
Project management
22

Objectives
The objective of this chapter is to introduce software project management
and two important management activities, namely, risk management and
people management. When you have read the chapter you will:

■ know the principal tasks of software project managers;

■ have been introduced to the notion of risk management and some of
the risks that can arise in software projects;

■ understand factors that influence personal motivation and what these
might mean for software project managers;

■ understand key issues that influence team working, such as team
composition, organization, and communication.

Contents
22.1 Risk management

22.2 Managing people

22.3 Teamwork

642    Chapter 22  ■  Project management

Software project management is an essential part of software engineering. Projects
need to be managed because professional software engineering is always subject to
organizational budget and schedule constraints. The project manager’s job is to ensure
that the software project meets and overcomes these constraints as well as delivering
high-quality software. Good management cannot guarantee project success. However,
bad management usually results in project failure: The software may be delivered late,
cost more than originally estimated, or fail to meet the expectations of customers.

The success criteria for project management obviously vary from project to pro-
ject, but, for most projects, important goals are:

■ to deliver the software to the customer at the agreed time;

■ to keep overall costs within budget;

■ to deliver software that meets the customer’s expectations;

■ to maintain a coherent and well-functioning development team.

These goals are not unique to software engineering but are the goals of all
 engineering projects. However, software engineering is different from other types of
engineering in a number of ways that make software management particularly chal-
lenging. Some of these differences are:

1. The product is intangible A manager of a shipbuilding or a civil engineering
project can see the product being developed. If a schedule slips, the effect on the
product is visible—parts of the structure are obviously unfinished. Software is
intangible. It cannot be seen or touched. Software project managers cannot see
progress by looking at the artifact that is being constructed. Rather, they rely on
others to produce evidence that they can use to review the progress of the work.

2. Large software projects are often “one-off” projects Every large software
development project is unique because every environment where software is
developed is, in some ways, different from all others. Even managers who have
a large body of previous experience may find it difficult to anticipate problems.
Furthermore, rapid technological changes in computers and communications
can make experience obsolete. Lessons learned from previous projects may not
be readily transferable to new projects.

3. Software processes are variable and organization-specific The engineering process
for some types of system, such as bridges and buildings, is well understood. However,
different companies use quite different software development processes. We cannot
reliably predict when a particular software process is likely to lead to development
problems. This is especially true when the software project is part of a wider systems
engineering project or when completely new software is being developed.

Because of these issues, it is not surprising that some software projects are late,
overbudget, and behind schedule. Software systems are often new, very complex,
and technically innovative. Schedule and cost overruns are also common in other

engineering projects, such as new transport systems, that are complex and innova-
tive. Given the difficulties involved, it is perhaps remarkable that so many software
projects are delivered on time and to budget.

It is impossible to write a standard job description for a software project manager. The
job varies tremendously depending on the organization and the software being developed.
Some of the most important factors that affect how software projects are managed are:

1. Company size Small companies can operate with informal management and
team communications and do not need formal policies and management struc-
tures. They have less management overhead than larger organizations. In larger
organizations, management hierarchies, formal reporting and budgeting, and
approval processes must be followed.

2. Software customers If the customer is an internal customer (as is the case for
software product development), then customer communications can be informal
and there is no need to fit in with the customer’s ways of working. If custom
software is being developed for an external customer, agreement has to be
reached on more formal communication channels. If the customer is a govern-
ment agency, the software company must operate according to the agency’s
policies and procedures, which are likely to be bureaucratic.

3. Software size Small systems can be developed by a small team, which can get
together in the same room to discuss progress and other management issues. Large
systems usually need multiple development teams that may be geographically
distributed and in different companies. The project manager has to coordinate the
activities of these teams and arrange for them to communicate with each other.

4. Software type If the software being developed is a consumer product, formal
records of project management decisions are unnecessary. On the other hand, if
a safety-critical system is being developed, all project management decisions
should be recorded and justified as these may affect the safety of the system.

5. Organizational culture Some organizations have a culture that is based on
 supporting and encouraging individuals, while others are group focused. Large
organizations are often bureaucratic. Some organizations have a culture of
 taking risks, whereas others are risk averse.

6. Software development processes Agile processes typically try to operate with
“lightweight” management. More formal processes require management
 monitoring to ensure that the development team is following the defined process.

These factors mean that project managers in different organizations may work in
quite different ways. However, a number of fundamental project management activ-
ities are common to all organizations:

1. Project planning Project managers are responsible for planning, estimating, and
scheduling project development and assigning people to tasks. They supervise

  Chapter 22  ■  Project management    643

644    Chapter 22  ■  Project management

the work to ensure that it is carried out to the required standards, and they mon-
itor progress to check that the development is on time and within budget.

2. Risk management Project managers have to assess the risks that may affect a
project, monitor these risks, and take action when problems arise.

3. People management Project managers are responsible for managing a team of
people. They have to choose people for their team and establish ways of work-
ing that lead to effective team performance.

4. Reporting Project managers are usually responsible for reporting on the progress
of a project to customers and to the managers of the company developing the
software. They have to be able to communicate at a range of levels, from detailed
technical information to management summaries. They have to write concise,
coherent documents that abstract critical information from detailed project
reports. They must be able to present this information during progress reviews.

5. Proposal writing The first stage in a software project may involve writing a
proposal to win a contract to carry out an item of work. The proposal describes
the objectives of the project and how it will be carried out. It usually includes
cost and schedule estimates and justifies why the project contract should be
awarded to a particular organization or team. Proposal writing is a critical task
as the survival of many software companies depends on having enough propos-
als accepted and contracts awarded.

Project planning is an important topic in its own right, which I discuss in
Chapter 23. In this chapter, I focus on risk management and people management.

	 22.1		 Risk	management

Risk management is one of the most important jobs for a project manager. You can think
of a risk as something that you’d prefer not to have happen. Risks may threaten the pro-
ject, the software that is being developed, or the organization. Risk management involves
anticipating risks that might affect the project schedule or the quality of the software
being developed, and then taking action to avoid these risks (Hall 1998; Ould 1999).

