
Object-oriented programming

Week 5 – Inheritance

6/2014
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

What will be discussed?

 Introduction to inheritance

 Types of inheritance

 Derived class

 Constructor

 Destructor

 Copy constructor & assignment operator

 Virtual functions and dynamic binding

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Introduction

 A new concept does not come alone. When

we introduce a class of car or employee

for example. It may lead us to describe:

 wheel, engine, driver etc.

 Or: manager, director…

 To model them, we can use class.

However, how can we model the

relationship between them?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Introduction (cont.)

 In addition, re-usability of existing classes

is one of the features of OOP.

 All of the features including attributes and

behaviors of a class are also the features

of another class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

 Student “is a” person

 Person

 Student

 Person Student

* Common attributes/funcs
- specialized for Student

 - *- - -
*- *- - *
- - *

 * * *
* *

* * *
* *

 - - - - -
- - - -

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An example

Student

College
Student

In-service
Student

…

Regular
Student

Base class

Derived classes

inherit

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Syntax

 In C++, the inheritance is described as:

class <Derived Class> : <TypeOfInheritance> <Base class>

{

 public:

 <public attributes/functions>

 private:

 <private attribute/functions>

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance: notes

 Attributes/functions in public of A will

become attributes/functions in B

 Private of A will be part of B but it is only

accessible via public or protected of A

A

B

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

protected keyword

 protected of A is accessible from the

derived class B but not from outside

class A

{

 public:

 ...

 protected:

 int t;

};

class B: public A

{

 public:

 void test()

 {

 cout << t;

 }

 ...

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of inheritance

There are 3 types:

 public inheritance

 protected

 private

Notes: from now on, if there is no mention of

what type of inheritance, it means public

inheritance

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of inheritance

 public: public and protected of the base

class become public and protected of the

derived class.

 protected: public and protected of the

base class become protected of the

derived class.

 private: public and protected of the base

class become private of the derived class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance: member functions

 Member functions of the base class are

inherited in the derived class, except:

 Constructors

 Destructors

 Assignment operators

 Notes: private members or functions of the base

class are inherited but only accessible via other

public/protected functions of A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors in inheritance

 When a new object of a derived class is

created

 The constructor of the base class is invoked

first.

 Then, the constructor of the derived class is

invoked.

 In the constructor of the derived class, we can

specify which constructor of the base class is

called. Otherwise, the default constructor of

the base class will be invoked.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors in inheritance

Notes:

 The constructor of the derived

class is able to specify the

constructor of the immediate

base class to be called.

A

B

C

X

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An example

 class A

{

public:

 A();

 A(int);

};

class B : public A

{

public:

 B(int);

};

class A {

public:

 A();

 A(int);

};

class B : public A

{

public:

 B(int t) : A(t) {

 ...

 }

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor in inheritance

 When an object of the derived class

finishes its lifespan:

 The destructor of the derived class is invoked

first.

 Then, the destructor of the base class is called

later.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“Re-define” member functions

 Sometimes, we need to “re-define” the

member functions of the base class in the

derived class.

 It can be done by re-defining the functions

inside the derived class

Notes: this re-definition will hide other

overloading member functions of this

function from the base class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An example

 class A {

public:

 void test();

 void test(int);

 void test(int, int);

 ...

};

class B : public A

{

public:

 void test(int);

};

int main()

{

 B b;

 int x, y;

 ...

 b.test(x); // OK

 b.test(x, y); //error

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

using keyword

class A {

public:

 void test();

 void test(int);

 void test(int, int);

 ...

};

class B : public A

{

public:

 using A::test;

 void test(int);

};

int main()

{

 B b;

 int x, y;

 ...

 b.test(x); // OK

 b.test(x, y); //OK

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assignment operator

 It is not inherited from the base class

 To implement the assignment operator for

the derived class:

 Calling the assignment operator of the base

class to assign data members of the base

class part in the two objects first.

 Then, implement the assignment for data

member of the derived class part.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

An example

B& B::operator=(const B& src)

{

 if (this == &src)

 return *this;

 A::operator=(src); //call the BASE

 delete [] ptr;

 iSize = src.iSize;

 ptr = new int [iSize];

 for (int i=0; i<iSize; ++i)

 ptr[i] = src.ptr[i];

 return *this;

}

A

B

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

