Object-oriented programming

Week 9
Standard Template Library (STL)

7/2015

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Agenda
Introduction to STL

Seqguence containers

Assoclative containers

Ordered sets

Container adaptors

Other special containers

iterator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Standard library of C++

<algorithm> |<ios> <map> <stack>
<bitset> <iosfwd> <memory> | <stdexcept>
<complex> |<iostream> |<new> <streambuf>
<deque> <istream> |<numeric> |<string>
<exception> | <iterator> <ostream> |<typeinfo>
<fstream> |<limits> <queue> <utility>
<functional> |<list> <set> <valarray>
<iomanip> |<locale> <sstream> |<vector>

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL: Standard Template Library

Standard Template Library (STL) provides
containers (i.e. data structures), algorithms
and iterators to develop applications on C++

STL was introduced by Alexander Stepanov
for generic programming.

The concepts of STL are developed
Independently from C++

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL (cont)

Components in STL are not OOP but are
generic programming

Most containers are designed and
Implemented based on templates to handle
different kinds of data types.

Simple, powerful and efficient.

The 2 most popular containers of STL are
vector and string

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Main components of STL

STL consists of 3 main components:

Containers: data structures have been
defined based on templates.

lterator: a pointer. It is used to access
elements of a container.

Algorithm: consists of popular algorithms,
such as sorting, searching and others to
deal with data...

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL containers

Containers can be grouped as

Sequence containers

Assoclative containers

Ordered sets

Container adapters
Others

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Seqguence containers

Those containers store elements by using
a sequence

Sequence containers:

B vector

B deque
B list

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Seqguence containers: vector

Using dynamic allocated array, allowing
Instant access to any element in the

sequence.
Adding or deleting the last element fast.

Having out-of-range checking.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Seqguence containers: deque

Similar to vectoxr: using a dynamic
allocated array to handle the elements.

Adding or deleting elements at 2 ends
quickly (a little bit slower than vector
because of handling both ends.)

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Seqguence containers: 1list

Using doubly-linked list to maintain the
elements.

There IS no Instant access to all the
elements In the list like vector.

Adding or deleting any element: fast!

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assoclative containers

Associative containers have key/value
pairs:

B Get the values via keys.

B Elements sorted by keys.

B Often implemented as a balance binary tree.

There are two associlative containers
B Map
B Multimap

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assoclative containers

map allows users to access elements via
keys of any data type. Map Is a
generalization of accessing elements via
Index int of vector.

multimap IS similar to map but it allows 1
key to map more than 1 element.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ordered sets

Sometimes they are classified as
associative containers. They have the
following characteristics:

B Store elements In order

B Often implemented by using balanced
binary tree.

B However, they don't have set operations
(e.g. union...)

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ordered sets

set

B keep the elements in order when they are
added.

B a set of unigue objects.

multiset IS similar to set but they allow
duplicate objects.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container adapters

Those containers are built based on existing
containers. They are different in the ways of
accessing their elements.

Because of applying different ways of

accessing elements, those containers don't
have iterator.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container adapters

stack only allows to access elements as
LIFO (Last In, First Out).

queue: FIFO (First In, First Out).

priority queue always return the top
priority element.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other containers

Those containers are implemented to
represent a certain kind of data structure or
have special functionality...

string: similar to vector<char> but it
has special and useful methods/functions
for operation on strings.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other containers (cont.)

bitset

B Data structure for storing bits effectively
B Special methods/functions for bits (AND, OR...)

valarray IS a special and efficient
Implementation of array. However, it

doesn’t have all the standard methods as
other containers.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Member functions/methods of STL

All containers have:

default copy constructor, destructor
empty

max size, size

Operators: = < <= > >= == =

swap

Only In seguence, associative containers and

ordered sets

begin, end
rbegin, rend

erase, clear

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

iterator

iterator is similar to a pointer

B Pointto a element in a container

Operators of an iterator

B * dereference the element

B ++ go to the next element

B begin () returns the iterator of the first element
L]

end () returns the iterator of the last element of the
container.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of iterator

Input: read the elements of a container,
supports ++, += (Increasing only).
E.g.: istream iterator

Output: write the elements to a container,
supports ++, += (increasing only).

E.J.. ostream iterator

Forward: e.g. hash set<T> iterator

B Combination input iterator and output iterator
B Multi-pass

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of iterator (cont.)

Bi-directional: similar to forward but can
do (--,-=)
E.g.: 1ist<T> iterator

Random access: similar to bi-directional
but can access to any element
E.g.. vectoxr<T> iterator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators on iterator

Input iterator: ++, =*p, ->, ==, I=

Output iterator: ++, *p=, p=pl

Forward iterator: for input va output iterator

Bidirectional iterator. operators for forward
and —-

Random access: operator for bidirectional
and+l =, =, ==, >, >=, <, <=I[]

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container supports the following
iterator

Sequence containers
B vector: random access

B deque: random access
B list: bidirectional

Associlative containers: bidirectional
Orderd sets: bidirectional
Container adapters: don’'t have iterator

Bitset and valarray: don't have iterator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