Risks can be categorized according to type of risk (technical, organizational,
etc.), as I explain in Section 22.1.1. A complementary classification is to classify
risks according to what these risks affect:

1. Project risks affect the project schedule or resources. An example of a project
risk is the loss of an experienced system architect. Finding a replacement archi-
tect with appropriate skills and experience may take a long time; consequently,
it will take longer to develop the software design than originally planned.

2. Product risks affect the quality or performance of the software being developed.
An example of a product risk is the failure of a purchased component to perform

  22.1  ■  Risk management    645

as expected. This may affect the overall performance of the system so that it is
slower than expected.

3. Business risks affect the organization developing or procuring the software. For
example, a competitor introducing a new product is a business risk. The intro-
duction of a competitive product may mean that the assumptions made about
sales of existing software products may be unduly optimistic.

Of course, these risk categories overlap. An experienced engineer’s decision to
leave a project, for example, presents a project risk because the software delivery
schedule will be affected. It inevitably takes time for a new project member to under-
stand the work that has been done, so he or she cannot be immediately productive.
Consequently, the delivery of the system may be delayed. The loss of a team mem-
ber can also be a product risk because a replacement may not be as experienced and
so could make programming errors. Finally, losing a team member can be a business
risk because an experienced engineer’s reputation may be a critical factor in winning
new contracts.

For large projects, you should record the results of the risk analysis in a risk reg-
ister along with a consequence analysis. This sets out the consequences of the risk
for the project, product, and business. Effective risk management makes it easier to
cope with problems and to ensure that these do not lead to unacceptable budget or
schedule slippage. For small projects, formal risk recording may not be required, but
the project manager should be aware of them.

The specific risks that may affect a project depend on the project and the organi-
zational environment in which the software is being developed. However, there are
also common risks that are independent of the type of software being developed.
These can occur in any software development project. Some examples of these com-
mon risks are shown in Figure 22.1.

Software risk management is important because of the inherent uncertainties in
software development. These uncertainties stem from loosely defined requirements,
requirements changes due to changes in customer needs, difficulties in estimating the
time and resources required for software development, and differences in individual
skills. You have to anticipate risks, understand their impact on the project, the product,
and the business, and take steps to avoid these risks. You may need to draw up contin-
gency plans so that, if the risks do occur, you can take immediate recovery action.

An outline of the process of risk management is presented in Figure 22.2. It
involves several stages:

1. Risk identification You should identify possible project, product, and business risks.

2. Risk analysis You should assess the likelihood and consequences of these risks.

3. Risk planning You should make plans to address the risk, either by avoiding it or
by minimizing its effects on the project.

4. Risk monitoring You should regularly assess the risk and your plans for risk
mitigation and revise these plans when you learn more about the risk.

646    Chapter 22  ■  Project management

Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is
finished.

Management change Project There will be a change of company management
with different priorities.

Hardware
unavailability

Project Hardware that is essential for the project will not
be delivered on schedule.

Requirements
change

Project and product There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not
available on schedule.

Size underestimate Project and product The size of the system has been underestimated.

Software tool
underperformance

Product Software tools that support the project do not
perform as anticipated.

Technology change Business The underlying technology on which the system is
built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

Figure 22.1 Examples
of common project,
product, and business
risks

Risk
identification

Risk
analysis

Risk
planning

Risk
monitoring

List of potential
risks

Prioritized risk
list

Risk avoidance
and contingency

plans

Risk
assessment

For large projects, you should document the outcomes of the risk management
process in a risk management plan. This should include a discussion of the risks
faced by the project, an analysis of these risks, and information on how you plan to
manage the risk if it seems likely to be a problem.

The risk management process is an iterative process that continues throughout
a project. Once you have drawn up an initial risk management plan, you monitor
the situation to detect emerging risks. As more information about the risks becomes

Figure 22.2 The risk
management process

  22.1  ■  Risk management    647

available, you have to re-analyze the risks and decide if the risk priority has
changed. You may then have to change your plans for risk avoidance and contin-
gency management.

Risk management in agile development is less formal. The same fundamental
activities should still be followed and risks discussed, although these may not be
formally documented. Agile development reduces some risks, such as risks from
requirements changes. However, agile development also has a downside. Because of
its reliance on people, staff turnover can have significant effects on the project, prod-
uct, and business. Because of the lack of formal documentation and its reliance on
informal communications, it is very hard to maintain continuity and momentum if
key people leave the project.

 22.1.1 Risk identification

Risk identification is the first stage of the risk management process. It is concerned
with identifying the risks that could pose a major threat to the software engineering
process, the software being developed, or the development organization. Risk identi-
fication may be a team process in which a team gets together to brainstorm possible
risks. Alternatively, project managers may identify risks based on their experience of
what went wrong on previous projects.

As a starting point for risk identification, a checklist of different types of risk may
be used. Six types of risk may be included in a risk checklist:

1. Estimation risks arise from the management estimates of the resources required
to build the system.

2. Organizational risks arise from the organizational environment where the soft-
ware is being developed.

3. People risks are associated with the people in the development team.

4. Requirements risks come from changes to the customer requirements and the
process of managing the requirements change.

5. Technology risks come from the software or hardware technologies that are
used to develop the system.

6. Tools risks come from the software tools and other support software used to
develop the system.

Figure 22.3 shows examples of possible risks in each of these categories. When
you have finished the risk identification process, you should have a long list of risks
that could occur and that could affect the product, the process, and the business. You
then need to prune this list to a manageable size. If you have too many risks, it is
practically impossible to keep track of all of them.

648    Chapter 22  ■  Project management

Figure 22.3 Examples
of different types of
risk

Risk type Possible risks

Estimation 1. The time required to develop the software is
underestimated.

 2. The rate of defect repair is underestimated.
 3. The size of the software is underestimated.

Organizational 4. The organization is restructured so that different
management are responsible for the project.

 5. Organizational financial problems force reductions in the
project budget.

People 6. It is impossible to recruit staff with the skills required.
 7. Key staff are ill and unavailable at critical times.
 8. Required training for staff is not available.

Requirements 9. Changes to requirements that require major design
rework are proposed.

10. Customers fail to understand the impact of requirements
changes.

Technology 11. The database used in the system cannot process as many
transactions per second as expected.

