
Object-oriented programming

Week 4 – Operator overloading

5/2014
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

What will be discussed?

 What is function overloading?

 Operator overloading

 Overloading cin and cout

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading

 There are many different “definitions” for

the same name

 In C++, overloading functions are

differentiated by their signatures (i.e.

number/types of arguments)

 Note: the return type is not considered in

differentiating overloading functions.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator Overloading

 To define operator implementations for our

new user-defined types

 For example, operators such as +, -, *, /

are already defined for built-in types

 When we have a new data type, e.g.
Fraction, we need to define new

operator implementations to work with it.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators can be overloaded

+ - * / % ^ &

| ~ ! = < > +=

-= *= /= %= ^= &= |=

<< >> >>= <<= == != <=

>= && || ++ -- ->* ,

-> [] () new new[] delete
delete[

]

• Operator :: or . or .* cannot be defined by users.

• Operators sizeof, typeid, ?: cannot be overloaded.

• Operators =, ->, [], () can only be overloaded by non-static functions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading guidelines

 Do what users expect for that operator.

 Define them if they make logical sense.

E.g. subtraction of dates are ok but not

multiplication or division

 Provide a complete set of properly related

operators: a = a + b and a+= b have the

same effect

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Syntax

 Declared & defined like other methods,
except that the keyword operator is used.

<returned-type> operator<op>(arguments)

Example:

bool FullName::operator==(const FullName& rhs)

{

 return((sFirstName==rhs.sFirstFName) &&

 (sSurname==rhs.sSurName));

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators in use

int main()

{

 FullName s1, s2;

 if (s1 == s2) //s1.operator==(s2)

 {

 ...

 }

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise

 Implement a Fraction class with basic

arithmetic operators: +, -, *, /

 Remember to handle:

Fraction x, y;

y = x + 5;

y = 5 + x;

 Implement prefix and postfix increment:

x++ and ++x. Hint: using dummy int

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The keyword: friend

 With the keyword friend, you grant

access to other functions or classes

 Friend functions give a flexibility to the

class. It doesn’t violate the encapsulation of

the class.

 Friendship is “directional”. It means if class

A considers class B as its friend, it doesn’t

mean that class B considers A as a friend.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example

 In doSomething(), we can have access
to private data members of the class Date

class Date

{

 public:

 ...

 friend void doSomething();

 private:

 int iDay, iMonth, iYear;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Friend functions

 Friend functions is called like f(x) while

member functions is called x.f()

 Use member functions if you can. Only

choose friend functions when you have to.

 Sometimes, friend functions are good:

 Binary infix arithmetic operators, e.g. +, -

 Cannot modify original class, e.g. ostream

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Member and non-member functions

 int main()

{

 FullName s1, s2;

 if (s1 == s2)

 // member: s1.operator==(s2)

 // or non-member: operator==(s1, s2)

 {

 ...

 }

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading cin and cout

 We do not have access to the istream or
ostream code cannot overload << or >>

as member functions

 They cannot be members of the user-defined

class because the first parameter must be an

object of that type

 Operators << and >> must be non-members,

but it needs to access to private data

members make them friend functions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Typical syntax

 The general syntax for insertion and

extraction operator overloadings:

ostream& operator<<(ostream& out, const Fraction& x)

{

 out << x.numerator << “ / “ << x.denominator;

 return out;

}

istream& operator>>(istream& in, Fraction& x);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercises

 Implement insertion and extraction
operators for Fraction and Date class

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Final notes about Op overloading

 Subscript operators often come in pair

 Maintain the usual identities for x == y and

x != y

 Prefix/Postfix operators for ++ and – –

 Prefix returns a reference

 Postfix return a copy

const A& operator[] (int index) const;

A& operator[] (int index);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

