
Object-oriented programming

Week 10: Const-correctness

7/2014
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Const-correctness

 When using the keyword const on a variable,

it prevents this variable from being mutated.

 E.g.: const int MAX = 100;

 If the keyword const is applied to a function, it

prevents the function from mutating any

attribute/data member of the calling object.

 E.g.: int getDay() const;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Const-correctness relates to type-safety

 When you declare const for parameters in a

function, it makes the function safer by

protecting arguments from being mutated

unexpectedly.

 E.g.:

 void doSth(string const& s);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Understanding the const

What does it mean?

 Case 1:

 DataType const* p

 p is a pointer to a const DataType

 p is pointing to an object of the class DataType. p

could not be used to change the DataType object.

But, p still can be NULL or point to somewhere else.

 If class DataType has a const function, say doSth(),

it is ok to call p->doSth(). Otherwise, if doMutate() is

not const, it is wrong to have p->doMutate()

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Understanding the const

 Case 2

 DataType* const p

 p is a const pointer to a DataType object.

 You could not change the pointer p but you can

change the DataType data that p is pointing

 Case 3

 DataType const* const p

 p is a const pointer pointing to a const object

 You could not change the pointer or the data

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Understand the const

 Case 4

 DataType const& x

 x is a reference to a constant DataType object.

 For example, calling x.getSth() is ok if getSth() is a

constant function. Otherwise, x.doMutate() is not

ok when doMutate() is not a constant function.

 Case 5

 DataType& const x

 We don’t have this due to the fact that

reference is already constant!

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Understanding the const

 Case 6

 const DataType& x

 The same as DataType const& x

 Recently, people prefer to use DataType const& x

 Case 7

 const DataType* x

 The same as DataType const* x

 Recently, people prefer to use DataType const* x

 Don’t mistype it as DataType* const x

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Const member function

 It is a member function that inspects or

reads the values rather than mutates its

object.

 A const member function is known by a

const suffix after the function's parameter

list.

 E.g.:

 void getSomething() const;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example

Assuming that getSth() is a const function and doMutate() is a normal
function.

void doSth(X& changeable, X const& unchangeable)

{

 changeable.getSth(); // OK: doesn't change a changeable obj

 changeable.doMutate(); // OK: changes a changeable obj

 unchangeable.getSth(); // OK: doesn't change an unchangeable obj

 unchangeable.doMutate();// ERROR: attempt to change unchangeable

obj

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Return by reference in a const

member function

 When you want to return a reference from a

const member function: return reference-to-

const

 E.g.:
class Student {

 public:

 // Correct: the caller can't change the name

 const string& getName() const;

 // Wrong: the caller can change the name

 string& getNameWrong() const;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

const function overloading

 You can have both a const member

function and a mutator member function at

the same time

 E.g.: The subscript operator often has both

const MyArr& operator[](unsigned index) const;

MyArr& operator[](unsigned index);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Change inside a const member func

 When you want to change the members inside

a constant member function, there are 2 ways:

 Keep the members as mutable by the keyword
mutable

 Using const_cast for this

 E.g.:

MyClass* tmpPtr = const_cast<MyClass*>(this);

 tmpPtr will point to the same memory as of this

pointer. It is a normal pointer rather than a

MyClass const * const

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Change an int be pointed with a int const*

 "int const* p" means "p promises not to

change the *p," not "*p promises not to

change."

 In addition

 MyClass const * p;

It means MyClass cannot be changed via
pointer p. However, it can be changed by

another non-const pointer.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