12. Faults in reusable software components have to be
repaired before these components are reused.

Tools 13. The code generated by software code generation tools is
inefficient.

14. Software tools cannot work together in an integrated way.

 22.1.2 Risk analysis

During the risk analysis process, you have to consider each identified risk and make
a judgment about the probability and seriousness of that risk. There is no easy way to
do so. You have to rely on your judgment and experience of previous projects and
the problems that arose in them. It is not possible to make precise, numeric assess-
ment of the probability and seriousness of each risk. Rather, you should assign the
risk to one of a number of bands:

1. The probability of the risk might be assessed as insignificant, low, moderate,
high, or very high.

2. The effects of the risk might be assessed as catastrophic (threaten the survival of
the project), serious (would cause major delays), tolerable (delays are within
allowed contingency), or insignificant.

You may then tabulate the results of this analysis process using a table
ordered according to the seriousness of the risk. Figure 22.4 illustrates this for
the risks that I have identified in Figure 22.3. Obviously, the assessment of
probability and seriousness is arbitrary here. To make this assessment, you need

  22.1  ■  Risk management    649

Figure 22.4 Risk types
and examples

Risk Probability Effects

Organizational financial problems force reductions in the project
budget (5).

Low Catastrophic

It is impossible to recruit staff with the skills required (6). High Catastrophic

Key staff are ill at critical times in the project (7). Moderate Serious

Faults in reusable software components have to be repaired
before these components are reused (12).

Moderate Serious

Changes to requirements that require major design rework are
proposed (9).

Moderate Serious

The organization is restructured so that different managements are
responsible for the project (4).

High Serious

The database used in the system cannot process as many
transactions per second as expected (11).

Moderate Serious

The time required to develop the software is underestimated (1). High Serious

Software tools cannot be integrated (14). High Tolerable

Customers fail to understand the impact of requirements
changes (10).

Moderate Tolerable

Required training for staff is not available (8). Moderate Tolerable

The rate of defect repair is underestimated (2). Moderate Tolerable

The size of the software is underestimated (3). High Tolerable

Code generated by code generation tools is inefficient (13). Moderate Insignificant

detailed information about the project, the process, the development team, and
the organization.

Of course, both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as risk manage-
ment plans are implemented. You should therefore update this table during each
iteration of the risk management process.

Once the risks have been analyzed and ranked, you should assess which of these
risks are most significant. Your judgment must depend on a combination of the prob-
ability of the risk arising and the effects of that risk. In general, catastrophic risks
should always be considered, as should all serious risks that have more than a moder-
ate probability of occurrence.

Boehm (Boehm 1988) recommends identifying and monitoring the “top 10” risks.
However, I think that the right number of risks to monitor must depend on the pro-
ject. It might be 5 or it might be 15. From the risks identified in Figure 22.4, I think
that it is appropriate to consider the eight risks that have catastrophic or serious con-
sequences (Figure 22.5).

650    Chapter 22  ■  Project management

 22.1.3 Risk planning

The risk planning process develops strategies to manage the key risks that threaten
the project. For each risk, you have to think of actions that you might take to mini-
mize the disruption to the project if the problem identified in the risk occurs. You
should also think about the information that you need to collect while monitoring the
project so that emerging problems can be detected before they become serious.

In risk planning, you have to ask “what-if” questions that consider both individual
risks, combinations of risks, and external factors that affect these risks. For example,
questions that you might ask are:

1. What if several engineers are ill at the same time?

2. What if an economic downturn leads to budget cuts of 20% for the project?

3. What if the performance of open-source software is inadequate and the only
expert on that open-source software leaves?

4. What if the company that supplies and maintains software components goes out
of business?

5. What if the customer fails to deliver the revised requirements as predicted?

Based on the answers to these “what-if” questions, you may devise strategies for
managing the risks. Figure 22.5 shows possible risk management strategies that have
been identified for the key risks (i.e., those that are serious or intolerable) shown in
Figure 22.4. These strategies fall into three categories:

1. Avoidance strategies Following these strategies means that the probability that
the risk will arise is reduced. An example of a risk avoidance strategy is the
strategy for dealing with defective components shown in Figure 22.5.

2. Minimization strategies Following these strategies means that the impact of the
risk is reduced. An example of a risk minimization strategy is the strategy for
staff illness shown in Figure 22.5.

3. Contingency plans Following these strategies means that you are prepared for
the worst and have a strategy in place to deal with it. An example of a contin-
gency strategy is the strategy for organizational financial problems that I have
shown in Figure 22.5.

You can see a clear analogy here with the strategies used in critical systems
to ensure reliability, security, and safety, where you must avoid, tolerate, or
recover from failures. Obviously, it is best to use a strategy that avoids the risk.
If this is not possible, you should use a strategy that reduces the chances that the
risk will have serious effects. Finally, you should have strategies in place to

  22.1  ■  Risk management    651

cope with the risk if it arises. These should reduce the overall impact of a risk on
the project or product.

 22.1.4 Risk monitoring

Risk monitoring is the process of checking that your assumptions about the product,
process, and business risks have not changed. You should regularly assess each of
the identified risks to decide whether or not that risk is becoming more or less prob-
able. You should also think about whether or not the effects of the risk have changed.
To do this, you have to look at other factors, such as the number of requirements
change requests, which give you clues about the risk probability and its effects.
These factors are obviously dependent on the types of risk. Figure 22.6 gives some
examples of factors that may be helpful in assessing these risk types.

You should monitor risks regularly at all stages in a project. At every manage-
ment review, you should consider and discuss each of the key risks separately. You
should decide if the risk is more or less likely to arise and if the seriousness and
consequences of the risk have changed.

Figure 22.5 Strategies
to help manage risk

Risk Strategy

Organizational
financial problems

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business and presenting
reasons why cuts to the project budget would not be
cost-effective.

Recruitment
problems

Alert customer to potential difficulties and the possibility
of delays; investigate buying-in components.

Staff illness Reorganize team so that there is more overlap of work
and people therefore understand each other’s jobs.

Defective
components

Replace potentially defective components with bought-in
components of known reliability.

Requirements
changes

Derive traceability information to assess requirements
change impact; maximize information hiding in the design.

Organizational
restructuring

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Database
performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of
automated code generation.

652    Chapter 22  ■  Project management

Figure 22.6 Risk
indicators

Risk type Potential indicators

Estimation Failure to meet agreed schedule; failure to clear reported
defects.

Organizational Organizational gossip; lack of action by senior management.

People Poor staff morale; poor relationships among team members;
high staff turnover.

Requirements Many requirements change requests; customer complaints.

Technology Late delivery of hardware or support software; many
reported technology problems.

Tools Reluctance by team members to use tools; complaints about
software tools; requests for faster computers/more memory,
and so on.

	 22.2		 Managing	people

The people working in a software organization are its greatest assets. It is expen-
sive to recruit and retain good people, and it is up to software managers to ensure
that the engineers working on a project are as productive as possible. In success-
ful companies and economies, this productivity is achieved when people are
respected by the organization and are assigned responsibilities that reflect their
skills and experience.

It is important that software project managers understand the technical issues that
influence the work of software development. Unfortunately, however, good software
engineers are not always good people managers. Software engineers often have
strong technical skills but may lack the softer skills that enable them to motivate and
lead a project development team. As a project manager, you should be aware of the
potential problems of people management and should try to develop people manage-
ment skills.

There are four critical factors that influence the relationship between a manager
and the people that he or she manages:

1. Consistency All the people in a project team should be treated in a comparable
way. No one expects all rewards to be identical, but people should not feel that
their contribution to the organization is undervalued.

2. Respect Different people have different skills, and managers should respect
these differences. All members of the team should be given an opportunity to
make a contribution. In some cases, of course, you will find that people simply
don’t fit into a team and they cannot continue, but it is important not to jump to
conclusions about them at an early stage in the project.

  22.2  ■  Managing people    653

3. Inclusion People contribute effectively when they feel that others listen to
them and take account of their proposals. It is important to develop a working
environment where all views, even those of the least experienced staff, are
considered.

4. Honesty As a manager, you should always be honest about what is going well
and what is going badly in the team. You should also be honest about your level
of technical knowledge and be willing to defer to staff with more knowledge
when necessary. If you try to cover up ignorance or problems, you will eventu-
ally be found out and will lose the respect of the group.

Practical people management has to be based on experiences so my aim in this
section and the following section on teamwork is to raise awareness of the most
important issues that project managers may have to deal with.

 22.2.1 Motivating people

As a project manager, you need to motivate the people who work with you so that
they will contribute to the best of their abilities. In practice, motivation means organ-
izing work and its environment to encourage people to work as effectively as possi-
ble. If people are not motivated, they will be less interested in the work they are
doing. They will work slowly, be more likely to make mistakes, and will not contrib-
ute to the broader goals of the team or the organization.

To provide this encouragement, you should understand a little about what moti-
vates people. Maslow (Maslow 1954) suggests that people are motivated by satisfy-
ing their needs. These needs are arranged in a series of levels, as shown in Figure 22.7.
The lower levels of this hierarchy represent fundamental needs for food, sleep, and
so on, and the need to feel secure in an environment. Social need is concerned with
the need to feel part of a social grouping. Esteem need represents the need to feel
respected by others, and self-realization need is concerned with personal develop-
ment. People need to satisfy lower-level needs such as hunger before the more
abstract, higher-level needs.

People working in software development organizations are not usually hungry,
thirsty, or physically threatened by their environment. Therefore, making sure that
peoples’ social, esteem, and self-realization needs are satisfied is most important
from a management point of view.

1. To satisfy social needs, you need to give people time to meet their co-workers
and provide places for them to meet. Software companies such as Google pro-
vide social space in their offices for people to get together. This is relatively
easy when all of the members of a development team work in the same place,
but, increasingly, team members are not located in the same building or even the
same town or state. They may work for different organizations or from home
most of the time.

654    Chapter 22  ■  Project management

 Social networking systems and teleconferencing can be used for remote com-
munications, but my experience with these systems is that they are most effec-
tive when people already know each other. You should arrange some face-to-face
meetings early in the project so that people can directly interact with other
members of the team. Through this direct interaction, people become part of a
social group and accept the goals and priorities of that group.

2. To satisfy esteem needs, you need to show people that they are valued by the
organization. Public recognition of achievements is a simple and effective way
of doing this. Obviously, people must also feel that they are paid at a level that
reflects their skills and experience.

3. Finally, to satisfy self-realization needs, you need to give people responsibility
for their work, assign them demanding (but not impossible) tasks, and provide
opportunities for training and development where people can enhance their
skills. Training is an important motivating influence as people like to gain new
knowledge and learn new skills.

Maslow’s model of motivation is helpful up to a point, but I think that a problem
with it is that it takes an exclusively personal viewpoint on motivation. It does not
take adequate account of the fact that people feel themselves to be part of an organ-
ization, a professional group, and one or more cultures. Being a member of a cohe-
sive group is highly motivating for most people. People with fulfilling jobs often
like to go to work because they are motivated by the people they work with and the
work that they do. Therefore, as a manager, you also have to think about how a
group as a whole can be motivated. I discuss this and other teamwork issues in
Section 22.3.

In Figure 22.8, I illustrate a problem of motivation that managers often have to
face. In this example, a competent group member loses interest in the work and in
the group as a whole. The quality of her work falls and becomes unacceptable. This
situation has to be dealt with quickly. If you don’t sort out the problem, the other
group members will become dissatisfied and feel that they are doing an unfair share
of the work.

Physiological needs

Safety needs

Social needs

Esteem needs

Self-realization
needs

Figure 22.7 Human
needs hierarchy

  22.2  ■  Managing people    655

In this example, Alice tries to find out if Dorothy’s personal circumstances could
be the problem. Personal difficulties commonly affect motivation because people
cannot therefore concentrate on their work. You may have to give them time and
support to resolve these issues, although you also have to make it clear that they still
have a responsibility to their employer.

Dorothy’s motivation problem is one that can arise when projects develop in an
unexpected direction. People who expect to do one type of work may end up doing
something completely different. In those circumstances, you may decide that the
team member should leave the team and find opportunities elsewhere. In this
 example, however, Alice decides to try to convince Dorothy that broadening her
experience is a positive career step. She gives Dorothy more design autonomy and
organizes training courses in software engineering that will give her more opportuni-
ties after her current project has finished.

Psychological personality type also influences motivation. Bass and Dunteman
(Bass and Dunteman 1963) identified three classifications for professional workers:

1. Task-oriented people, who are motivated by the work they do. In software engi-
neering, these are people who are motivated by the intellectual challenge of soft-
ware development.

Figure 22.8 Individual
motivation

Case study: Motivation

Alice is a software project manager working in a company that develops alarm systems.
This company wishes to enter the growing market of assistive technology to help elderly
and disabled people live independently. Alice has been asked to lead a team of six
developers that can develop new products based on the company’s alarm technology.

Alice’s assistive technology project starts well. Good working relationships develop
within the team, and creative new ideas are developed. The team decides to develop a
system that a user can initiate and control the alarm system from a cell phone or tablet
computer. However, some months into the project, Alice notices that Dorothy, a hard-
ware expert, starts coming into work late, that the quality of her work is deteriorating,
and, increasingly, that she does not appear to be communicating with other members
of the team.

Alice talks about the problem informally with other team members to try to find out
if Dorothy’s personal circumstances have changed and if this might be affecting her
work. They don’t know of anything, so Alice decides to talk with Dorothy to try to
understand the problem.

After some initial denials of any problem, Dorothy admits that she has lost interest
in the job. She expected that she would be able to develop and use her hardware
interfacing skills. However, because of the product direction that has been chosen, she
has little opportunity to use these skills. Basically, she is working as a C programmer on
the alarm system software.

While she admits that the work is challenging, she is concerned that she is not
developing her interfacing skills. She is worried that finding a job that involves hard-
ware interfacing will be difficult after this project. Because she does not want to upset
the team by revealing that she is thinking about the next project, she has decided that
it is best to minimize conversation with them.

656    Chapter 22  ■  Project management

2. Self-oriented people, who are principally motivated by personal success and
recognition. They are interested in software development as a means of achiev-
ing their own goals. They often have longer-term goals, such as career progres-
sion, that motivate them, and they wish to be successful in their work to help
realize these goals.

3. Interaction-oriented people, who are motivated by the presence and actions of
co-workers. As more and more attention is paid to user interface design, interac-
tion-oriented individuals are becoming more involved in software engineering.

Research has shown that interaction-oriented personalities usually like to work as
part of a group, whereas task-oriented and self-oriented people usually prefer to act
as individuals. Women are more likely to be interaction-oriented than men are. They
are often more effective communicators. I discuss the mix of these different person-
ality types in groups in the case study shown later in Figure 22.10.

Each individual’s motivation is made up of elements of each class, but one type
of motivation is usually dominant at any one time. However, individuals can change.
For example, technical people who feel they are not being properly rewarded can
become self-oriented and put personal interests before technical concerns. If a group
works particularly well, self-oriented people can become more interaction-oriented.

	 22.3		 Teamwork

Most professional software is developed by project teams that range in size from
two to several hundred people. However, as it is impossible for everyone in a large
group to work together on a single problem, large teams are usually split into a
number of smaller groups. Each group is responsible for developing part of the
overall system. The best size for a software engineering group is 4 to 6 members,
and they should never have more than 12 members. When groups are small, com-
munication problems are reduced. Everyone knows everyone else, and the whole
group can get around a table for a meeting to discuss the project and the software
that they are developing.

The People Capability Maturity Model

The People Capability Maturity Model (P-CMM) is a framework for assessing how well organizations manage
the development of their staff. It highlights best practice in people management and provides a basis for organi-
zations to improve their people management processes. It is best suited to large rather than small, informal
companies.

http://software-engineering-book.com/web/people-cmm/

http://software-engineering-book.com/web/people-cmm

  22.3  ■  Teamwork    657

Putting together a group that has the right balance of technical skills, experi-
ence, and personalities is a critical management task. However, successful groups
are more than simply a collection of individuals with the right balance of skills. A
good group is cohesive and thinks of itself as a strong, single unit. The people
involved are motivated by the success of the group as well as by their own per-
sonal goals.

In a cohesive group, members think of the group as more important than the
individuals who are group members. Members of a well-led, cohesive group are
loyal to the group. They identify with group goals and other group members.
They attempt to protect the group, as an entity, from outside interference. This
makes the group robust and able to cope with problems and unexpected
 situations.

The benefits of creating a cohesive group are:

1. The group can establish its own quality standards Because these standards are
established by consensus, they are more likely to be observed than external
standards imposed on the group.

2. Individuals learn from and support each other Group members learn by work-
ing together. Inhibitions caused by ignorance are minimized as mutual learning
is encouraged.

3. Knowledge is shared Continuity can be maintained if a group member leaves.
Others in the group can take over critical tasks and ensure that the project is not
unduly disrupted.

4. Refactoring and continual improvement is encouraged Group members work
collectively to deliver high-quality results and fix problems, irrespective of the
individuals who originally created the design or program.

Good project managers should always try to encourage group cohesiveness. They
may try to establish a sense of group identity by naming the group and establishing a
group identity and territory. Some managers like explicit group-building activities
such as sports and games, although these are not always popular with group mem-
bers. Social events for group members and their families are a good way to bring
people together.

One of the most effective ways of promoting cohesion is to be inclusive. That is,
you should treat group members as responsible and trustworthy, and make informa-
tion freely available. Sometimes managers feel that they cannot reveal certain infor-
mation to everyone in the group. This invariably creates a climate of mistrust. An
effective way of making people feel valued and part of a group is to make sure that
they know what is going on.

You can see an example in the case study in Figure 22.9. Alice arranges regular
informal meetings where she tells the other group members what is going on. She
makes a point of involving people in the product development by asking them to
come up with new ideas derived from their own family experiences. The “away

658    Chapter 22  ■  Project management

days” are also good ways of promoting cohesion: People relax together while they
help each other learn about new technologies.

Whether or not a group is effective depends, to some extent, on the nature of the
project and the organization doing the work. If an organization is in a state of turmoil
with constant reorganizations and job insecurity, it is difficult for team members to
focus on software development. Similarly, if a project keeps changing and is in dan-
ger of cancellation, people lose interest in it.

Given a stable organizational and project environment, the three factors that have
the biggest effect on team working are:

1. The people in the group You need a mix of people in a project group as software
development involves diverse activities such as negotiating with clients, pro-
gramming, testing, and documentation.

2. The way the group is organized A group should be organized so that individuals
can contribute to the best of their abilities and tasks can be completed as
expected.

3. Technical and managerial communications Good communication between
group members, and between the software engineering team and other project
stakeholders, is essential.

As with all management issues, getting the right team cannot guarantee project
success. Too many other things can go wrong, including changes to the business and
the business environment. However, if you don’t pay attention to group composi-
tion, organization, and communications, you increase the likelihood that your pro-
ject will run into difficulties.

Figure 22.9 Group
cohesion

Case study: Team spirit

Alice, an experienced project manager, understands the importance of creating a cohe-
sive group. As her company is developing a new product, she takes the opportunity to
involve all group members in the product specification and design by getting them to
discuss possible technology with elderly members of their families. She encourages
them to bring these family members to meet other members of the development group.

Alice also arranges monthly lunches for everyone in the group. These lunches are an
opportunity for all team members to meet informally, talk around issues of concern,
and get to know each other. At the lunch, Alice tells the group what she knows about
organizational news, policies, strategies, and so forth. Each team member then briefly
summarizes what they have been doing, and the group discusses a general topic, such
as new product ideas from elderly relatives.

Every few months, Alice organizes an “away day” for the group where the team
spends two days on “technology updating.” Each team member prepares an update on
a relevant technology and presents it to the group. This is an offsite meeting, and
plenty of time is scheduled for discussion and social interaction.

  22.3  ■  Teamwork    659

 22.3.1 Selecting group members

A manager or team leader’s job is to create a cohesive group and organize that group
so that they work together effectively. This task involves selecting a group with the
right balance of technical skills and personalities. Sometimes people are hired from
outside the organization; more often, software engineering groups are put together
from current employees who have experience on other projects. Managers rarely
have a completely free hand in team selection. They often have to use the people
who are available in the company, even if they are not the ideal people for the job.

Many software engineers are motivated primarily by their work. Software devel-
opment groups, therefore, are often composed of people who have their own ideas
about how technical problems should be solved. They want to do the best job possi-
ble, so they may deliberately redesign systems that they think can be improved and
add extra system features that are not in the system requirements. Agile methods
encourage engineers to take the initiative to improve the software. However, some-
times this means that time is spent doing things that aren’t really needed and that
different engineers compete to rewrite each other’s code.

Technical knowledge and ability should not be the only factor used to select group
members. The “competing engineers” problem can be reduced if the people in the
group have complementary motivations. People who are motivated by the work are
likely to be the strongest technically. People who are self-oriented will probably be
best at pushing the work forward to finish the job. People who are interaction-ori-
ented help facilitate communications within the group. I think that it is particularly
important to have interaction-oriented people in a group. They like to talk to people
and can detect tensions and disagreements at an early stage, before these problems
have a serious impact on the group.

In the case study in Figure 22.10, I have suggested how Alice, the project man-
ager, has tried to create a group with complementary personalities. This particular
group has a good mix of interaction- and task-oriented people, but I have already
discussed, in Figure 22.8, how Dorothy’s self-oriented personality has caused prob-
lems because she has not been doing the work that she expected. Fred’s part-time
role in the group as a domain expert might also be a problem. He is mostly interested
in technical challenges, so he may not interact well with other group members. The
fact that he is not always part of the team means that he may not fully relate to the
team’s goals.

It is sometimes impossible to choose a group with complementary personalities.
If this is the case, the project manager has to control the group so that individual
goals do not take precedence over organizational and group objectives. This control
is easier to achieve if all group members participate in each stage of the project.
Individual initiative is most likely to develop when group members are given instruc-
tions without being aware of the part that their task plays in the overall project.

For example, say a software engineer takes over the development of a system and
notices that possible improvements could be made to the design. If he or she imple-
ments these improvements without understanding the rationale for the original
design, any changes, though well-intentioned, might have adverse implications for

660    Chapter 22  ■  Project management

other parts of the system. If all the members of the group are involved in the design
from the start, they are more likely to understand why design decisions have been
made. They may then identify with these decisions rather than oppose them.

 22.2.3 Group organization

The way a group is organized affects the group’s decisions, the ways information is
exchanged, and the interactions between the development group and external project
stakeholders. Important organizational questions for project managers include the
following:

1. Should the project manager be the technical leader of the group? The technical
leader or system architect is responsible for the critical technical decisions made
during software development. Sometimes the project manager has the skill and
experience to take on this role. However, for large projects, it is best to separate
technical and managerial roles. The project manager should appoint a senior engi-
neer to be the project architect, who will take responsibility for technical leadership.

2. Who will be involved in making critical technical decisions, and how will these
decisions be made? Will decisions be made by the system architect or the pro-
ject manager or by reaching consensus among a wider range of team members?

3. How will interactions with external stakeholders and senior company manage-
ment be handled? In many cases, the project manager will be responsible for these
interactions, assisted by the system architect if there is one. However, an alternative
organizational model is to create a dedicated role concerned with external liaison
and appoint someone with appropriate interaction skills to that role.

Figure 22.10 Group
composition

Case study: Group composition

In creating a group for assistive technology development, Alice is aware of the impor-
tance of selecting members with complementary personalities. When interviewing
potential group members, she tried to assess whether they were task-oriented, self-
oriented, or interaction-oriented. She felt that she was primarily a self-oriented type
because she considered the project to be a way of getting noticed by senior manage-
ment and possibly being promoted. She therefore looked for one or perhaps two inter-
action-oriented personalities, with task-oriented individuals to complete the team. The
final assessment that she arrived at was:

Alice—self-oriented
Brian—task-oriented
Chun—interaction-oriented
Dorothy—self-oriented
Ed—interaction-oriented
Fiona—task-oriented
Fred—task-oriented
Hassan—interaction-oriented

  22.3  ■  Teamwork    661

4. How can groups integrate people who are not co-located? It is now common for
groups to include members from different organizations and for people to work
from home as well as in a shared office. This change has to be considered in
group decision-making processes.

5. How can knowledge be shared across the group? Group organization affects
information sharing as certain methods of organization are better for sharing
than others. However, you should avoid too much information sharing as people
become overloaded and excessive information distracts them from their work.

Small programming groups are usually organized in an informal way. The group
leader gets involved in the software development with the other group members. In an
informal group, the group as a whole discusses the work to be carried out, and tasks
are allocated according to ability and experience. More senior group members may be
responsible for the architectural design. However, detailed design and implementation
is the responsibility of the team member who is allocated to a particular task.

Agile development teams are always informal groups. Agile enthusiasts claim
that formal structure inhibits information exchange. Many decisions that are usually
seen as management decisions (such as decisions on schedule) may be devolved to
group members. However, there still needs to be a project manager who is responsi-
ble for strategic decision making and communications outside of the group.

Informal groups can be very successful, particularly when most group members
are experienced and competent. Such a group makes decisions by consensus, which
improves cohesiveness and performance. However, if a group is composed mostly of
inexperienced or incompetent members, informality can be a hindrance. With no
experienced engineers to direct the work, the result can be a lack of coordination
between group members and, possibly, eventual project failure.

In hierarchical groups the group leader is at the top of the hierarchy. He or she has
more formal authority than the group members and so can direct their work. There is
a clear organizational structure, and decisions are made toward the top of the hierar-
chy and implemented by people lower down. Communications are primarily
 instructions from senior staff; the people at lower levels of the hierarchy have rela-
tively little communication with the managers at the upper levels.

Hiring the right people

Project managers are often responsible for selecting the people in the organization who will join their software
engineering team. Getting the best possible people in this process is very important as poor selection decisions
may be a serious risk to the project.

Key factors that should influence the selection of staff are education and training, application domain and tech-
nology experience, communication ability, adaptability, and problem solving ability.

http://software-engineering-book.com/web/people-selection/

http://software-engineering-book.com/web/people-selection

662    Chapter 22  ■  Project management

Hierarchical groups can work well when a well-understood problem can be easily
broken down into software components that can be developed in different parts of the
hierarchy. This grouping allows for rapid decision making, which is why military organ-
izations follow this model. However, it rarely works well for complex software engineer-
ing. In software development, effective team communications at all levels is essential:

1. Changes to the software often require changes to several parts of the system, and
this requires discussion and negotiation at all levels in the hierarchy.

2. Software technologies change so fast that more junior staff may know more
about new technologies than experienced staff. Top-down communications may
mean that the project manager does not find out about the opportunities of using
these new technologies. More junior staff may become frustrated because of
what they see as old-fashioned technologies being used for development.

A major challenge facing project managers is the difference in technical ability
between group members. The best programmers may be up to 25 times more productive
than the worst programmers. It makes sense to use these “super- programmers” in the
most effective way and to provide them with as much support as possible.

At the same time, focusing on the super-programmers can be demotivating for other
group members who are resentful that they are not given responsibility. They may be
concerned that this will affect their career development. Furthermore, if a “super-
programmer” leaves the company, the impact on a project can be huge. Therefore,
adopting a group model that is based on individual experts can pose significant risks.

 22.3.3 Group communications

It is absolutely essential that group members communicate effectively and efficiently
with each other and with other project stakeholders. Group members must exchange
information on the status of their work, the design decisions that have been made,
and changes to previous design decisions. They have to resolve problems that arise
with other stakeholders and inform these stakeholders of changes to the system, the
group, and delivery plans. Good communication also helps strengthen group cohe-
siveness. Group members come to understand the motivations, strengths, and weak-
nesses of other people in the group.

The effectiveness and efficiency of communications are influenced by:

1. Group size As a group gets bigger, it gets harder for members to communicate
 effectively. The number of one-way communication links is n * (n − 1), where n
is the group size, so, with a group of eight members, there are 56 possible
 communication pathways. This means that it is quite possible that some people
will rarely communicate with each other. Status differences between group
members mean that communications are often one-way. Managers and experi-
enced engineers tend to dominate communications with less experienced staff,
who may be reluctant to start a conversation or make critical remarks.

  22.3  ■  Teamwork    663

2. Group structure People in informally structured groups communicate more
effectively than people in groups with a formal, hierarchical structure. In hierar-
chical groups, communications tend to flow up and down the hierarchy. People
at the same level may not talk to each other. This is a particular problem in a
large project with several development groups. If people working on different
subsystems only communicate through their managers, then there are more
likely to be delays and misunderstandings.

3. Group composition People with the same personality types (discussed in
Section 22.2) may clash, and, as a result, communications can be inhibited.
Communication is also usually better in mixed-sex groups than in single-sex
groups (Marshall and Heslin 1975). Women are often more interaction-oriented
than men and may act as interaction controllers and facilitators for the group.

4. The physical work environment The organization of the workplace is a major factor
in facilitating or inhibiting communications. While some companies use standard
open-plan offices for their staff, others invest in providing a workspace that includes
a mixture of private and group working areas. This allows for both collaborative
activities and individual development that require a high level of concentration.

5. The available communication channels There are many different forms of
 communication—face to face, email messages, formal documents, telephone,
and technologies such as social networking and wikis. As project teams become
increasingly distributed, with team members working remotely, you need to
make use of interaction technologies, such as conferencing systems, to facilitate
group communications.

Project managers usually work to tight deadlines, and, consequently, they often try
to use communication channels that don’t take up too much of their time. They may
rely on meetings and formal documents to pass on information to project staff and
stakeholders and send long emails to project staff. Unfortunately, while this may be an
efficient approach to communication from a project manager’s perspective, it is not
usually very effective. There are often good reasons why people can’t attend meetings,
and so they don’t hear the presentation. People do not have time to read long docu-
ments and emails that are not directly relevant to their work. When several versions of
the same document are produced, readers find it difficult to keep track of the changes.

The physical work environment

Group communications and individual productivity are both affected by the team’s working environment.
 Individual workspaces are better for concentration on detailed technical work as people are less likely to be
 distracted by interruptions. However, shared workspaces are better for communications. A well-designed work
environment takes both of these needs into account.

http://software-engineering-book.com/web/workspace/

http://software-engineering-book.com/web/workspace

664    Chapter 22  ■  Project management

Effective communication is achieved when communications are two-way and
the people involved can discuss issues and information and establish a common
understanding of proposals and problems. All this can be done through meetings,
although these meetings are often dominated by powerful personalities. Informal
discussions when a manager meets with the team for coffee are sometimes more
effective.

More and more project teams include remote members, which also makes meet-
ings more difficult. To involve them in communications, you may make use of
wikis and blogs to support information exchange. Wikis support the collaborative
creation and editing of documents, and blogs support threaded discussions about
questions and comments made by group members. Wikis and blogs allow project
members and external stakeholders to exchange information, irrespective of their
location. They help manage information and keep track of discussion threads,
which often become confusing when conducted by email. You can also use instant
messaging and teleconferences, which can be easily arranged, to resolve issues that
need discussion.

K e y P o i n t s

■ Good software project management is essential if software engineering projects are to be devel-
oped on schedule and within budget.

■ Software management is distinct from other engineering management. Software is intangible.
Projects may be novel or innovative, so there is no body of experience to guide their manage-
ment. Software processes are not as mature as traditional engineering processes.

■ Risk management involves identifying and assessing major project risks to establish the prob-
ability that they will occur and the consequences for the project if that risk does arise. You
should make plans to avoid, manage, or deal with likely risks if or when they arise.

■ People management involves choosing the right people to work on a project and organizing the
team and its working environment so that they are as productive as possible.

■ People are motivated by interaction with other people, by the recognition of management and
their peers, and by being given opportunities for personal development.

■ Software development groups should be fairly small and cohesive. The key factors that influ-
ence the effectiveness of a group are the people in that group, the way that it is organized, and
the communication between group members.

■ Communications within a group are influenced by factors such as the status of group members,
the size of the group, the gender composition of the group, personalities, and available commu-
nication channels.

F u R T h e R 	 R e a d i n g

The Mythical Man Month: Essays on Software Engineering (Anniversary Edition). The problems of
software management have remained largely unchanged since the 1960s, and this is one of the best
books on the topic. It presents an interesting and readable account of the management of one of the
first very large software projects, the IBM OS/360 operating system. The anniversary edition
(published 20 years after the original edition in 1975) includes other classic papers by Brooks.
(F. P. Brooks, 1995, Addison-Wesley).

Peopleware: Productive Projects and Teams, 2nd ed. This now classic book focuses on the impor-
tance of treating people properly when managing software projects. It is one of the few books that
recognizes how the place where people work influences communications and productivity. Strongly
recommended. (T. DeMarco and T. Lister, 1999, Dorset House).

Waltzing with Bears: Managing Risk on Software Projects. A very practical and easy-to-read intro-
duction to risks and risk management. (T. DeMarco and T. Lister, 2003, Dorset House).

Effective Project Management: Traditional, Agile, Extreme. 2014 (7th ed.). This is a textbook on pro-
ject management in general rather than software project management. It is based on the so-called
PMBOK (Project Management Body of Knowledge) and, unlike most books on this topic, discusses
PM techniques for agile projects. (R. K. Wysocki, 2014).

W e b s i T e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-management/

e x e R C i s e s

22.1.	 Explain why the intangibility of software systems poses special problems for software project
management.

22.2.	 Explain how company size and software size are factors that affect software project
 management.

22.3.	 Using reported instances of project problems in the literature, list management difficulties
and errors that occurred in these failed programming projects. (I suggest that you start with
The Mythical Man Month, as suggested in Further Reading.)

22.4.	 In addition to the risks shown in Figure 22.1, identify at least six other possible risks that
could arise in software projects.

22.5.	 What is risk monitoring? How can risks be monitored? List a few examples of types of risks
and their potential indicators.

  Chapter 22  ■  Exercises    665

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-management

22.6.		Fixed-price contracts, where the contractor bids a fixed price to complete a system develop-
ment, may be used to move project risk from client to contractor. If anything goes wrong, the
contractor has to pay. Suggest how the use of such contracts may increase the likelihood that
product risks will arise.

22.7.		Explain why keeping all members of a group informed about progress and technical decisions
in a project can improve group cohesiveness.

22.8.		What qualities of a cohesive group’s members make the group robust? List out the key
 benefits of creating a cohesive group.

22.9.	 Write a case study in the style used here to illustrate the importance of communications in a
project team. Assume that some team members work remotely and that it is not possible to
get the whole team together at short notice.

22.10.		 Your manager asks you to deliver software to a schedule that you know can only be met by
asking your project team to work unpaid overtime. All team members have young children.
Discuss whether you should accept this demand from your manager or whether you should
persuade your team to give their time to the organization rather than to their families. What
factors might be significant in your decision?

R e F e R e n C e s

Bass, B. M., and G. Dunteman. 1963. “Behaviour in Groups as a Function of Self, Interaction and
Task Orientation.” J. Abnorm. Soc. Psychology. 66 (4): 19–28. doi:10.1037/h0042764.

Boehm, B. W. 1988. “A Spiral Model of Software Development and Enhancement.” IEEE Computer
21 (5): 61–72. doi:10.1109/2.59.

Hall, E. 1998. Managing Risk: Methods for Software Systems Development. Reading, MA: Addison-
Wesley.

Marshall, J. E., and R. Heslin. 1975. “Boys and Girls Together. Sexual Composition and the Effect of
Density on Group Size and Cohesiveness.” J. of Personality and Social Psychology 35 (5): 952–961.
doi:10.1037/h0076838.

Maslow, A. A. 1954. Motivation and Personality. New York: Harper & Row.

Ould, M. 1999. Managing Software Quality and Business Risk. Chichester, UK: John Wiley & Sons.

666    Chapter 22  ■  Project management

	Part 4 Software Management���������������������������������
	Chapter 22 Project management������������������������������������
	22.1 Risk management���������������������������
	22.2 Managing people
	22.3 Teamwork��������������������

