
Software testing
8

Objectives
The objective of this chapter is to introduce software testing and
software testing processes. When you have read the chapter, you will:

■ understand the stages of testing from testing during development
to acceptance testing by system customers;

■ have been introduced to techniques that help you choose test
cases that are geared to discovering program defects;

■ understand test-first development, where you design tests before
writing code and run these tests automatically;

■ know about three distinct types of testing—component testing,
system testing, and release testing;

■ understand the distinctions between development testing and user
testing.

Contents
8.1 Development testing

8.2 Test-driven development

8.3 Release testing

8.4 User testing

	 Chapter	8	 ■	 Software	testing	 	 227

Testing is intended to show that a program does what it is intended to do and to
 discover program defects before it is put into use. When you test software, you exe-
cute a program using artificial data. You check the results of the test run for errors,
anomalies, or information about the program’s non-functional attributes.

When you test software, you are trying to do two things:

1. Demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the requirements document. For generic software
products, it means that there should be tests for all of the system features that
will be included in the product release. You may also test combinations of fea-
tures to check for unwanted interactions between them.

2. Find inputs or input sequences where the behavior of the software is incorrect,
undesirable, or does not conform to its specification. These are caused by defects
(bugs) in the software. When you test software to find defects, you are trying to
root out undesirable system behavior such as system crashes, unwanted interac-
tions with other systems, incorrect computations, and data corruption.

The first of these is validation testing, where you expect the system to perform
correctly using a set of test cases that reflect the system’s expected use. The second
is defect testing, where the test cases are designed to expose defects. The test cases in
defect testing can be deliberately obscure and need not reflect how the system is
normally used. Of course, there is no definite boundary between these two approaches
to testing. During validation testing, you will find defects in the system; during
defect testing, some of the tests will show that the program meets its requirements.

Figure 8.1 shows the differences between validation testing and defect testing. Think
of the system being tested as a black box. The system accepts inputs from some input
set I and generates outputs in an output set O. Some of the outputs will be erroneous.
These are the outputs in set Oe that are generated by the system in response to inputs in
the set Ie. The priority in defect testing is to find those inputs in the set Ie because these
reveal problems with the system. Validation testing involves testing with correct inputs
that are outside Ie. These stimulate the system to generate the expected correct outputs.

Testing cannot demonstrate that the software is free of defects or that it will behave
as specified in every circumstance. It is always possible that a test you have overlooked
could discover further problems with the system. As Edsger Dijkstra, an early con-
tributor to the development of software engineering, eloquently stated (Dijkstra 1972):

“Testing can only show the presence of errors, not their absence †”

Testing is part of a broader process of software verification and validation (V & V).
Verification and validation are not the same thing, although they are often confused.
Barry Boehm, a pioneer of software engineering, succinctly expressed the difference
between them (Boehm 1979):

†Dijkstra, E. W. 1972. “The Humble Programmer.” Comm. ACM 15 (10): 859–66. doi:10.1145/
355604.361591

228	 	 Chapter	8	 ■	 Software	testing

■ Validation: Are we building the right product?

■ Verification: Are we building the product right?

Verification and validation processes are concerned with checking that software
being developed meets its specification and delivers the functionality expected by
the people paying for the software. These checking processes start as soon as require-
ments become available and continue through all stages of the development process.

Software verification is the process of checking that the software meets its stated
functional and non-functional requirements. Validation is a more general process.
The aim of software validation is to ensure that the software meets the customer’s
expectations. It goes beyond checking conformance with the specification to demon-
strating that the software does what the customer expects it to do. Validation is
essential because, as I discussed in Chapter 4, statements of requirements do not
always reflect the real wishes or needs of system customers and users.

The goal of verification and validation processes is to establish confidence that
the software system is “fit for purpose.” This means that the system must be good
enough for its intended use. The level of required confidence depends on the sys-
tem’s purpose, the expectations of the system users, and the current marketing
environment for the system:

1. Software purpose The more critical the software, the more important it is that it
is reliable. For example, the level of confidence required for software used to
control a safety-critical system is much higher than that required for a demon-
strator system that prototypes new product ideas.

2. User expectations Because of their previous experiences with buggy, unreliable
software, users sometimes have low expectations of software quality. They are
not surprised when their software fails. When a new system is installed, users

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behavior

Outputs which reveal
the presence of
defects

Figure 8.1 An input–
output model of
program testing

	 Chapter	8	 ■	 Software	testing	 	 229

may tolerate failures because the benefits of use outweigh the costs of failure
recovery. However, as a software product becomes more established, users
expect it to become more reliable. Consequently, more thorough testing of later
versions of the system may be required.

3. Marketing environment When a software company brings a system to market, it
must take into account competing products, the price that customers are willing
to pay for a system, and the required schedule for delivering that system. In a
competitive environment, the company may decide to release a program before
it has been fully tested and debugged because it wants to be the first into the
market. If a software product or app is very cheap, users may be willing to toler-
ate a lower level of reliability.

As well as software testing, the verification and validation process may involve
software inspections and reviews. Inspections and reviews analyze and check the
system requirements, design models, the program source code, and even proposed
system tests. These are “static” V & V techniques in which you don’t need to execute
the software to verify it. Figure 8.2 shows that software inspections and testing sup-
port V & V at different stages in the software process. The arrows indicate the stages
in the process where the techniques may be used.

Inspections mostly focus on the source code of a system, but any readable repre-
sentation of the software, such as its requirements or a design model, can be
inspected. When you inspect a system, you use knowledge of the system, its application
domain, and the programming or modeling language to discover errors.

Software inspection has three advantages over testing:

1. During testing, errors can mask (hide) other errors. When an error leads to
unexpected outputs, you can never be sure if later output anomalies are due to
a new error or are side effects of the original error. Because inspection doesn’t
involve executing the system, you don’t have to worry about interactions
between errors. Consequently, a single inspection session can discover many
errors in a system.

UML design
models

Software
architecture

Requirements
specification

Database
schemas

Program

System
prototype Testing

Inspections

Figure 8.2 Inspections
and testing

230	 	 Chapter	8	 ■	 Software	testing

2. Incomplete versions of a system can be inspected without additional costs. If
a program is incomplete, then you need to develop specialized test harnesses
to test the parts that are available. This obviously adds to the system develop-
ment costs.

3. As well as searching for program defects, an inspection can also consider
broader quality attributes of a program, such as compliance with standards,
portability, and maintainability. You can look for inefficiencies, inappropriate
algorithms, and poor programming style that could make the system difficult to
maintain and update.

Program inspections are an old idea, and several studies and experiments have
shown that inspections are more effective for defect discovery than program testing.
Fagan (Fagan 1976) reported that more than 60% of the errors in a program can be
detected using informal program inspections. In the Cleanroom process (Prowell et
al. 1999), it is claimed that more than 90% of defects can be discovered in program
inspections.

