types of application, it is now possible to buy off-the-shelf applica-
tion systems that can be adapted and tailored to the users’ requirements. For example,
if you want to implement a medical records system, you can buy a package that is
already used in hospitals. It is usually cheaper and faster to use this approach rather
than developing a new system in a conventional programming language.

When you develop an application system by reusing an off-the-shelf product, the
design process focuses on how to configure the system product to meet the applica-
tion requirements. You don’t develop design models of the system, such as models
of the system objects and their interactions. I discuss this reuse-based approach to
development in Chapter 15.

I assume that most readers of this book have had experience of program design
and implementation. This is something that you acquire as you learn to program
and master the elements of a programming language like Java or Python. You will
have probably learned about good programming practice in the programming lan-
guages that you have studied, as well as how to debug programs that you have
developed. Therefore, I don’t cover programming topics here. Instead, this chapter
has two aims:

1. To show how system modeling and architectural design (covered in Chapters 5
and 6) are put into practice in developing an object-oriented software design.

198	 	 Chapter	7	 ■	 Design	and	implementation

2. To introduce important implementation issues that are not usually covered in
programming books. These include software reuse, configuration management
and open-source development.

As there are a vast number of different development platforms, the chapter is not
biased toward any particular programming language or implementation technology.
Therefore, I have presented all examples using the UML rather than a programming
language such as Java or Python.

	 7.1		 Object-oriented	design	using	the	UML

An object-oriented system is made up of interacting objects that maintain their own local
state and provide operations on that state. The representation of the state is private and
cannot be accessed directly from outside the object. Object-oriented design processes
involve designing object classes and the relationships between these classes. These
classes define the objects in the system and their interactions. When the design is realized
as an executing program, the objects are created dynamically from these class definitions.

Objects include both data and operations to manipulate that data. They may there-
fore be understood and modified as stand-alone entities. Changing the implementa-
tion of an object or adding services should not affect other system objects. Because
objects are associated with things, there is often a clear mapping between real-world
entities (such as hardware components) and their controlling objects in the system.
This improves the understandability, and hence the maintainability, of the design.

To develop a system design from concept to detailed, object-oriented design, you
need to:

1. Understand and define the context and the external interactions with the system.

2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.

5. Specify interfaces.

Like all creative activities, design is not a clear-cut, sequential process. You
develop a design by getting ideas, proposing solutions, and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems arise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process. Sometimes you use notations, such
as the UML, precisely to clarify aspects of the design; at other times, notations are
used informally to stimulate discussions.

I explain object-oriented software design by developing a design for part of the
embedded software for the wilderness weather station that I introduced in Chapter 1.
Wilderness weather stations are deployed in remote areas. Each weather station

	 7.1	 ■	 Object-oriented	design	using	the	UML	 	 199

records local weather information and periodically transfers this to a weather infor-
mation system, using a satellite link.

 7.1.1 System context and interactions

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environment.
This is essential for deciding how to provide the required system functionality and how
to structure the system to communicate with its environment. As I discussed in Chapter 5,
understanding the context also lets you establish the boundaries of the system.

Setting the system boundaries helps you decide what features are implemented in
the system being designed and what features are in other associated systems. In this
case, you need to decide how functionality is distributed between the control system
for all of the weather stations and the embedded software in the weather station itself.

System context models and interaction models present complementary views of
the relationships between a system and its environment:

1. A system context model is a structural model that demonstrates the other sys-
tems in the environment of the system being developed.

2. An interaction model is a dynamic model that shows how the system interacts
with its environment as it is used.

The context model of a system may be represented using associations.
Associations simply show that there are some relationships between the entities
involved in the association. You can document the environment of the system using
a simple block diagram, showing the entities in the system and their associations.
Figure 7.1 shows that the systems in the environment of each weather station are a
weather information system, an onboard satellite system, and a control system. The
cardinality information on the link shows that there is a single control system but
several weather stations, one satellite, and one general weather information system.

When you model the interactions of a system with its environment, you should
use an abstract approach that does not include too much detail. One way to do this is
to use a use case model. As I discussed in Chapters 4 and 5, each use case represents

Weather
information

system

1..n1 Weather
station

Satellite

1

1

1..n

1

Control
system 11

1 1..n

Figure 7.1 System
context for the
weather station

200	 	 Chapter	7	 ■	 Design	and	implementation

an interaction with the system. Each possible interaction is named in an ellipse, and
the external entity involved in the interaction is represented by a stick figure.

The use case model for the weather station is shown in Figure 7.2. This shows
that the weather station interacts with the weather information system to report
weather data and the status of the weather station hardware. Other interactions are
with a control system that can issue specific weather station control commands. The
stick figure is used in the UML to represent other systems as well as human users.

Each of these use cases should be described in structured natural language. This
helps designers identify objects in the system and gives them an understanding of
what the system is intended to do. I use a standard format for this description that
clearly identifies what information is exchanged, how the interaction is initiated, and
so on. As I explain in Chapter 21, embedded systems are often modeled by describing

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
controlFigure 7.2 Weather

station use cases

Weather station use cases

Report weather–send weather data to the weather information system

Report status–send status information to the weather information system

Restart–if the weather station is shut down, restart the system

Shutdown–shut down the weather station

Reconfigure–reconfigure the weather station software

Powersave–put the weather station into power-saving mode

Remote control–send control commands to any weather station subsystem

http://software-engineering-book.com/web/ws-use-cases/

http://software-engineering-book.com/web/ws-use-cases

	 7.1	 ■	 Object-oriented	design	using	the	UML	 	 201

Figure 7.3 Use case
description—Report
weather how they respond to internal or external stimuli. Therefore, the stimuli and associ-

ated responses should be listed in the description. Figure 7.3 shows the description of
the Report weather use case from Figure 7.2 that is based on this approach.

 7.1.2 Architectural design

Once the interactions between the software system and the system’s environment
have been defined, you use this information as a basis for designing the system archi-
tecture. Of course, you need to combine this knowledge with your general knowl-
edge of the principles of architectural design and with more detailed domain
knowledge. You identify the major components that make up the system and their
interactions. You may then design the system organization using an architectural
pattern such as a layered or client–server model.

The high-level architectural design for the weather station software is shown in
Figure 7.4. The weather station is composed of independent subsystems that communicate

«subsystem»
Data collection

«subsystem»
Communications

«subsystem»
Configuration manager

«subsystem»
Fault manager

«subsystem»
Power manager

«subsystem»
Instruments

Communication link

Figure 7.4 High-level
architecture of
weather station

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Data The weather station sends a summary of the weather data that has been collected from the
instruments in the collection period to the weather information system. The data sent are the
maximum, minimum, and average ground and air temperatures; the maximum, minimum,
and average air pressures; the maximum, minimum and average wind speeds; the total
rainfall; and the wind direction as sampled at 5-minute intervals.

Stimulus The weather information system establishes a satellite communication link with the weather
station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour, but this frequency may differ
from one station to another and may be modified in future.

202	 	 Chapter	7	 ■	 Design	and	implementation

by broadcasting messages on a common infrastructure, shown as Communication link in
Figure 7.4. Each subsystem listens for messages on that infrastructure and picks up the
messages that are intended for them. This “listener model” is a commonly used architec-
tural style for distributed systems.

When the communications subsystem receives a control command, such as shut-
down, the command is picked up by each of the other subsystems, which then shut
themselves down in the correct way. The key benefit of this architecture is that it is
easy to support different configurations of subsystems because the sender of a mes-
sage does not need to address the message to a particular subsystem.

Figure 7.5 shows the architecture of the data collection subsystem, which is included
in Figure 7.4. The Transmitter and Receiver objects are concerned with managing
communications, and the WeatherData object encapsulates the information that is col-
lected from the instruments and transmitted to the weather information system. This
arrangement follows the producer–consumer pattern, discussed in Chapter 21.

 7.1.3 Object class identification

By this stage in the design process, you should have some ideas about the essential
objects in the system that you are designing. As your understanding of the design
develops, you refine these ideas about the system objects. The use case description
helps to identify objects and operations in the system. From the description of the
Report weather use case, it is obvious that you will need to implement objects repre-
senting the instruments that collect weather data and an object representing the
 summary of the weather data. You also usually need a high-level system object or
objects that encapsulate the system interactions defined in the use cases. With these
objects in mind, you can start to identify the general object classes in the system.

As object-oriented design evolved in the 1980s, various ways of identifying
object classes in object-oriented systems were suggested:

1. Use a grammatical analysis of a natural language description of the system to be
constructed. Objects and attributes are nouns; operations or services are verbs
(Abbott 1983).

2. Use tangible entities (things) in the application domain such as aircraft, roles
such as manager, events such as request, interactions such as meetings, locations

Data collection

Transmitter Receiver

WeatherData
Figure 7.5 Architecture
of data collection
system

	 7.1	 ■	 Object-oriented	design	using	the	UML	 	 203

such as offices, organizational units such as companies, and so on (Wirfs-Brock,
Wilkerson, and Weiner 1990).

3. Use a scenario-based analysis where various scenarios of system use are identi-
fied and analyzed in turn. As each scenario is analyzed, the team responsible for
the analysis must identify the required objects, attributes, and operations (Beck
and Cunningham 1989).

In practice, you have to use several knowledge sources to discover object classes.
Object classes, attributes, and operations that are initially identified from the informal
system description can be a starting point for the design. Information from application
domain knowledge or scenario analysis may then be used to refine and extend the ini-
tial objects. This information can be collected from requirements documents, discus-
sions with users, or analyses of existing systems. As well as the objects representing
entities external to the system, you may also have to design “implementation objects”
that are used to provide general services such as searching and validity checking.

In the wilderness weather station, object identification is based on the tangible
hardware in the system. I don’t have space to include all the system objects here, but
I have shown five object classes in Figure 7.6. The Ground thermometer,
Anemometer, and Barometer objects are application domain objects, and the
WeatherStation and WeatherData objects have been identified from the system
description and the scenario (use case) description:

1. The WeatherStation object class provides the basic interface of the weather sta-
tion with its environment. Its operations are based on the interactions shown in
Figure 7.3. I use a single object class, and it includes all of these interactions.
Alternatively, you could design the system interface as several different classes,
with one class per interaction.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

get ()
test ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

get ()
test ()

Barometer

pressure
height

get ()
test ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarize ()

gt_Ident
an_Ident bar_Ident

Figure 7.6 Weather
station objects

204	 	 Chapter	7	 ■	 Design	and	implementation

2. The WeatherData object class is responsible for processing the report weather
command. It sends the summarized data from the weather station instruments to
the weather information system.

3. The Ground thermometer, Anemometer, and Barometer object classes are directly
related to instruments in the system. They reflect tangible hardware entities in the
system and the operations are concerned with controlling that hardware. These
objects operate autonomously to collect data at the specified frequency and store the
collected data locally. This data is delivered to the WeatherData object on request.

You use knowledge of the application domain to identify other objects, attributes.
and services:

1. Weather stations are often located in remote places and include various instru-
ments that sometimes go wrong. Instrument failures should be reported auto-
matically. This implies that you need attributes and operations to check the
correct functioning of the instruments.

2. There are many remote weather stations, so each weather station should have its
own identifier so that it can be uniquely identified in communications.

3. As weather stations are installed at different times, the types of instrument may
be different. Therefore, each instrument should also be uniquely identified, and
a database of instrument information should be maintained.

At this stage in the design process, you should focus on the objects themselves, with-
out thinking about how these objects might be implemented. Once you have identified
the objects, you then refine the object design. You look for common features and then
design the inheritance hierarchy for the system. For example, you may identify an
Instrument superclass, which defines the common features of all instruments, such as an
identifier, and get and test operations. You may also add new attributes and operations
to the superclass, such as an attribute that records how often data should be collected.

 7.1.4 Design models

Design or system models, as I discussed in Chapter 5, show the objects or object classes
in a system. They also show the associations and relationships between these entities.
These models are the bridge between the system requirements and the implementation
of a system. They have to be abstract so that unnecessary detail doesn’t hide the rela-
tionships between them and the system requirements. However, they also have to
include enough detail for programmers to make implementation decisions.

The level of detail that you need in a design model depends on the design process
used. Where there are close links between requirements engineers, designers and
programmers, then abstract models may be all that are required. Specific design
decisions may be made as the system is implemented, with problems resolved
through informal discussions. Similarly, if agile development is used, outline design
models on a whiteboard may be all that is required.

	 7.1	 ■	 Object-oriented	design	using	the	UML	 	 205

However, if a plan-based development process is used, you may need more
detailed models. When the links between requirements engineers, designers, and pro-
grammers are indirect (e.g., where a system is being designed in one part of an organ-
ization but implemented elsewhere), then precise design descriptions are needed for
communication. Detailed models, derived from the high-level abstract models, are
used so that all team members have a common understanding of the design.

An important step in the design process, therefore, is to decide on the design models
that you need and the level of detail required in these models. This depends on the type
of system that is being developed. A sequential data-processing system is quite different
from an embedded real-time system, so you need to use different types of design models.
The UML supports 13 different types of models, but, as I discussed in Chapter 5, many
of these models are not widely used. Minimizing the number of models that are produced
reduces the costs of the design and the time required to complete the design process.

When you use the UML to develop a design, you should develop two kinds of
design model:

1. Structural models, which describe the static structure of the system using object
classes and their relationships. Important relationships that may be documented
at this stage are generalization (inheritance) relationships, uses/used-by
 relationships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the system and show
the expected runtime interactions between the system objects. Interactions that
may be documented include the sequence of service requests made by objects
and the state changes triggered by these object interactions.

I think three UML model types are particularly useful for adding detail to use
case and architectural models:

1. Subsystem models, which show logical groupings of objects into coherent subsys-
tems. These are represented using a form of class diagram with each subsystem
shown as a package with enclosed objects. Subsystem models are structural models.

2. Sequence models, which show the sequence of object interactions. These are
represented using a UML sequence or a collaboration diagram. Sequence models
are dynamic models.

3. State machine models, which show how objects change their state in response to
events. These are represented in the UML using state diagrams. State machine
models are dynamic models.

A subsystem model is a useful static model that shows how a design is organized into
logically related groups of objects. I have already shown this type of model in Figure 7.4
to present the subsystems in the weather mapping system. As well as subsystem models,
you may also design detailed object models, showing the objects in the systems and their
associations (inheritance, generalization, aggregation, etc.). However, there is a danger

206	 	 Chapter	7	 ■	 Design	and	implementation

in doing too much modeling. You should not make detailed decisions about the imple-
mentation that are really best left until the system is implemented.

Sequence models are dynamic models that describe, for each mode of interaction,
the sequence of object interactions that take place. When documenting a design, you
should produce a sequence model for each significant interaction. If you have devel-
oped a use case model, then there should be a sequence model for each use case that
you have identified.

Figure 7.7 is an example of a sequence model, shown as a UML sequence
 diagram. This diagram shows the sequence of interactions that take place when an
external system requests the summarized data from the weather station. You read
sequence diagrams from top to bottom:

1. The SatComms object receives a request from the weather information system to
collect a weather report from a weather station. It acknowledges receipt of this
request. The stick arrowhead on the sent message indicates that the external system
does not wait for a reply but can carry on with other processing.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates
that SatComms does not suspend itself waiting for a reply.

3. WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits
for a reply.

:SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

:WeatherStation :Commslink

summarize ()

:WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

Figure 7.7 Sequence
diagram describing
data collection

	 7.1	 ■	 Object-oriented	design	using	the	UML	 	 207

5. The weather data summary is computed and returned to WeatherStation via the
Commslink object.

6. WeatherStation then calls the SatComms object to transmit the summarized data
to the weather information system, through the satellite communications system.

The SatComms and WeatherStation objects may be implemented as concurrent
processes, whose execution can be suspended and resumed. The SatComms object
instance listens for messages from the external system, decodes these messages, and
initiates weather station operations.

Sequence diagrams are used to model the combined behavior of a group of objects,
but you may also want to summarize the behavior of an object or a subsystem in response
to messages and events. To do this, you can use a state machine model that shows how
the object instance changes state depending on the messages that it receives. As I discuss
in Chapter 5, the UML includes state diagrams to describe state machine models.

Figure 7.8 is a state diagram for the weather station system that shows how it
responds to requests for various services.

You can read this diagram as follows:

1. If the system state is Shutdown, then it can respond to a restart(), a reconfigure()
or a powerSave() message. The unlabeled arrow with the black blob indicates
that the Shutdown state is the initial state. A restart() message causes a transition
to normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is allowed only if the system has been shut down.

transmission done

remoteControl()

reportStatus()
restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting

Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

Figure 7.8 Weather
station state diagram

208	 	 Chapter	7	 ■	 Design	and	implementation

2. In the Running state, the system expects further messages. If a shutdown() mes-
sage is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state where
the information is transmitted to the remote system. It then returns to the Running state.

4. If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn
to collect its data from the associated sensors.

5. If a remoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control room.
These are not shown on this diagram.

State diagrams are useful high-level models of a system or an object’s operation.
However, you don’t need a state diagram for all of the objects in the system. Many
system objects in a system are simple, and their operation can be easily described
without a state model.

 7.1.5 Interface specification

An important part of any design process is the specification of the interfaces between
the components in the design. You need to specify interfaces so that objects and
subsystems can be designed in parallel. Once an interface has been specified, the
developers of other objects may assume that interface will be implemented.

Interface design is concerned with specifying the detail of the interface to an
object or to a group of objects. This means defining the signatures and semantics of
the services that are provided by the object or by a group of objects. Interfaces can be
specified in the UML using the same notation as a class diagram. However, there is
no attribute section, and the UML stereotype «interface» should be included in the
name part. The semantics of the interface may be defined using the object constraint
language (OCL). I discuss the use of the OCL in Chapter 16, where I explain how it
can be used to describe the semantics of components.

You should not include details of the data representation in an interface design, as
attributes are not defined in an interface specification. However, you should include
operations to access and update data. As the data representation is hidden, it can be
easily changed without affecting the objects that use that data. This leads to a design
that is inherently more maintainable. For example, an array representation of a stack
may be changed to a list representation without affecting other objects that use the
stack. By contrast, you should normally expose the attributes in an object model, as
this is the clearest way of describing the essential characteristics of the objects.

There is not a simple 1:1 relationship between objects and interfaces. The same
object may have several interfaces, each of which is a viewpoint on the methods that
it provides. This is supported directly in Java, where interfaces are declared separately
from objects and objects “implement” interfaces. Equally, a group of objects may all
be accessed through a single interface.

	 7.2	 ■	 Design	patterns		 	 209

Figure 7.9 shows two interfaces that may be defined for the weather station. The left-
hand interface is a reporting interface that defines the operation names that are used to
generate weather and status reports. These map directly to operations in the WeatherStation
object. The remote control interface provides four operations, which map onto a single
method in the WeatherStation object. In this case, the individual operations are encoded
in the command string associated with the remoteControl method, shown in Figure 7.6.

	 7.2		 Design	patterns

Design patterns were derived from ideas put forward by Christopher Alexander
(Alexander 1979), who suggested that there were certain common patterns of building
design that were inherently pleasing and effective. The pattern is a description of the
problem and the essence of its solution, so that the solution may be reused in different
settings. The pattern is not a detailed specification. Rather, you can think of it as a descrip-
tion of accumulated wisdom and experience, a well-tried solution to a common problem.

A quote from the Hillside Group website (hillside.net/patterns/), which is dedi-
cated to maintaining information about patterns, encapsulates their role in reuse:

Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse
this experience†.

Patterns have made a huge impact on object-oriented software design. As well as
being tested solutions to common problems, they have become a vocabulary for talk-
ing about a design. You can therefore explain your design by describing the patterns
that you have used. This is particularly true for the best known design patterns that
were originally described by the “Gang of Four” in their patterns book, published in
1995 (Gamma et al. 1995). Other important pattern descriptions are those published
in a series of books by authors from Siemens, a large European technology company
(Buschmann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004; Buschmann,
Henney, and Schmidt 2007a, 2007b).

Patterns are a way of reusing the knowledge and experience of other designers.
Design patterns are usually associated with object-oriented design. Published patterns
often rely on object characteristics such as inheritance and polymorphism to provide
generality. However, the general principle of encapsulating experience in a pattern is

«interface»
Reporting

weatherReport (WS-Ident): Wreport
statusReport (WS-Ident): Sreport

«interface»
Remote Control

startInstrument(instrument): iStatus
stopInstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): stringFigure 7.9 Weather

station interfaces

†The HIllside Group: hillside.net/patterns

210	 	 Chapter	7	 ■	 Design	and	implementation

Pattern name: Observer

Description: Separates the display of the state of an object from the object itself and allows alternative displays
to be provided. When the object state changes, all displays are automatically notified and updated to reflect
the change.

Problem description: In many situations, you have to provide multiple displays of state information, such as a
graphical display and a tabular display. Not all of these may be known when the information is specified. All alter-
native presentations should support interaction and, when the state is changed, all displays must be updated.

This pattern may be used in situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Solution description: This involves two abstract objects, Subject and Observer, and two concrete objects,
 ConcreteSubject and ConcreteObject, which inherit the attributes of the related abstract objects. The abstract
objects include general operations that are applicable in all situations. The state to be displayed is main-
tained in ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers
(each observer corresponds to a display) and to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
 interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
 displays the state and reflects changes whenever the state is updated.

The UML model of the pattern is shown in Figure 7.12.

Consequences: The subject only knows the abstract Observer and does not know details of the concrete class.
Therefore there is minimal coupling between these objects. Because of this lack of knowledge, optimizations
that enhance display performance are impractical. Changes to the subject may cause a set of linked updates
to observers to be generated, some of which may not be necessary.

Figure 7.10 The
Observer pattern

one that is equally applicable to any kind of software design. For instance, you could
have configuration patterns for instantiating reusable application systems.

The Gang of Four defined the four essential elements of design patterns in their
book on patterns:

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may be applied.

3. A solution description of the parts of the design solution, their relationships and their
responsibilities. This is not a concrete design description. It is a template for a design
solution that can be instantiated in different ways. This is often expressed graphically
and shows the relationships between the objects and object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether or not a pattern can be used
in a particular situation.

Gamma and his co-authors break down the problem description into motivation
(a description of why the pattern is useful) and applicability (a description of situa-
tions in which the pattern may be used). Under the description of the solution, they
describe the pattern structure, participants, collaborations, and implementation.

To illustrate pattern description, I use the Observer pattern, taken from the Gang
of Four’s patterns book. This is shown in Figure 7.10. In my description, I use the

	 7.2	 ■	 Design	patterns	 	 211

A: 40
B: 25
C: 15
D: 20

Observer 1

A

B

C

D

Observer 2

Subject

0

50

25

A B C D

Figure 7.11 Multiple
displays

four essential description elements and also include a brief statement of what the
 pattern can do. This pattern can be used in situations where different presentations of
an object’s state are required. It separates the object that must be displayed from the
different forms of presentation. This is illustrated in Figure 7.11, which shows two
different graphical presentations of the same dataset.

Graphical representations are normally used to illustrate the object classes in
 patterns and their relationships. These supplement the pattern description and add
detail to the solution description. Figure 7.12 is the representation in UML of the
Observer pattern.

To use patterns in your design, you need to recognize that any design problem
you are facing may have an associated pattern that can be applied. Examples of such
problems, documented in the Gang of Four’s original patterns book, include:

1. Tell several objects that the state of some other object has changed (Observer pattern).

2. Tidy up the interfaces to a number of related objects that have often been devel-
oped incrementally (Façade pattern).

Subject Observer

Attach (Observer)
Detach (Observer)
Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

observerState =
 subject -> GetState ()return subjectState

for all o in observers
 o -> Update ()

Figure 7.12 A UML
model of the
Observer pattern

212	 	 Chapter	7	 ■	 Design	and	implementation

3. Provide a standard way of accessing the elements in a collection, irrespective of
how that collection is implemented (Iterator pattern).

4. Allow for the possibility of extending the functionality of an existing class at
runtime (Decorator pattern).

Patterns support high-level, concept reuse. When you try to reuse executable
components you are inevitably constrained by detailed design decisions that have
been made by the implementers of these components. These range from the particu-
lar algorithms that have been used to implement the components to the objects and
types in the component interfaces. When these design decisions conflict with your
requirements, reusing the component is either impossible or introduces inefficien-
cies into your system. Using patterns means that you reuse the ideas but can adapt
the implementation to suit the system you are developing.

When you start designing a system, it can be difficult to know, in advance, if you
will need a particular pattern. Therefore, using patterns in a design process often
involves developing a design, experiencing a problem, and then recognizing that a
pattern can be used. This is certainly possible if you focus on the 23 general-purpose
patterns documented in the original patterns book. However, if your problem is a
different one, you may find it difficult to find an appropriate pattern among the hun-
dreds of different patterns that have been proposed.

Patterns are a great idea, but you need experience of software design to use them
effectively. You have to recognize situations where a pattern can be applied. Inexperienced
programmers, even if they have read the pattern books, will always find it hard to decide
whether they can reuse a pattern or need to develop a special-purpose solution.

	 7.3		 Implementation	issues

Software engineering includes all of the activities involved in software development
from the initial requirements of the system through to maintenance and management
of the deployed system. A critical stage of this process is, of course, system imple-
mentation, where you create an executable version of the software. Implementation
may involve developing programs in high- or low-level programming languages or
tailoring and adapting generic, off-the-shelf systems to meet the specific requirements
of an organization.

I assume that most readers of this book will understand programming principles
and will have some programming experience. As this chapter is intended to offer a
language-independent approach, I haven’t focused on issues of good programming
practice as language-specific examples need to be used. Instead, I introduce some
aspects of implementation that are particularly important to software engineering
and that are often not covered in programming texts. These are:

1. Reuse Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.

	 7.3	 ■	 Implementation	issues	 	 213

2. Configuration management During the development process, many different
versions of each software component are created. If you don’t keep track of
these versions in a configuration management system, you are liable to include
the wrong versions of these components in your system.

3. Host-target development Production software does not usually execute on the
same computer as the software development environment. Rather, you develop
it on one computer (the host system) and execute it on a separate computer (the
target system). The host and target systems are sometimes of the same type, but
often they are completely different.

 7.3.1 Reuse

From the 1960s to the 1990s, most new software was developed from scratch, by
writing all code in a high-level programming language. The only significant reuse or
software was the reuse of functions and objects in programming language libraries.
However, costs and schedule pressure meant that this approach became increasingly
unviable, especially for commercial and Internet-based systems. Consequently, an
approach to development based on the reuse of existing software is now the norm for
many types of system development. A reuse-based approach is now widely used for
web-based systems of all kinds, scientific software, and, increasingly, in embedded
systems engineering.

Software reuse is possible at a number of different levels, as shown in Figure 7.13:

1. The abstraction level At this level, you don’t reuse software directly but rather
use knowledge of successful abstractions in the design of your software. Design
patterns and architectural patterns (covered in Chapter 6) are ways of representing
abstract knowledge for reuse.

Software reuse

Abstraction

Architectural and
design patterns

System

Application systems
(COTS)

Component

Component
frameworks

Object

Programming
language libraries

Figure 7.13 Software
reuse

214	 	 Chapter	7	 ■	 Design	and	implementation

2. The object level At this level, you directly reuse objects from a library rather
than writing the code yourself. To implement this type of reuse, you have to find
appropriate libraries and discover if the objects and methods offer the function-
ality that you need. For example, if you need to process email messages in a
Java program, you may use objects and methods from a JavaMail library.

3. The component level Components are collections of objects and object classes
that operate together to provide related functions and services. You often have
to adapt and extend the component by adding some code of your own. An
example of component-level reuse is where you build your user interface using
a framework. This is a set of general object classes that implement event han-
dling, display management, etc. You add connections to the data to be dis-
played and write code to define specific display details such as screen layout
and colors.

4. The system level At this level, you reuse entire application systems. This function
usually involves some kind of configuration of these systems. This may be done
by adding and modifying code (if you are reusing a software product line) or by
using the system’s own configuration interface. Most commercial systems are
now built in this way where generic application systems systems are adapted and
reused. Sometimes this approach may involve integrating several application
systems to create a new system.

By reusing existing software, you can develop new systems more quickly, with
fewer development risks and at lower cost. As the reused software has been tested in
other applications, it should be more reliable than new software. However, there are
costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and assessing
whether or not it meets your needs. You may have to test the software to make
sure that it will work in your environment, especially if this is different from its
development environment.

2. Where applicable, the costs of buying the reusable software. For large off-the-
shelf systems, these costs can be very high.

3. The costs of adapting and configuring the reusable software components or
 systems to reflect the requirements of the system that you are developing.

4. The costs of integrating reusable software elements with each other (if you are
using software from different sources) and with the new code that you have
developed. Integrating reusable software from different providers can be diffi-
cult and expensive because the providers may make conflicting assumptions
about how their respective software will be reused.

How to reuse existing knowledge and software should be the first thing you should
think about when starting a software development project. You should consider the

possibilities of reuse before designing the software in detail, as you may wish to adapt
your design to reuse existing software assets. As I discussed in Chapter 2, in a
 reuse-oriented development process, you search for reusable elements, then modify
your requirements and design to make the best use of these.

Because of the importance of reuse in modern software engineering, I devote
several chapters in Part 3 of this book to this topic (Chapters 15, 16, and 18).

 7.3.2 Configuration management

In software development, change happens all the time, so change management is
absolutely essential. When several people are involved in developing a software sys-
tem, you have to make sure that team members don’t interfere with each other’s
work. That is, if two people are working on a component, their changes have to be
coordinated. Otherwise, one programmer may make changes and overwrite the oth-
er’s work. You also have to ensure that everyone can access the most up-to-date ver-
sions of software components; otherwise developers may redo work that has already
been done. When something goes wrong with a new version of a system, you have to
be able to go back to a working version of the system or component.

Configuration management is the name given to the general process of managing
a changing software system. The aim of configuration management is to support the
system integration process so that all developers can access the project code and
documents in a controlled way, find out what changes have been made, and compile
and link components to create a system. As shown in Figure 7.14, there are four
fundamental configuration management activities:

1. Version management, where support is provided to keep track of the different
versions of software components. Version management systems include facilities
to coordinate development by several programmers. They stop one developer
from overwriting code that has been submitted to the system by someone else.

2. System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

Figure 7.14 Configuration
management

	 7.3	 ■	 Implementation	issues	 	 215

description is then used to build a system automatically by compiling and link-
ing the required components.

3. Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these prob-
lems and when they are fixed.

4. Release management, where new versions of a software system are released to
customers. Release management is concerned with planning the functionality of
new releases and organizing the software for distribution.

Software configuration management tools support each of the above activities.
These tools are usually installed in an integrated development environment, such as
Eclipse. Version management may be supported using a version management system
such as Subversion (Pilato, Collins-Sussman, and Fitzpatrick 2008) or Git (Loeliger
and McCullough 2012), which can support multi-site, multi-team development.
System integration support may be built into the language or rely on a separate tool-
set such as the GNU build system. Bug tracking or issue tracking systems, such as
Bugzilla, are used to report bugs and other issues and to keep track of whether or not
these have been fixed. A comprehensive set of tools built around the Git system is
available at Github (http://github.com).

Because of its importance in professional software engineering, I discuss change
and configuration management in more detail in Chapter 25.

 7.3.3 Host-target development

Most professional software development is based on a host-target model (Figure 7.15).
Software is developed on one computer (the host) but runs on a separate machine (the
target). More generally, we can talk about a development platform (host) and an
 execution platform (target). A platform is more than just hardware. It includes the
installed operating system plus other supporting software such as a database manage-
ment system or, for development platforms, an interactive development environment.

Development
platform

IDE

Compilers

Testing tools

Execution
platform

Libraries

Related systems

Databases

Development
platform

IDE

Compilers

Testing tools

TargetHost

Download
software

Figure 7.15 Host-target
development

216	 	 Chapter	7	 ■	 Design	and	implementation

http://github.com

Sometimes, the development platform and execution platform are the same, mak-
ing it possible to develop the software and test it on the same machine. Therefore, if
you develop in Java, the target environment is the Java Virtual Machine. In princi-
ple, this is the same on every computer, so programs should be portable from one
machine to another. However, particularly for embedded systems and mobile
 systems, the development and the execution platforms are different. You need to
either move your developed software to the execution platform for testing or run a
simulator on your development machine.

Simulators are often used when developing embedded systems. You simulate
hardware devices, such as sensors, and the events in the environment in which the
system will be deployed. Simulators speed up the development process for embed-
ded systems as each developer can have his or her own execution platform with no
need to download the software to the target hardware. However, simulators are
expensive to develop and so are usually available only for the most popular
 hardware architectures.

If the target system has installed middleware or other software that you need
to use, then you need to be able to test the system using that software. It may be
impractical to install that software on your development machine, even if it is
the same as the target platform, because of license restrictions. If this is the
case, you need to transfer your developed code to the execution platform to test
the system.

A software development platform should provide a range of tools to support soft-
ware engineering processes. These may include:

1. An integrated compiler and syntax-directed editing system that allows you to
create, edit, and compile code.

2. A language debugging system.

3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit, that can automatically run a set of tests on a new
version of a program.

5. Tools to support refactoring and program visualization.

6. Configuration management tools to manage source code versions and to integrate
and build systems.

In addition to these standard tools, your development system may include more
 specialized tools such as static analyzers (discussed in Chapter 12). Normally, devel-
opment environments for teams also include a shared server that runs a change and
configuration management system and, perhaps, a system to support requirements
management.

Software development tools are now usually installed within an integrated devel-
opment environment (IDE). An IDE is a set of software tools that supports different
aspects of software development within some common framework and user inter-
face. Generally, IDEs are created to support development in a specific programming

	 7.3	 ■	 Implementation	issues	 	 217

language such as Java. The language IDE may be developed specially or may be an
instantiation of a general-purpose IDE, with specific language-support tools.

A general-purpose IDE is a framework for hosting software tools that provides data
management facilities for the software being developed and integration mechanisms
that allow tools to work together. The best-known general-purpose IDE is the Eclipse
environment (http://www.eclipse.org). This environment is based on a plug-in architec-
ture so that it can be specialized for different languages, such as Java, and application
domains. Therefore, you can install Eclipse and tailor it for your specific needs by add-
ing plug-ins. For example, you may add a set of plug-ins to support networked systems
development in Java (Vogel 2013) or embedded systems engineering using C.

As part of the development process, you need to make decisions about how the
developed software will be deployed on the target platform. This is straightforward
for embedded systems, where the target is usually a single computer. However, for
distributed systems, you need to decide on the specific platforms where the compo-
nents will be deployed. Issues that you have to consider in making this decision are:

1. The hardware and software requirements of a component If a component is
designed for a specific hardware architecture, or relies on some other software
system, it must obviously be deployed on a platform that provides the required
hardware and software support.

2. The availability requirements of the system High-availability systems may require
components to be deployed on more than one platform. This means that, in the event
of platform failure, an alternative implementation of the component is available.

3. Component communications If there is a lot of intercomponent communication, it is
usually best to deploy them on the same platform or on platforms that are physically
close to one another. This reduces communications latency—the delay between the
time that a message is sent by one component and received by another.

You can document your decisions on hardware and software deployment using
UML deployment diagrams, which show how software components are distributed
across hardware platforms.

If you are developing an embedded system, you may have to take into account
target characteristics, such as its physical size, power capabilities, the need for
 real-time responses to sensor events, the physical characteristics of actuators and its
real-time operating system. I discuss embedded systems engineering in Chapter 21.

218	 	 Chapter	7	 ■	 Design	and	implementation

UML deployment diagrams

UML deployment diagrams show how software components are physically deployed on processors. That is, the
deployment diagram shows the hardware and software in the system and the middleware used to connect the
different components in the system. Essentially, you can think of deployment diagrams as a way of defining and
documenting the target environment.

http://software-engineering-book.com/web/deployment/

http://software-engineering-book.com/web/deployment
http://www.eclipse.org

	 7.4	 ■ Open-source	development	 	 219

	 7.4		 Open-source	development

Open-source development is an approach to software development in which the
source code of a software system is published and volunteers are invited to partici-
pate in the development process (Raymond 2001). Its roots are in the Free Software
Foundation (www.fsf.org), which advocates that source code should not be proprie-
tary but rather should always be available for users to examine and modify as they
wish. There was an assumption that the code would be controlled and developed by
a small core group, rather than users of the code.

Open-source software extended this idea by using the Internet to recruit a much larger
population of volunteer developers. Many of them are also users of the code. In principle
at least, any contributor to an open-source project may report and fix bugs and propose
new features and functionality. However, in practice, successful open-source systems still
rely on a core group of developers who control changes to the software.

Open-source software is the backbone of the Internet and software engineering. The
Linux operating system is the most widely used server system, as is the open-source
Apache web server. Other important and universally used open-source products are
Java, the Eclipse IDE, and the mySQL database management system. The Android
operating system is installed on millions of mobile devices. Major players in the com-
puter industry such as IBM and Oracle, support the open-source movement and base
their software on open-source products. Thousands of other, lesser-known open-source
systems and components may also be used.

It is usually cheap or even free to acquire open-source software. You can normally
download open-source software without charge. However, if you want documenta-
tion and support, then you may have to pay for this, but costs are usually fairly low.
The other key benefit of using open-source products is that widely used open-source
systems are very reliable. They have a large population of users who are willing to
fix problems themselves rather than report these problems to the developer and wait
for a new release of the system. Bugs are discovered and repaired more quickly than
is usually possible with proprietary software.

For a company involved in software development, there are two open-source
issues that have to be considered:

1. Should the product that is being developed make use of open-source components?

2. Should an open-source approach be used for its own software development?

The answers to these questions depend on the type of software that is being devel-
oped and the background and experience of the development team.

If you are developing a software product for sale, then time to market and reduced
costs are critical. If you are developing software in a domain in which there are high-quality
open-source systems available, you can save time and money by using these systems.
However, if you are developing software to a specific set of organizational require-
ments, then using open-source components may not be an option. You may have to
integrate your software with existing systems that are incompatible with available

http://www.fsf.org

open-source systems. Even then, however, it could be quicker and cheaper to modify
the open-source system rather than redevelop the functionality that you need.

Many software product companies are now using an open-source approach to devel-
opment, especially for specialized systems. Their business model is not reliant on selling
a software product but rather on selling support for that product. They believe that
involving the open-source community will allow software to be developed more cheaply
and more quickly and will create a community of users for the software.

Some companies believe that adopting an open-source approach will reveal con-
fidential business knowledge to their competitors and so are reluctant to adopt this
development model. However, if you are working in a small company and you open
source your software, this may reassure customers that they will be able to support
the software if your company goes out of business.

Publishing the source code of a system does not mean that people from the wider
community will necessarily help with its development. Most successful open-source
products have been platform products rather than application systems. There are a
limited number of developers who might be interested in specialized application sys-
tems. Making a software system open source does not guarantee community involve-
ment. There are thousands of open-source projects on Sourceforge and GitHub that
have only a handful of downloads. However, if users of your software have concerns
about its availability in future, making the software open source means that they can
take their own copy and so be reassured that they will not lose access to it.

 7.4.1 Open-source licensing

Although a fundamental principle of open-source development is that source code should
be freely available, this does not mean that anyone can do as they wish with that code.
Legally, the developer of the code (either a company or an individual) owns the code.
They can place restrictions on how it is used by including legally binding conditions in an
open-source software license (St. Laurent 2004). Some open-source developers believe
that if an open-source component is used to develop a new system, then that system
should also be open source. Others are willing to allow their code to be used without this
restriction. The developed systems may be proprietary and sold as closed-source systems.

Most open-source licenses (Chapman 2010) are variants of one of three
 general models:

1. The GNU General Public License (GPL). This is a so-called reciprocal license
that simplistically means that if you use open-source software that is licensed
under the GPL license, then you must make that software open source.

2. The GNU Lesser General Public License (LGPL). This is a variant of the GPL
license where you can write components that link to open-source code without
having to publish the source of these components. However, if you change the
licensed component, then you must publish this as open source.

3. The Berkley Standard Distribution (BSD) License. This is a nonreciprocal license,
which means you are not obliged to re-publish any changes or modifications made to

220	 	 Chapter	7	 ■	 Design	and	implementation

open-source code. You can include the code in proprietary systems that are sold. If
you use open-source components, you must acknowledge the original creator of
the code. The MIT license is a variant of the BSD license with similar conditions.

Licensing issues are important because if you use open-source software as part of
a software product, then you may be obliged by the terms of the license to make your
own product open source. If you are trying to sell your software, you may wish to
keep it secret. This means that you may wish to avoid using GPL-licensed open-
source software in its development.

If you are building software that runs on an open-source platform but that does
not reuse open-source components, then licenses are not a problem. However, if
you embed open-source software in your software, you need processes and data-
bases to keep track of what’s been used and their license conditions. Bayersdorfer
(Bayersdorfer 2007) suggests that companies managing projects that use open
source should:

1. Establish a system for maintaining information about open-source components
that are downloaded and used. You have to keep a copy of the license for each
component that was valid at the time the component was used. Licenses may
change, so you need to know the conditions that you have agreed to.

2. Be aware of the different types of licenses and understand how a component is
licensed before it is used. You may decide to use a component in one system but
not in another because you plan to use these systems in different ways.

3. Be aware of evolution pathways for components. You need to know a bit about
the open-source project where components are developed to understand how
they might change in future.

4. Educate people about open source. It’s not enough to have procedures in place
to ensure compliance with license conditions. You also need to educate devel-
opers about open source and open-source licensing.

5. Have auditing systems in place. Developers, under tight deadlines, might be
tempted to break the terms of a license. If possible, you should have software in
place to detect and stop this.

6. Participate in the open-source community. If you rely on open-source products,
you should participate in the community and help support their development.

The open-source approach is one of several business models for software. In this
model, companies release the source of their software and sell add-on services and
advice in association with this. They may also sell cloud-based software services—
an attractive option for users who do not have the expertise to manage their own
open-source system and also specialized versions of their system for particular cli-
ents. Open-source is therefore likely to increase in importance as a way of develop-
ing and distributing software.

	 7.4	 ■ Open-source	development	 	 221

K e y P o i n t s

■ Software design and implementation are interleaved activities. The level of detail in the design
depends on the type of system being developed and whether you are using a plan-driven or
agile approach.

■ The process of object-oriented design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models, and document
the component interfaces.

■ A range of different models may be produced during an object-oriented design process. These
include static models (class models, generalization models, association models) and dynamic
models (sequence models, state machine models).

■ Component interfaces must be defined precisely so that other objects can use them. A UML
interface stereotype may be used to define interfaces.

■ When developing software, you should always consider the possibility of reusing existing soft-
ware, either as components, services, or complete systems.

■ Configuration management is the process of managing changes to an evolving software system.
It is essential when a team of people is cooperating to develop software.

■ Most software development is host-target development. You use an IDE on a host machine to
develop the software, which is transferred to a target machine for execution.

■ Open-source development involves making the source code of a system publicly available. This
means that many people can propose changes and improvements to the software.

F U r t h e r 	 r e a D I n g

Design Patterns: Elements of Reusable Object-oriented Software. This is the original software pat-
terns handbook that introduced software patterns to a wide community. (E. Gamma, R. Helm, R.
Johnson and J. Vlissides, Addison-Wesley, 1995).

Applying UML and Patterns: An Introduction to Object-oriented Analysis and Design and Iterative
Development, 3rd ed. Larman writes clearly on object-oriented design and also discusses use of the
UML; this is a good introduction to using patterns in the design process. Although it is more than 10
years old, it remains the best book on this topic that is available. (C. Larman, Prentice-Hall, 2004).

Producing Open Source Software: How to Run a Successful Free Software Project. This book is a
comprehensive guide to the background to open-source software, licensing issues, and the practi-
calities of running an open-source development project. (K. Fogel, O’Reilly Media Inc., 2008).

Further reading on software reuse is suggested in Chapter 15 and on configuration management in
Chapter 25.

222	 	 Chapter	7	 ■	 Design	and	implementation

	 Chapter	7	 ■	 Design	and	Implementation	 	 223

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

More information on the weather information system:

http://software-engineering-book.com/case-studies/wilderness-weather-station/

e x e r c i s e s

7.1. Using the tabular notation shown in Figure 7.3, specify the weather station use cases for Report
status and Reconfigure. You should make reasonable assumptions about the functionality that
is required here.

7.2. Assume that the Mentcare system is being developed using an object-oriented approach. Draw
a use case diagram showing at least six possible use cases for this system.

7.3. Using the UML graphical notation for object classes, design the following object classes, identi-
fying attributes and operations. Use your own experience to decide on the attributes and oper-
ations that should be associated with these objects.

■ a messaging system on a mobile (cell) phone or tablet

■ a printer for a personal computer

■ a personal music system

■ a bank account

■ a library catalogue

7.4. A shape can be classified into 2-D and 3-D. Design an inheritance hierarchy that will include
different kinds of 2-D and 3-D shapes. Make sure you identify at least five other classes
of shapes.

7.5. Develop the design of the weather station to show the interaction between the data collection
subsystem and the instruments that collect weather data. Use sequence diagrams to show this
interaction.

7.6. Identify possible objects in the following systems and develop an object-oriented design for
them. You may make any reasonable assumptions about the systems when deriving the design.

■ A group diary and time management system is intended to support the timetabling of meet-
ings and appointments across a group of co-workers. When an appointment is to be made

	 Chapter	7  ■ Exercises	 	 223

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/implementation-and-evolution
http://software-engineering-book.com/case-studies/wilderness-weather-station

224	 	 Chapter	1	 ■	 Design	and	Implementation

r e F e r e n C e s

Abbott, R. 1983. “Program Design by Informal English Descriptions.” Comm. ACM 26 (11): 882–894.
doi:10.1145/182.358441.

Alexander, C. 1979. A Timeless Way of Building. Oxford, UK: Oxford University Press.

Bayersdorfer, M. 2007. “Managing a Project with Open Source Components.” ACM Interactions 14
(6): 33–34. doi:10.1145/1300655.1300677.

Beck, K., and W. Cunningham. 1989. “A Laboratory for Teaching Object-Oriented Thinking.” In Proc.
OOPSLA’89 (Conference on Object-Oriented Programming, Systems, Languages and Applications),
1–6. ACM Press. doi:10.1145/74878.74879.

Buschmann, F., K. Henney, and D. C. Schmidt. 2007a. Pattern-Oriented Software Architecture
 Volume 4: A Pattern Language for Distributed Computing. New York: John Wiley & Sons.

 . 2007b. Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern
Languages. New York: John Wiley & Sons.

that involves a number of people, the system finds a common slot in each of their diaries
and arranges the appointment for that time. If no common slots are available, it interacts
with the user to rearrange his or her personal diary to make room for the appointment.

■ A filling station (gas station) is to be set up for fully automated operation. Drivers swipe their
credit card through a reader connected to the pump; the card is verified by communication
with a credit company computer, and a fuel limit is established. The driver may then take the
fuel required. When fuel delivery is complete and the pump hose is returned to its holster,
the driver’s credit card account is debited with the cost of the fuel taken. The credit card is
returned after debiting. If the card is invalid, the pump returns it before fuel is dispensed.

7.7. Draw a sequence diagram showing the interactions of objects in a group diary system when a
group of people are arranging a meeting.

7.8. Draw a UML state diagram showing the possible state changes in either the group diary or the
filling station system.

7.9. When code is integrated into a larger system, problems may surface. Explain how configura-
tion management can be useful when handling such problems.

7.10. A small company has developed a specialized software product that it configures specially
for each customer. New customers usually have specific requirements to be incorporated
into their system, and they pay for these to be developed and integrated with the product.
The software company has an opportunity to bid for a new contract, which would more than
double its customer base. The new customer wishes to have some involvement in the con-
figuration of the system. Explain why, in these circumstances, it might be a good idea for the
company owning the software to make it open source.

224	 	 Chapter	7	 ■	 Design	and	implementation

	 Chapter	7	 ■	 Design	and	Implementation	 	 225

Buschmann, F., R. Meunier, H. Rohnert, and P. Sommerlad. 1996. Pattern-Oriented Software Architecture
Volume 1: A System of Patterns. New York: John Wiley & Sons.

Chapman, C. 2010. “A Short Guide to Open-Source and Similar Licences.” Smashing Magazine.
http://www.smashingmagazine.com/2010/03/24/a-short-guide-to-open-source-and-similar-licenses./

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA.: Addison-Wesley.

Kircher, M., and P. Jain. 2004. Pattern-Oriented Software Architecture Volume 3: Patterns for
Resource Management. New York: John Wiley & Sons.

Loeliger, J., and M. McCullough. 2012. Version Control with Git: Powerful Tools and Techniques for
Collaborative Software Development. Sebastopol, CA: O’Reilly & Associates.

Pilato, C., B. Collins-Sussman, and B. Fitzpatrick. 2008. Version Control with Subversion. Sebastopol,
CA: O’Reilly & Associates.

Raymond, E. S. 2001. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Sebastopol. CA: O’Reilly & Associates.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. 2000. Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. New York: John Wiley & Sons.

St. Laurent, A. 2004. Understanding Open Source and Free Software Licensing. Sebastopol, CA:
O’Reilly & Associates.

Vogel, L. 2013. Eclipse IDE: A Tutorial. Hamburg, Germany: Vogella Gmbh.

Wirfs-Brock, R., B. Wilkerson, and L. Weiner. 1990. Designing Object-Oriented Software. Englewood
Cliffs, NJ: Prentice-Hall.

	 Chapter	7  ■ References	 	 225

http://www.smashingmagazine.com/2010/03/24/a-short-guide-to-open-source-and-similar-licenses

	Part 1 Introduction to Software Engineering��
	Chapter 7 Design and implementation��
	7.1 Object-oriented design using the UML���
	7.2 Design patterns��������������������������
	7.3 Implementation issues��������������������������������
	7.4 Open-source development����������������������������������

