
Object-oriented programming

Week 9

Standard Template Library (STL)

7/2015
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Agenda

 Introduction to STL

 Sequence containers

 Associative containers

 Ordered sets

 Container adaptors

 Other special containers

 iterator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Standard library of C++

<algorithm> <ios> <map> <stack>

<bitset> <iosfwd> <memory> <stdexcept>

<complex> <iostream> <new> <streambuf>

<deque> <istream> <numeric> <string>

<exception> <iterator> <ostream> <typeinfo>

<fstream> <limits> <queue> <utility>

<functional> <list> <set> <valarray>

<iomanip> <locale> <sstream> <vector>

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL: Standard Template Library

 Standard Template Library (STL) provides

containers (i.e. data structures), algorithms

and iterators to develop applications on C++

 STL was introduced by Alexander Stepanov

for generic programming.

 The concepts of STL are developed

independently from C++

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL (cont)

 Components in STL are not OOP but are

generic programming

 Most containers are designed and

implemented based on templates to handle

different kinds of data types.

 Simple, powerful and efficient.

 The 2 most popular containers of STL are

vector and string

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Main components of STL

STL consists of 3 main components:

 Containers: data structures have been

defined based on templates.

 Iterator: a pointer. It is used to access

elements of a container.

 Algorithm: consists of popular algorithms,

such as sorting, searching and others to

deal with data…

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

STL containers

Containers can be grouped as

 Sequence containers

 Associative containers

 Ordered sets

 Container adapters

 Others

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequence containers

 Those containers store elements by using

a sequence

 Sequence containers:

 vector

 deque

 list

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequence containers: vector

 Using dynamic allocated array, allowing

instant access to any element in the

sequence.

 Adding or deleting the last element fast.

 Having out-of-range checking.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequence containers: deque

 Similar to vector: using a dynamic

allocated array to handle the elements.

 Adding or deleting elements at 2 ends

quickly (a little bit slower than vector

because of handling both ends.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequence containers: list

 Using doubly-linked list to maintain the

elements.

 There is no instant access to all the

elements in the list like vector.

 Adding or deleting any element: fast!

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Associative containers

 Associative containers have key/value

pairs:

 Get the values via keys.

 Elements sorted by keys.

 Often implemented as a balance binary tree.

 There are two associative containers

 Map

 Multimap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Associative containers

 map allows users to access elements via

keys of any data type. Map is a

generalization of accessing elements via

index int of vector.

 multimap is similar to map but it allows 1

key to map more than 1 element.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ordered sets

 Sometimes they are classified as

associative containers. They have the

following characteristics:

 Store elements in order

 Often implemented by using balanced

binary tree.

 However, they don’t have set operations

(e.g. union…)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Ordered sets

 set

 keep the elements in order when they are

added.

 a set of unique objects.

 multiset is similar to set but they allow

duplicate objects.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container adapters

 Those containers are built based on existing

containers. They are different in the ways of

accessing their elements.

 Because of applying different ways of

accessing elements, those containers don’t

have iterator.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container adapters

 stack only allows to access elements as

LIFO (Last In, First Out).

 queue: FIFO (First In, First Out).

 priority_queue always return the top

priority element.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other containers

 Those containers are implemented to

represent a certain kind of data structure or

have special functionality…

 string: similar to vector<char> but it

has special and useful methods/functions

for operation on strings.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other containers (cont.)

 bitset

 Data structure for storing bits effectively

 Special methods/functions for bits (AND, OR...)

 valarray is a special and efficient

implementation of array. However, it

doesn’t have all the standard methods as

other containers.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Member functions/methods of STL

 All containers have:

 default copy constructor, destructor

 empty

 max_size, size

 Operators: = < <= > >= == !=

 swap

 Only in sequence, associative containers and

ordered sets

 begin, end

 rbegin, rend

 erase, clear

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

iterator

 iterator is similar to a pointer

 Point to a element in a container

 Operators of an iterator

 * dereference the element

 ++ go to the next element

 begin() returns the iterator of the first element

 end() returns the iterator of the last element of the

container.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of iterator

 Input: read the elements of a container,
supports ++,+= (increasing only).

E.g.: istream_iterator

 Output: write the elements to a container,
supports ++,+= (increasing only).

E.g.: ostream_iterator

 Forward: e.g. hash_set<T> iterator

 Combination input iterator and output iterator

 Multi-pass

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Types of iterator (cont.)

 Bi-directional: similar to forward but can

do (--,-=)

E.g.: list<T> iterator

 Random access: similar to bi-directional

but can access to any element

E.g.: vector<T> iterator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators on iterator

 Input iterator: ++, =*p, ->, ==, !=

 Output iterator: ++, *p=, p=p1

 Forward iterator: for input và output iterator

 Bidirectional iterator: operators for forward

and --

 Random access: operator for bidirectional

and +, +=, -, -=, >, >=, <, <=,[]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Container supports the following
iterator

 Sequence containers

 vector: random access

 deque: random access

 list: bidirectional

 Associative containers: bidirectional

 Orderd sets: bidirectional

 Container adapters: don’t have iterator

 Bitset and valarray: don’t have iterator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