However, inspections cannot replace software testing. Inspections are not good
for discovering defects that arise because of unexpected interactions between differ-
ent parts of a program, timing problems, or problems with system performance. In
small companies or development groups, it can be difficult and expensive to put
together a separate inspection team as all potential team members may also be
developers of the software.

I discuss reviews and inspections in more detail in Chapter 24 (Quality
Management). Static analysis, where the source text of a program is automatically
analyzed to discover anomalies, is explained in Chapter 12. In this chapter, I focus
on testing and testing processes.

Figure 8.3 is an abstract model of the traditional testing process, as used in plan-
driven development. Test cases are specifications of the inputs to the test and the
expected output from the system (the test results), plus a statement of what is being
tested. Test data are the inputs that have been devised to test a system. Test data can
sometimes be generated automatically, but automatic test case generation is impos-
sible. People who understand what the system is supposed to do must be involved to
specify the expected test results. However, test execution can be automated. The test
results are automatically compared with the predicted results, so there is no need for
a person to look for errors and anomalies in the test run.

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Figure 8.3 A model
of the software
testing process

	 8.1	 ■	 Development	testing	 	 231

Typically, a commercial software system has to go through three stages of testing:

1. Development testing, where the system is tested during development to discover
bugs and defects. System designers and programmers are likely to be involved
in the testing process.

2. Release testing, where a separate testing team tests a complete version of the
system before it is released to users. The aim of release testing is to check that
the system meets the requirements of the system stakeholders.

3. User testing, where users or potential users of a system test the system in their
own environment. For software products, the “user” may be an internal market-
ing group that decides if the software can be marketed, released and sold.
Acceptance testing is one type of user testing where the customer formally tests
a system to decide if it should be accepted from the system supplier or if further
development is required.

In practice, the testing process usually involves a mixture of manual and auto-
mated testing. In manual testing, a tester runs the program with some test data and
compares the results to their expectations. They note and report discrepancies to the
program developers. In automated testing, the tests are encoded in a program that is
run each time the system under development is to be tested. This is faster than man-
ual testing, especially when it involves regression testing—re-running previous tests
to check that changes to the program have not introduced new bugs.

Unfortunately, testing can never be completely automated as automated tests can
only check that a program does what it is supposed to do. It is practically impossible
to use automated testing to test systems that depend on how things look (e.g., a graph-
ical user interface), or to test that a program does not have unanticipated side effects.

	 8.1		 Development	testing

Development testing includes all testing activities that are carried out by the team
developing the system. The tester of the software is usually the programmer who
developed that software. Some development processes use programmer/tester pairs
(Cusamano and Selby 1998) where each programmer has an associated tester who

Test planning

Test planning is concerned with scheduling and resourcing all of the activities in the testing process. It involves
defining the testing process, taking into account the people and the time available. Usually, a test plan will be
created that defines what is to be tested, the predicted testing schedule, and how tests will be recorded. For
critical systems, the test plan may also include details of the tests to be run on the software.

http://software-engineering-book.com/web/test-planning/

http://software-engineering-book.com/web/test-planning

232	 	 Chapter	8	 ■	 Software	testing

develops tests and assists with the testing process. For critical systems, a more for-
mal process may be used, with a separate testing group within the development team.
This group is responsible for developing tests and maintaining detailed records of
test results.

There are three stages of development testing:

1. Unit testing, where individual program units or object classes are tested. Unit
testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create com-
posite components. Component testing should focus on testing the component
interfaces that provide access to the component functions.

3. System testing, where some or all of the components in a system are integrated
and the system is tested as a whole. System testing should focus on testing com-
ponent interactions.

Development testing is primarily a defect testing process, where the aim of test-
ing is to discover bugs in the software. It is therefore usually interleaved with
debugging—the process of locating problems with the code and changing the pro-
gram to fix these problems.

 8.1.1 Unit testing

Unit testing is the process of testing program components, such as methods or object
classes. Individual functions or methods are the simplest type of component. Your
tests should be calls to these routines with different input parameters. You can use
the approaches to test-case design discussed in Section 8.1.2 to design the function
or method tests.

When you are testing object classes, you should design your tests to provide cov-
erage of all of the features of the object. This means that you should test all opera-
tions associated with the object; set and check the value of all attributes associated
with the object; and put the object into all possible states. This means that you should
simulate all events that cause a state change.

Consider, for example, the weather station object from the example that I discussed
in Chapter 7. The attributes and operations of this object are shown in Figure 8.4.

Debugging

Debugging is the process of fixing errors and problems that have been discovered by testing. Using information
from the program tests, debuggers use their knowledge of the programming language and the intended out-
come of the test to locate and repair the program error. When you are debugging a program, you usually use
interactive tools that provide extra information about program execution.

http://software-engineering-book.com/web/debugging/

http://software-engineering-book.com/web/debugging

	 8.1	 ■	 Development	testing	 	 233

It has a single attribute, which is its identifier. This is a constant that is set when the
weather station is installed. You therefore only need a test that checks if it has been
properly set up. You need to define test cases for all of the methods associated with the
object such as reportWeather and reportStatus. Ideally, you should test methods in
isolation, but, in some cases, test sequences are necessary. For example, to test the
method that shuts down the weather station instruments (shutdown), you need to have
executed the restart method.

Generalization or inheritance makes object class testing more complicated. You
can’t simply test an operation in the class where it is defined and assume that it will
work as expected in all of the subclasses that inherit the operation. The operation that
is inherited may make assumptions about other operations and attributes. These
assumptions may not be valid in some subclasses that inherit the operation. You
therefore have to test the inherited operation everywhere that it is used.

To test the states of the weather station, you can use a state model as discussed in
Chapter 7 (Figure 7.8). Using this model, you identify sequences of state transitions
that have to be tested and define event sequences to force these transitions. In princi-
ple, you should test every possible state transition sequence, although in practice this
may be too expensive. Examples of state sequences that should be tested in the
weather station include:

Shutdown → Running → Shutdown
Configuring → Running → Testing → Transmitting → Running
Running → Collecting → Running → Summarizing → Transmitting → Running

Whenever possible, you should automate unit testing. In automated unit testing, you
make use of a test automation framework, such as JUnit (Tahchiev et al. 2010) to write
and run your program tests. Unit testing frameworks provide generic test classes that
you extend to create specific test cases. They can then run all of the tests that you have
implemented and report, often through some graphical unit interface (GUI), on the suc-
cess or otherwise of the tests. An entire test suite can often be run in a few seconds, so it
is possible to execute all tests every time you make a change to the program.

An automated test has three parts:

1. A setup part, where you initialize the system with the test case, namely, the
inputs and expected outputs.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

Figure 8.4 The weather
station object interface

234	 	 Chapter	8	 ■	 Software	testing

2. A call part, where you call the object or method to be tested.

3. An assertion part, where you compare the result of the call with the expected
result. If the assertion evaluates to true, the test has been successful; if false,
then it has failed.

Sometimes, the object that you are testing has dependencies on other objects that
may not have been implemented or whose use slows down the testing process. For
example, if an object calls a database, this may involve a slow setup process before
it can be used. In such cases, you may decide to use mock objects.

Mock objects are objects with the same interface as the external objects being
used that simulate its functionality. For example, a mock object simulating a data-
base may have only a few data items that are organized in an array. They can be
accessed quickly, without the overheads of calling a database and accessing disks.
Similarly, mock objects can be used to simulate abnormal operations or rare
events. For example, if your system is intended to take action at certain times of
day, your mock object can simply return those times, irrespective of the actual
clock time.

 8.1.2 Choosing unit test cases

Testing is expensive and time consuming, so it is important that you choose effective
unit test cases. Effectiveness, in this case, means two things:

1. The test cases should show that, when used as expected, the component that you
are testing does what it is supposed to do.

2. If there are defects in the component, these should be revealed by test cases.

You should therefore design two kinds of test case. The first of these should
reflect normal operation of a program and should show that the component works.
For example, if you are testing a component that creates and initializes a new patient
record, then your test case should show that the record exists in a database and that
its fields have been set as specified. The other kind of test case should be based on
testing experience of where common problems arise. It should use abnormal inputs
to check that these are properly processed and do not crash the component.

Two strategies that can be effective in helping you choose test cases are:

1. Partition testing, where you identify groups of inputs that have common charac-
teristics and should be processed in the same way. You should choose tests from
within each of these groups.

2. Guideline-based testing, where you use testing guidelines to choose test cases.
These guidelines reflect previous experience of the kinds of errors that program-
mers often make when developing components.

	 8.1	 ■	 Development	testing	 	 235

The input data and output results of a program can be thought of as members of
sets with common characteristics. Examples of these sets are positive numbers, negative
numbers, and menu selections. Programs normally behave in a comparable way for
all members of a set. That is, if you test a program that does a computation and
requires two positive numbers, then you would expect the program to behave in the
same way for all positive numbers.

Because of this equivalent behavior, these classes are sometimes called equiva-
lence partitions or domains (Bezier 1990). One systematic approach to test-case
design is based on identifying all input and output partitions for a system or compo-
nent. Test cases are designed so that the inputs or outputs lie within these partitions.
Partition testing can be used to design test cases for both systems and components.

In Figure 8.5, the large shaded ellipse on the left represents the set of all possible
inputs to the program that is being tested. The smaller unshaded ellipses represent
equivalence partitions. A program being tested should process all of the members of
an input equivalence partition in the same way.

Output equivalence partitions are partitions within which all of the outputs have
something in common. Sometimes there is a 1:1 mapping between input and output
equivalence partitions. However, this is not always the case; you may need to define
a separate input equivalence partition, where the only common characteristic of the
inputs is that they generate outputs within the same output partition. The shaded area
in the left ellipse represents inputs that are invalid. The shaded area in the right
ellipse represents exceptions that may occur, that is, responses to invalid inputs.

Once you have identified a set of partitions, you choose test cases from each of
these partitions. A good rule of thumb for test-case selection is to choose test cases
on the boundaries of the partitions, plus cases close to the midpoint of the partition.
The reason for this is that designers and programmers tend to consider typical values
of inputs when developing a system. You test these by choosing the midpoint of the
partition. Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) and so are sometimes overlooked by developers.
Program failures often occur when processing these atypical values.

System

Possible inputs

Input equivalence partitions

Possible outputsCorrect outputs

Output partitions

Figure 8.5 Equivalence
partitioning

236	 	 Chapter	8	 ■	 Software	testing

You identify partitions by using the program specification or user documentation and
from experience where you predict the classes of input value that are likely to detect
errors. For example, say a program specification states that the program accepts four to
eight inputs which are five-digit integers greater than 10,000. You use this information to
identify the input partitions and possible test input values. These are shown in Figure 8.6.

When you use the specification of a system to identify equivalence partitions, this
is called black-box testing. You don’t need any knowledge of how the system works.
It is sometimes useful to supplement the black-box tests with “white-box testing,”
where you look at the code of the program to find other possible tests. For example,
your code may include exceptions to handle incorrect inputs. You can use this
knowledge to identify “exception partitions”—different ranges where the same
exception handling should be applied.

Equivalence partitioning is an effective approach to testing because it helps
account for errors that programmers often make when processing inputs at the edges
of partitions. You can also use testing guidelines to help choose test cases. Guidelines
encapsulate knowledge of what kinds of test cases are effective for discovering
errors. For example, when you are testing programs with sequences, arrays, or lists,
guidelines that could help reveal defects include:

1. Test software with sequences that have only a single value. Programmers natu-
rally think of sequences as made up of several values, and sometimes they
embed this assumption in their programs. Consequently, if presented with a
single-value sequence, a program may not work properly.

2. Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3. Derive tests so that the first, middle, and last elements of the sequence are
accessed. This approach reveals problems at partition boundaries.

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Figure 8.6 Equivalence
partitions

	 8.1	 ■	 Development	testing	 	 237

Whittaker’s book (Whittaker 2009) includes many examples of guidelines that
can be used in test-case design. Some of the most general guidelines that he suggests are:

■ Choose inputs that force the system to generate all error messages:

■ Design inputs that cause input buffers to overflow.

■ Repeat the same input or series of inputs numerous times.

■ Force invalid outputs to be generated.

■ Force computation results to be too large or too small.

As you gain experience with testing, you can develop your own guidelines about
how to choose effective test cases. I give more examples of testing guidelines in the
next section.

 8.1.3 Component testing

Software components are often made up of several interacting objects. For example,
in the weather station system, the reconfiguration component includes objects that
deal with each aspect of the reconfiguration. You access the functionality of these
objects through component interfaces (see Chapter 7). Testing composite components
should therefore focus on showing that the component interface or interfaces behave
according to its specification. You can assume that unit tests on the individual objects
within the component have been completed.

Figure 8.7 illustrates the idea of component interface testing. Assume that compo-
nents A, B, and C have been integrated to create a larger component or subsystem.
The test cases are not applied to the individual components but rather to the interface
of the composite component created by combining these components. Interface errors
in the composite component may not be detectable by testing the individual objects
because these errors result from interactions between the objects in the component.

There are different types of interface between program components and, conse-
quently, different types of interface error that can occur:

1. Parameter interfaces These are interfaces in which data or sometimes function
references are passed from one component to another. Methods in an object
have a parameter interface.

Path testing

Path testing is a testing strategy that aims to exercise every independent execution path through a component
or program. If every independent path is executed, then all statements in the component must have been exe-
cuted at least once. All conditional statements are tested for both true and false cases. In an object-oriented
development process, path testing may be used to test the methods associated with objects.

http://software-engineering-book.com/web/path-testing/

http://software-engineering-book.com/web/path-testing

238	 	 Chapter	8	 ■	 Software	testing

2. Shared memory interfaces These are interfaces in which a block of memory is
shared between components. Data is placed in the memory by one subsystem
and retrieved from there by other subsystems. This type of interface is used in
embedded systems, where sensors create data that is retrieved and processed by
other system components.

3. Procedural interfaces These are interfaces in which one component encapsu-
lates a set of procedures that can be called by other components. Objects and
reusable components have this form of interface.

4. Message passing interfaces These are interfaces in which one component
requests a service from another component by passing a message to it. A return
message includes the results of executing the service. Some object-oriented sys-
tems have this form of interface, as do client–server systems.

Interface errors are one of the most common forms of error in complex systems
(Lutz 1993). These errors fall into three classes:

■ Interface misuse A calling component calls some other component and makes an
error in the use of its interface. This type of error is common in parameter inter-
faces, where parameters may be of the wrong type or be passed in the wrong
order, or the wrong number of parameters may be passed.

■ Interface misunderstanding A calling component misunderstands the specification
of the interface of the called component and makes assumptions about its behavior.
The called component does not behave as expected, which then causes unexpected
behavior in the calling component. For example, a binary search method may be
called with a parameter that is an unordered array. The search would then fail.

■ Timing errors These occur in real-time systems that use a shared memory or a
message-passing interface. The producer of data and the consumer of data may

B

C

Test
cases

A

Figure 8.7 Interface
testing

	 8.1	 ■	 Development	testing	 	 239

operate at different speeds. Unless particular care is taken in the interface design,
the consumer can access out-of-date information because the producer of the
information has not updated the shared interface information.

Testing for interface defects is difficult because some interface faults may only
manifest themselves under unusual conditions. For example, say an object imple-
ments a queue as a fixed-length data structure. A calling object may assume that the
queue is implemented as an infinite data structure, and so it does not check for queue
overflow when an item is entered.

This condition can only be detected during testing by designing a sequence of test
cases that force the queue to overflow. The tests should check how calling objects
handle that overflow. However, as this is a rare condition, testers may think that this
isn’t worth checking when writing the test set for the queue object.

A further problem may arise because of interactions between faults in different
modules or objects. Faults in one object may only be detected when some other
object behaves in an unexpected way. Say an object calls another object to receive
some service and the calling object assumes that the response is correct. If the called
service is faulty in some way, the returned value may be valid but incorrect. The
problem is therefore not immediately detectable but only becomes obvious when
some later computation, using the returned value, goes wrong.

Some general guidelines for interface testing are:

1. Examine the code to be tested and identify each call to an external component.
Design a set of tests in which the values of the parameters to the external com-
ponents are at the extreme ends of their ranges. These extreme values are most
likely to reveal interface inconsistencies.

2. Where pointers are passed across an interface, always test the interface with null
pointer parameters.

3. Where a component is called through a procedural interface, design tests that
deliberately cause the component to fail. Differing failure assumptions are one
of the most common specification misunderstandings.

4. Use stress testing in message passing systems. This means that you should
design tests that generate many more messages than are likely to occur in prac-
tice. This is an effective way of revealing timing problems.

5. Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may reveal
implicit assumptions made by the programmer about the order in which the
shared data is produced and consumed.

Sometimes it is better to use inspections and reviews rather than testing to look
for interface errors. Inspections can concentrate on component interfaces and ques-
tions about the assumed interface behavior asked during the inspection process.

240	 	 Chapter	8	 ■	 Software	testing

 8.1.4 System testing

System testing during development involves integrating components to create a ver-
sion of the system and then testing the integrated system. System testing checks that
components are compatible, interact correctly, and transfer the right data at the right
time across their interfaces. It obviously overlaps with component testing, but there
are two important differences:

1. During system testing, reusable components that have been separately developed
and off-the-shelf systems may be integrated with newly developed components.
The complete system is then tested.

2. Components developed by different team members or subteams may be integrated
at this stage. System testing is a collective rather than an individual process. In
some companies, system testing may involve a separate testing team with no
involvement from designers and programmers.

All systems have emergent behavior. This means that some system functionality
and characteristics only become obvious when you put the components together.
This may be planned emergent behavior, which has to be tested. For example, you
may integrate an authentication component with a component that updates the sys-
tem database. You then have a system feature that restricts information updating to
authorized users. Sometimes, however, the emergent behavior is unplanned and
unwanted. You have to develop tests that check that the system is only doing what it
is supposed to do.

System testing should focus on testing the interactions between the components
and objects that make up a system. You may also test reusable components or sys-
tems to check that they work as expected when they are integrated with new compo-
nents. This interaction testing should discover those component bugs that are only
revealed when a component is used by other components in the system. Interaction
testing also helps find misunderstandings, made by component developers, about
other components in the system.

Because of its focus on interactions, use case-based testing is an effective
approach to system testing. Several components or objects normally implement each
use case in the system. Testing the use case forces these interactions to occur. If you
have developed a sequence diagram to model the use case implementation, you can
see the objects or components that are involved in the interaction.

In the wilderness weather station example, the system software reports summa-
rized weather data to a remote computeras described in Figure 7.3. Figure 8.8 shows
the sequence of operations in the weather station when it responds to a request to col-
lect data for the mapping system. You can use this diagram to identify operations that
will be tested and to help design the test cases to execute the tests. Therefore issuing
a request for a report will result in the execution of the following thread of methods:

SatComms:request → WeatherStation:reportWeather → Commslink:Get(summary)
→ WeatherData:summarize

	 8.1	 ■	 Development	testing	 	 241

The sequence diagram helps you design the specific test cases that you need, as it
shows what inputs are required and what outputs are created:

1. An input of a request for a report should have an associated acknowledgment.
A report should ultimately be returned from the request. During testing, you
should create summarized data that can be used to check that the report is cor-
rectly organized.

2. An input request for a report to WeatherStation results in a summarized report
being generated. You can test this in isolation by creating raw data correspond-
ing to the summary that you have prepared for the test of SatComms and check-
ing that the WeatherStation object correctly produces this summary. This raw
data is also used to test the WeatherData object.

Of course, I have simplified the sequence diagram in Figure 8.8 so that it does not
show exceptions. A complete use case/scenario test must take these exceptions into
account and ensure that they are correctly handled.

For most systems, it is difficult to know how much system testing is essential and
when you should stop testing. Exhaustive testing, where every possible program
execution sequence is tested, is impossible. Testing, therefore, has to be based on a
subset of possible test cases. Ideally, software companies should have policies for
choosing this subset. These policies might be based on general testing policies, such
as a policy that all program statements should be executed at least once. Alternatively,
they may be based on experience of system usage and focus on testing the features of
the operational system. For example:

SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

WeatherStation Commslink

summarise ()

WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

Figure 8.8 Collect
weather data
sequence chart

242	 	 Chapter	8	 ■	 Software	testing

1. All system functions that are accessed through menus should be tested.

2. Combinations of functions (e.g., text formatting) that are accessed through the
same menu must be tested.

3. Where user input is provided, all functions must be tested with both correct and
incorrect input.

It is clear from experience with major software products such as word processors
or spreadsheets that similar guidelines are normally used during product testing.
When features of the software are used in isolation, they normally work. Problems
arise, as Whittaker explains (Whittaker 2009), when combinations of less com-
monly used features have not been tested together. He gives the example of how, in
a commonly used word processor, using footnotes with multicolumn layout causes
incorrect layout of the text.

Automated system testing is usually more difficult than automated unit or compo-
nent testing. Automated unit testing relies on predicting the outputs and then encoding
these predictions in a program. The prediction is then compared with the result.
However, the point of implementing a system may be to generate outputs that are
large or cannot be easily predicted. You may be able to examine an output and check
its credibility without necessarily being able to create it in advance.

	 8.2		 Test-driven	development

Test-driven development (TDD) is an approach to program development in which
you interleave testing and code development (Beck 2002; Jeffries and Melnik 2007).
You develop the code incrementally, along with a set of tests for that increment. You
don’t start working on the next increment until the code that you have developed
passes all of its tests. Test-driven development was introduced as part of the XP agile
development method. However, it has now gained mainstream acceptance and may
be used in both agile and plan-based processes.

Incremental integration and testing

System testing involves integrating different components, then testing the integrated system that you have
 created. You should always use an incremental approach to integration and testing where you integrate a
 component, test the system, integrate another component, test again, and so on. If problems occur, they are
probably due to interactions with the most recently integrated component.

Incremental integration and testing is fundamental to agile methods, where regression tests are run every time
a new increment is integrated.

http://software-engineering-book.com/web/integration/

http://software-engineering-book.com/web/integration

	 8.2	 ■	 Test-driven	development	 	 243

The fundamental TDD process is shown in Figure 8.9. The steps in the process
are as follows:

1. You start by identifying the increment of functionality that is required. This
should normally be small and implementable in a few lines of code.

2. You write a test for this functionality and implement it as an automated test.
This means that the test can be executed and will report whether or not it has
passed or failed.

3. You then run the test, along with all other tests that have been implemented.
Initially, you have not implemented the functionality so the new test will fail.
This is deliberate as it shows that the test adds something to the test set.

4. You then implement the functionality and re-run the test. This may involve
refactoring existing code to improve it and add new code to what’s already there.

5. Once all tests run successfully, you move on to implementing the next chunk of
functionality.

An automated testing environment, such as the JUnit environment that supports
Java program testing (Tahchiev et al. 2010) is essential for TDD. As the code is
developed in very small increments, you have to be able to run every test each time
that you add functionality or refactor the program. Therefore, the tests are embedded
in a separate program that runs the tests and invokes the system that is being tested.
Using this approach, you can run hundreds of separate tests in a few seconds.

Test-driven development helps programmers clarify their ideas of what a code
segment is actually supposed to do. To write a test, you need to understand what is
intended, as this understanding makes it easier to write the required code. Of course,
if you have incomplete knowledge or understanding, then TDD won’t help.

If you don’t know enough to write the tests, you won’t develop the required code.
For example, if your computation involves division, you should check that you are
not dividing the numbers by zero. If you forget to write a test for this, then the check-
ing code will never be included in the program.

As well as better problem understanding, other benefits of test-driven development are:

1. Code coverage In principle, every code segment that you write should have at
least one associated test. Therefore, you can be confident that all of the code in

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

Figure 8.9 Test-driven
development

244	 	 Chapter	8	 ■	 Software	testing

the system has actually been executed. Code is tested as it is written, so defects
are discovered early in the development process.

2. Regression testing A test suite is developed incrementally as a program is devel-
oped. You can always run regression tests to check that changes to the program
have not introduced new bugs.

3. Simplified debugging When a test fails, it should be obvious where the prob-
lem lies. The newly written code needs to be checked and modified. You do
not need to use debugging tools to locate the problem. Reports of the use of
TDD suggest that it is hardly ever necessary to use an automated debugger in
test-driven development (Martin 2007).

4. System documentation The tests themselves act as a form of documentation that
describe what the code should be doing. Reading the tests can make it easier to
understand the code.

One of the most important benefits of TDD is that it reduces the costs of regres-
sion testing. Regression testing involves running test sets that have successfully
executed after changes have been made to a system. The regression test checks that
these changes have not introduced new bugs into the system and that the new code
interacts as expected with the existing code. Regression testing is expensive and
sometimes impractical when a system is manually tested, as the costs in time and
effort are very high. You have to try to choose the most relevant tests to re-run and it
is easy to miss important tests.

Automated testing dramatically reduces the costs of regression testing. Existing
tests may be re-run quickly and cheaply. After making a change to a system in test-
first development, all existing tests must run successfully before any further func-
tionality is added. As a programmer, you can be confident that the new functionality
that you have added has not caused or revealed problems with existing code.

Test-driven development is of most value in new software development where
the functionality is either implemented in new code or by using components from
standard libraries. If you are reusing large code components or legacy systems, then
you need to write tests for these systems as a whole. You cannot easily decompose
them into separate testable elements. Incremental test-driven development is imprac-
tical. Test-driven development may also be ineffective with multithreaded systems.
The different threads may be interleaved at different times in different test runs, and
so may produce different results.

If you use TDD, you still need a system testing process to validate the system,
that is, to check that it meets the requirements of all of the system stakeholders.
System testing also tests performance, reliability, and checks that the system does
not do things that it shouldn’t do, such as produce unwanted outputs. Andrea (Andrea
2007) suggests how testing tools can be extended to integrate some aspects of sys-
tem testing with TDD.

Test-driven development is now a widely used and mainstream approach to soft-
ware testing. Most programmers who have adopted this approach are happy with it

and find it a more productive way to develop software. It is also claimed that use of
TDD encourages better structuring of a program and improved code quality.
However, experiments to verify this claim have been inconclusive.

	 8.3		 Release	testing

Release testing is the process of testing a particular release of a system that is intended
for use outside of the development team. Normally, the system release is for customers
and users. In a complex project, however, the release could be for other teams that are
developing related systems. For software products, the release could be for product
management who then prepare it for sale.

There are two important distinctions between release testing and system testing
during the development process:

1. The system development, team should not be responsible for release testing.

2. Release testing is a process of validation checking to ensure that a system meets
its requirements and is good enough for use by system customers. System test-
ing by the development team should focus on discovering bugs in the system
(defect testing).

The primary goal of the release testing process is to convince the supplier of the
system that it is good enough for use. If so, it can be released as a product or deliv-
ered to the customer. Release testing, therefore, has to show that the system delivers
its specified functionality, performance, and dependability, and that it does not fail
during normal use.

Release testing is usually a black-box testing process whereby tests are derived
from the system specification. The system is treated as a black box whose behavior
can only be determined by studying its inputs and the related outputs. Another name
for this is functional testing, so-called because the tester is only concerned with
functionality and not the implementation of the software.

 8.3.1 Requirements-based testing

A general principle of good requirements engineering practice is that require-
ments should be testable. That is, the requirement should be written so that a test
can be designed for that requirement. A tester can then check that the require-
ment has been satisfied. Requirements-based testing, therefore, is a systematic
approach to test-case design where you consider each requirement and derive a
set of tests for it. Requirements-based testing is validation rather than defect
testing—you are trying to demonstrate that the system has properly implemented
its requirements.

	 8.3	 ■	 Release	testing	 	 245

246	 	 Chapter	8	 ■	 Software	testing

For example, consider the following Mentcare system requirements that are con-
cerned with checking for drug allergies:

If a patient is known to be allergic to any particular medication, then prescrip-
tion of that medication shall result in a warning message being issued to the
system user.

If a prescriber chooses to ignore an allergy warning, he or she shall provide
a reason why this has been ignored.

To check if these requirements have been satisfied, you may need to develop sev-
eral related tests:

1. Set up a patient record with no known allergies. Prescribe medication for aller-
gies that are known to exist. Check that a warning message is not issued by the
system.

2. Set up a patient record with a known allergy. Prescribe the medication that the
patient is allergic to and check that the warning is issued by the system.

3. Set up a patient record in which allergies to two or more drugs are recorded.
Prescribe both of these drugs separately and check that the correct warning for
each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that two warnings are
correctly issued.

5. Prescribe a drug that issues a warning and overrule that warning. Check that the
system requires the user to provide information explaining why the warning was
overruled.

You can see from this list that testing a requirement does not mean just writing a
single test. You normally have to write several tests to ensure that you have coverage
of the requirement. You should also keep traceability records of your requirements-
based testing, which link the tests to the specific requirements that you have tested.

 8.3.2 Scenario testing

Scenario testing is an approach to release testing whereby you devise typical sce-
narios of use and use these scenarios to develop test cases for the system. A scenario
is a story that describes one way in which the system might be used. Scenarios
should be realistic, and real system users should be able to relate to them. If you have
used scenarios or user stories as part of the requirements engineering process
(described in Chapter 4), then you may be able to reuse them as testing scenarios.

In a short paper on scenario testing, Kaner (Kaner 2003) suggests that a scenario
test should be a narrative story that is credible and fairly complex. It should moti-
vate stakeholders; that is, they should relate to the scenario and believe that it is

	 8.3	 ■	 Release	testing	 	 247

important that the system passes the test. He also suggests that it should be easy to
evaluate. If there are problems with the system, then the release testing team should
recognize them.

As an example of a possible scenario from the Mentcare system, Figure 8.10
describes one way that the system may be used on a home visit. This scenario tests a
number of features of the Mentcare system:

1. Authentication by logging on to the system.

2. Downloading and uploading of specified patient records to a laptop.

3. Home visit scheduling.

4. Encryption and decryption of patient records on a mobile device.

5. Record retrieval and modification.

6. Links with the drugs database that maintains side-effect information.

7. The system for call prompting.

If you are a release tester, you run through this scenario, playing the role of
George and observing how the system behaves in response to different inputs. As
George, you may make deliberate mistakes, such as inputting the wrong key phrase
to decode records. This checks the response of the system to errors. You should care-
fully note any problems that arise, including performance problems. If a system is
too slow, this will change the way that it is used. For example, if it takes too long to
encrypt a record, then users who are short of time may skip this stage. If they then
lose their laptop, an unauthorized person could then view the patient records.

When you use a scenario-based approach, you are normally testing several require-
ments within the same scenario. Therefore, as well as checking individual requirements,
you are also checking that combinations of requirements do not cause problems.

George is a nurse who specializes in mental health care. One of his responsibilities is to visit patients at home
to check that their treatment is effective and that they are not suffering from medication side effects.

On a day for home visits, George logs into the Mentcare system and uses it to print his schedule of home
visits for that day, along with summary information about the patients to be visited. He requests that the records
for these patients be downloaded to his laptop. He is prompted for his key phrase to encrypt the records on the
laptop.

One of the patients whom he visits is Jim, who is being treated with medication for depression. Jim feels
that the medication is helping him but believes that it has the side effect of keeping him awake at night. George
looks up Jim’s record and is prompted for his key phrase to decrypt the record. He checks the drug prescribed
and queries its side effects. Sleeplessness is a known side effect, so he notes the problem in Jim’s record and
suggests that he visit the clinic to have his medication changed. Jim agrees, so George enters a prompt to call
him when he gets back to the clinic to make an appointment with a physician. George ends the consultation,
and the system re-encrypts Jim’s record.

After finishing his consultations, George returns to the clinic and uploads the records of patients visited to
the database. The system generates a call list for George of those patients whom he has to contact for follow-up
information and make clinic appointments.

Figure 8.10 A user
story for the
Mentcare system

248	 	 Chapter	8	 ■	 Software	testing

 8.3.3 Performance testing

Once a system has been completely integrated, it is possible to test for emergent
properties, such as performance and reliability. Performance tests have to be
designed to ensure that the system can process its intended load. This usually
involves running a series of tests where you increase the load until the system perfor-
mance becomes unacceptable.

As with other types of testing, performance testing is concerned both with dem-
onstrating that the system meets its requirements and discovering problems and
defects in the system. To test whether performance requirements are being achieved,
you may have to construct an operational profile. An operational profile (see Chapter 11)
is a set of tests that reflect the actual mix of work that will be handled by the system.
Therefore, if 90% of the transactions in a system are of type A, 5% of type B, and the
remainder of types C, D, and E, then you have to design the operational profile so
that the vast majority of tests are of type A. Otherwise, you will not get an accurate
test of the operational performance of the system.

This approach, of course, is not necessarily the best approach for defect testing.
Experience has shown that an effective way to discover defects is to design tests
around the limits of the system. In performance testing, this means stressing the sys-
tem by making demands that are outside the design limits of the software. This is
known as stress testing.

Say you are testing a transaction processing system that is designed to process up
to 300 transactions per second. You start by testing this system with fewer than
300 transactions per second. You then gradually increase the load on the system
beyond 300 transactions per second until it is well beyond the maximum design load
of the system and the system fails.

Stress testing helps you do two things:

1. Test the failure behavior of the system. Circumstances may arise through an
unexpected combination of events where the load placed on the system exceeds
the maximum anticipated load. In these circumstances, system failure should
not cause data corruption or unexpected loss of user services. Stress testing
checks that overloading the system causes it to “fail-soft” rather than collapse
under its load.

2. Reveal defects that only show up when the system is fully loaded. Although it can
be argued that these defects are unlikely to cause system failures in normal use, there
may be unusual combinations of circumstances that the stress testing replicates.

Stress testing is particularly relevant to distributed systems based on a network of
processors. These systems often exhibit severe degradation when they are heavily
loaded. The network becomes swamped with coordination data that the different
processes must exchange. The processes become slower and slower as they wait for
the required data from other processes. Stress testing helps you discover when the
degradation begins so that you can add checks to the system to reject transactions
beyond this point.

	 8.4	 ■	 User	testing	 	 249

	 8.4		 User	testing

User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing. This may involve formally testing a sys-
tem that has been commissioned from an external supplier. Alternatively, it may be
an informal process where users experiment with a new software product to see if
they like it and to check that it does what they need. User testing is essential, even
when comprehensive system and release testing have been carried out. Influences
from the user’s working environment can have a major effect on the reliability, per-
formance, usability, and robustness of a system.

It is practically impossible for a system developer to replicate the system’s work-
ing environment, as tests in the developer’s environment are inevitably artificial. For
example, a system that is intended for use in a hospital is used in a clinical environ-
ment where other things are going on, such as patient emergencies and conversations
with relatives. These all affect the use of a system, but developers cannot include
them in their testing environment.

There are three different types of user testing:

1. Alpha testing, where a selected group of software users work closely with the
development team to test early releases of the software.

2. Beta testing, where a release of the software is made available to a larger group
of users to allow them to experiment and to raise problems that they discover
with the system developers.

3. Acceptance testing, where customers test a system to decide whether or not it is ready
to be accepted from the system developers and deployed in the customer environment.

In alpha testing, users and developers work together to test a system as it is being
developed. This means that the users can identify problems and issues that are not
readily apparent to the development testing team. Developers can only really work
from the requirements, but these often do not reflect other factors that affect the
practical use of the software. Users can therefore provide information about practice
that helps with the design of more realistic tests.

Alpha testing is often used when developing software products or apps. Experienced
users of these products may be willing to get involved in the alpha testing process
because this gives them early information about new system features that they can
exploit. It also reduces the risk that unanticipated changes to the software will have
disruptive effects on their business. However, alpha testing may also be used when
custom software is being developed. Agile development methods advocate user
involvement in the development process, and that users should play a key role in
designing tests for the system.

Beta testing takes place when an early, sometimes unfinished, release of a software
system is made available to a larger group of customers and users for evaluation.
Beta testers may be a selected group of customers who are early adopters of the system.

250	 	 Chapter	8	 ■	 Software	testing

Alternatively, the software may be made publicly available for use by anyone who is
interested in experimenting with it.

Beta testing is mostly used for software products that are used in many different
settings. This is important as, unlike custom product developers, there is no way for
the product developer to limit the software’s operating environment. It is impossible
for product developers to know and replicate all the settings in which the software
product will be used. Beta testing is therefore used to discover interaction problems
between the software and features of its operational environment. Beta testing is also
a form of marketing. Customers learn about their system and what it can do for them.

Acceptance testing is an inherent part of custom systems development. Customers
test a system, using their own data, and decide if it should be accepted from the system
developer. Acceptance implies that final payment should be made for the software.

Figure 8.11 shows that here are six stages in the acceptance testing process:

1. Define acceptance criteria This stage should ideally take place early in the pro-
cess before the contract for the system is signed. The acceptance criteria should
be part of the system contract and be approved by the customer and the devel-
oper. In practice, however, it can be difficult to define criteria so early in the
process. Detailed requirements may not be available, and the requirements will
almost certainly change during the development process.

2. Plan acceptance testing This stage involves deciding on the resources, time, and
budget for acceptance testing and establishing a testing schedule. The accept-
ance test plan should also discuss the required coverage of the requirements and
the order in which system features are tested. It should define risks to the testing
process such as system crashes and inadequate performance, and discuss how
these risks can be mitigated.

3. Derive acceptance tests Once acceptance criteria have been established, tests
have to be designed to check whether or not a system is acceptable. Acceptance
tests should aim to test both the functional and non-functional characteristics
(e.g., performance) of the system. They should ideally provide complete cover-
age of the system requirements. In practice, it is difficult to establish completely
objective acceptance criteria. There is often scope for argument about whether
or not a test shows that a criterion has definitely been met.

4. Run acceptance tests The agreed acceptance tests are executed on the system.
Ideally, this step should take place in the actual environment where the system
will be used, but this may be disruptive and impractical. Therefore, a user testing

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

Figure 8.11 The
acceptance testing
process

	 8.4	 ■	 User	testing	 	 251

environment may have to be set up to run these tests. It is difficult to automate
this process as part of the acceptance tests may involve testing the interactions
between end-users and the system. Some training of end-users may be required.

5. Negotiate test results It is very unlikely that all of the defined acceptance tests
will pass and that there will be no problems with the system. If this is the case,
then acceptance testing is complete and the system can be handed over. More
commonly, some problems will be discovered. In such cases, the developer and
the customer have to negotiate to decide if the system is good enough to be used.
They must also agree on how the developer will fix the identified problems.

6. Reject/accept system This stage involves a meeting between the developers and
the customer to decide on whether or not the system should be accepted. If the
system is not good enough for use, then further development is required to fix
the identified problems. Once complete, the acceptance testing phase is repeated.

You might think that acceptance testing is a clear-cut contractual issue. If a system
does not pass its acceptance tests, then it should not be accepted and payment should
not be made. However, the reality is more complex. Customers want to use the soft-
ware as soon as they can because of the benefits of its immediate deployment. They
may have bought new hardware, trained staff, and changed their processes. They may
be willing to accept the software, irrespective of problems, because the costs of not
using the software are greater than the costs of working around the problems.

Therefore, the outcome of negotiations may be conditional acceptance of the sys-
tem. The customer may accept the system so that deployment can begin. The system
provider agrees to repair urgent problems and deliver a new version to the customer
as quickly as possible.

In agile methods such as Extreme Programming, there may be no separate accept-
ance testing activity. The end-user is part of the development team (i.e., he or she is
an alpha tester) and provides the system requirements in terms of user stories. He or
she is also responsible for defining the tests, which decide whether or not the devel-
oped software supports the user stories. These tests are therefore equivalent to
acceptance tests. The tests are automated, and development does not proceed until
the story acceptance tests have successfully been executed.

When users are embedded in a software development team, they should ideally be
“typical” users with general knowledge of how the system will be used. However, it
can be difficult to find such users, and so the acceptance tests may actually not be a
true reflection of how a system is used in practice. Furthermore, the requirement for
automated testing limits the flexibility of testing interactive systems. For such sys-
tems, acceptance testing may require groups of end-users to use the system as if it
was part of their everyday work. Therefore, while an “embedded user” is an attrac-
tive notion in principle, it does not necessarily lead to high-quality tests of the system.

The problem of user involvement in agile teams is one reason why many compa-
nies use a mix of agile and more traditional testing. The system may be developed
using agile techniques, but, after completion of a major release, separate acceptance
testing is used to decide if the system should be accepted.

252	 	 Chapter	8	 ■	 Software	testing

K e y P o i n t s

■ Testing can only show the presence of errors in a program. It cannot show that there are no
remaining faults.

■ Development testing is the responsibility of the software development team. A separate team
should be responsible for testing a system before it is released to customers. In the user testing
process, customers or system users provide test data and check that tests are successful.

■ Development testing includes unit testing in which you test individual objects and methods;
component testing in which you test related groups of objects; and system testing in which you
test partial or complete systems.

■ When testing software, you should try to “break” the software by using experience and
 guidelines to choose types of test cases that have been effective in discovering defects in
other systems.

■ Wherever possible, you should write automated tests. The tests are embedded in a program
that can be run every time a change is made to a system.

■ Test-first development is an approach to development whereby tests are written before the code
to be tested. Small code changes are made, and the code is refactored until all tests execute
successfully.

■ Scenario testing is useful because it replicates the practical use of the system. It involves
inventing a typical usage scenario and using this to derive test cases.

■ Acceptance testing is a user testing process in which the aim is to decide if the software is good
enough to be deployed and used in its planned operational environment.

F U R T h e R 	 R e a D i n g

“How to design practical test cases.” A how-to article on test-case design by an author from a
 Japanese company that has a good reputation for delivering software with very few faults.
(T. Yamaura, IEEE Software, 15(6), November 1998) http://dx.doi.org/10.1109/52.730835.

“Test-driven development.” This special issue on test-driven development includes a good general
overview of TDD as well as experience papers on how TDD has been used for different types of
 software. (IEEE Software, 24 (3) May/June 2007).

Exploratory Software Testing. This is a practical, rather than theoretical, book on software testing
which develops the ideas in Whittaker’s earlier book, How to Break Software. The author presents a
set of experience-based guidelines on software testing. (J. A. Whittaker, 2009, Addison-Wesley).

How Google Tests Software. This is a book about testing large-scale cloud-based systems and
poses a whole set of new challenges compared to custom software applications. While I don’t think
that the Google approach can be used directly, there are interesting lessons in this book for large-
scale system testing. (J. Whittaker, J. Arbon, and J. Carollo, 2012, Addison-Wesley).

252	 	 Chapter	8	 ■	 Software	testing

http://dx.doi.org/10.1109/52.730835

	 Chapter	8	 ■	 Software	testing	 	 253

W e b s i T e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

e x e R C i s e s

 8.1. Explain how the number of known defects remaining in a program at the time of delivery
affects product support.

 8.2. Testing is meant to show that a program does what it is intended to do. Why may testers not
always know what a program is intended for?

 8.3. Some people argue that developers should not be involved in testing their own code but that
all testing should be the responsibility of a separate team. Give arguments for and against
testing by the developers themselves.

 8.4. You have been asked to test a method called catWhiteSpace in a “Paragraph” object that, within
the paragraph, replaces sequences of blank characters with a single blank character. Identify
testing partitions for this example and derive a set of tests for the catWhiteSpace method.

 8.5. What is regression testing? Explain how the use of automated tests and a testing framework
such as JUnit simplifies regression testing.

 8.6. The Mentcare system is constructed by adapting an off-the-shelf information system. What do
you think are the differences between testing such a system and testing software that is
developed using an object-oriented language such as Java?

 8.7. Write a scenario that could be used to help design tests for the wilderness weather station system.

 8.8. What do you understand by the term stress testing? Suggest how you might stress-test the
Mentcare system.

 8.9. What are the benefits of involving users in release testing at an early stage in the testing pro-
cess? Are there disadvantages in user involvement?

8.10. A common approach to system testing is to test the more important functionalities of a system
first, followed by the less important functionalities until the testing budget is exhausted. Dis-
cuss the ethics involved in identifying what “more important” means.

	 Chapter	8	 ■ Exercises	 	 253

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/implementation-and-evolution

254	 	 Chapter	8	 ■	 Software	testing

R e F e R e n C e s

Andrea, J. 2007. “Envisioning the Next Generation of Functional Testing Tools.” IEEE Software 24 (3):
58–65. doi:10.1109/MS.2007.73.

Beck, K. 2002. Test Driven Development: By Example. Boston: Addison-Wesley.

Bezier, B. 1990. Software Testing Techniques, 2nd ed. New York: Van Nostrand Reinhold.

Boehm, B. W. 1979. “Software Engineering; R & D Trends and Defense Needs.” In Research Directions
in Software Technology, edited by P. Wegner, 1–9. Cambridge, MA: MIT Press.

Cusamano, M., and R. W. Selby. 1998. Microsoft Secrets. New York: Simon & Schuster.

Dijkstra, E. W. 1972. “The Humble Programmer.” Comm. ACM 15 (10): 859–866.
doi:10.1145/355604.361591.

Fagan, M. E. 1976. “Design and Code Inspections to Reduce Errors in Program Development.” IBM
Systems J. 15 (3): 182–211.

Jeffries, R., and G. Melnik. 2007. “TDD: The Art of Fearless Programming.” IEEE Software 24: 24–30.
doi:10.1109/MS.2007.75.

Kaner, C. 2003. “An Introduction to Scenario Testing.” Software Testing and Quality Engineering
(October 2003).

Lutz, R. R. 1993. “Analysing Software Requirements Errors in Safety-Critical Embedded Systems.” In
RE’93, 126–133. San Diego CA: IEEE. doi:0.1109/ISRE.1993.324825.

Martin, R. C. 2007. “Professionalism and Test-Driven Development.” IEEE Software 24 (3): 32–36.
doi:10.1109/MS.2007.85.

Prowell, S. J., C. J. Trammell, R. C. Linger, and J. H. Poore. 1999. Cleanroom Software Engineering:
Technology and Process. Reading, MA: Addison-Wesley.

Tahchiev, P., F. Leme, V. Massol, and G. Gregory. 2010. JUnit in Action, 2nd ed. Greenwich,
CT: Manning Publications.

Whittaker, J. A. 2009. Exploratory Software Testing. Boston: Addison-Wesley.

254	 	 Chapter	8	 ■	 Software	testing

	Part 1 Introduction to Software Engineering��
	Chapter 8 Software testing���������������������������������
	8.1 Development testing������������������������������
	8.2 Test-driven development����������������������������������
	8.3 Release testing��������������������������
	8.4 User testing�����������������������

