Additive Weighting

Additive weighting method involves the sums

$$V(A_i) = \sum_{j=1,j} w_j v_j(x_{ij}) \quad i=1,...,I$$

where cuu duong than cong. con

 $V(A_i)$ = aggregate score for project A_i

$$w_j$$
 = weight for criterion C_j

- x_{ij} = outcome of project A_i with respect to criterion C_j
- $v_j() = value transformation for criterion C_j$

Dr Phil Smith\AdditiveWeighting.wpd

\checkmark In additive weighting, $v_{j}(\boldsymbol{x}_{ij})$ often calculated as

$$v_{j}(x_{ij}) = \frac{(x_{ij} - x_{j*})}{(x_{j}^{*} - x_{j*})} \qquad j \in C^{+}$$

$$v_{j}(x_{ij}) = \frac{(x_{j}^{*} - x_{ij})}{(x_{j}^{*} - x_{j*})} \qquad j \in C^{-}$$

$$= 1 - \frac{(x_{ij} - x_{j*})}{(x_{j}^{*} - x_{j*})} \qquad j \in C^{-}$$
cuu duong than cong. com

$$C = C^+ \cup C^- =$$
 set of criteria

$$x_{j^{*}} = max_{i=1,I} \{x_{ij}\}$$

 $x_{j^{*}} = min_{i=1,I} \{x_{ij}\}$

Dr Phil Smith\AdditiveWeighting.wpd

Other Normalisation

$$v_{j}(x_{ij}) = \frac{x_{ij}}{x_{j}^{*}} j \varepsilon C^{+}$$

$$v_{j}(x_{ij}) = \frac{x_{j*}}{---} j \varepsilon C^{-}$$

$$x_{ij} = cons$$

☆ Vector normalisation

$$v_{j}(x_{ij}) = \frac{x_{ij}}{\{\sum_{i=1,I} x_{ij}^{2}\}^{1/2}} j \in C$$

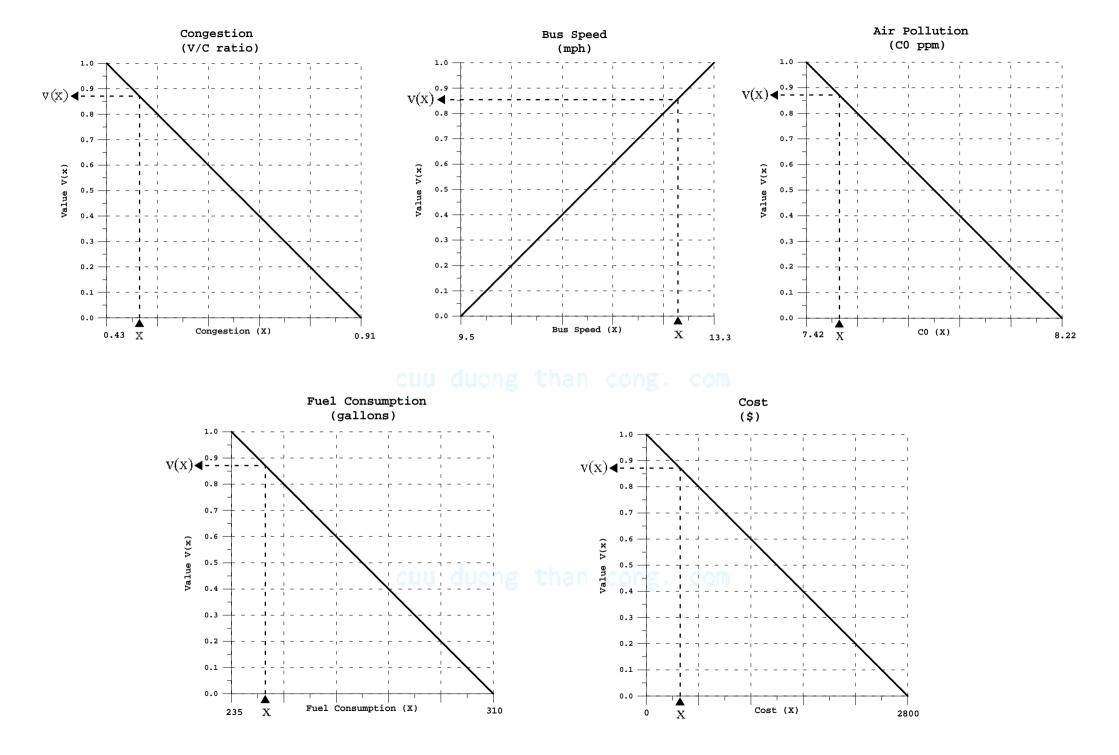
cuu duong than cong. com

Dr Phil Smith\AdditiveWeighting.wpd

Outcome Matrix

	Congestion	Bus Speed	Air Pollution	Fuel Consumption	Capital Cost	
	(V/C ratio at worst case intersection)	(Both routes during peak period)	(CO concentration at worst reception location over 1 hour)	(All vehicles, one mile length)		
	dimensionless	mph	ppm	gallons	\$	
\mathbf{A}_{1}	0.62	9.5	7.58	287	0	
A_2	0.62	9.5	7.42	235	1050	
\mathbf{A}_{3}	0.53	13.3	8.22	284	2800	
\mathbf{A}_{4}	0.91	9.6	Chan 7.49	310	1050	
A_5	0.43	10.7	7.73	266	400	

- **A**₁ **Present situation**
- A₂ No parking in either direction
- **A**₃ Exclusive bus-lane northbound
- **A**₄ **Parking permitted in both directions**
- **A**₅ Traffic engineering improvements
- Source: R. Kuner (1989), Alternatives Analysis for Arterial Streets, Traffic Quarterly, 33, 459-472

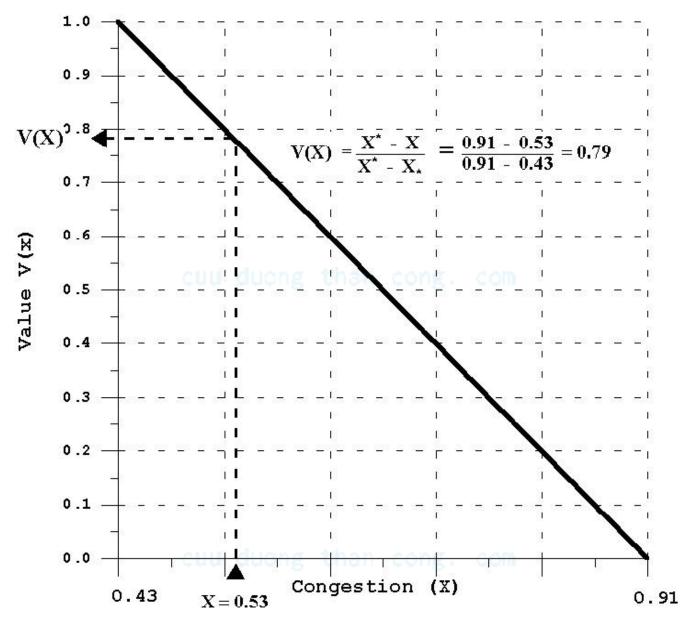

$$\begin{aligned} v_{j}(x_{ij}) &= \frac{(x_{ij} - x_{j*})}{(x_{j}^{*} - x_{j*})} & j \in C^{+} \\ v_{j}(x_{ij}) &= \frac{(x_{j}^{*} - x_{ij})}{(x_{j}^{*} - x_{j*})} & j \in C^{-} \\ &= 1 - \frac{(x_{ij} - x_{j*})}{(x_{j}^{*} - x_{j*})} & j \in C^{-} \end{aligned}$$

$$v_j(\bullet) = value \text{ or transformation function}$$

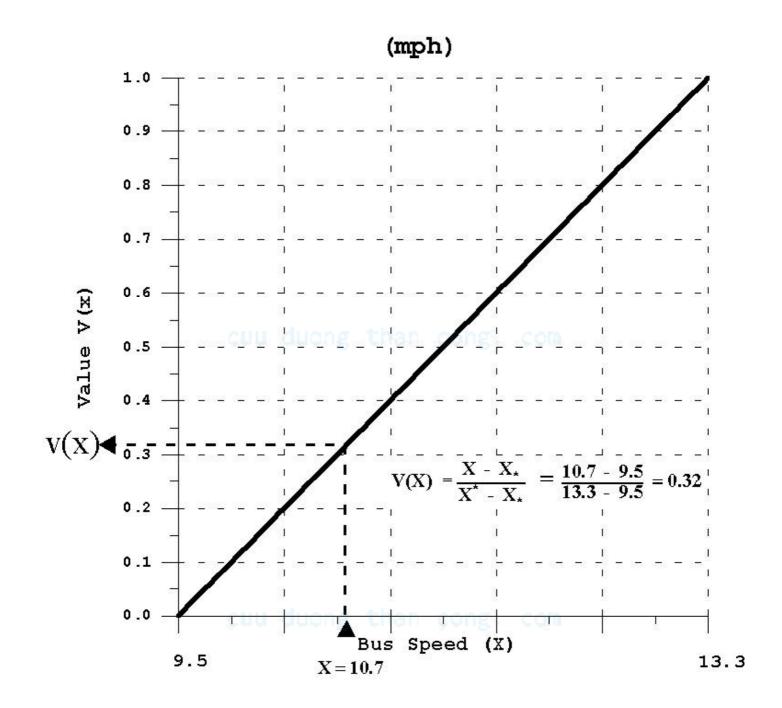
$$C = C^+ \cup C^- =$$
set of criteria

$$\begin{aligned} & \underset{x_{j^{*}}}{\overset{*}{=}} & \underset{i=1,I}{\max_{i=1,I}} \{x_{ij}\} \\ & \\ & \underset{x_{j^{*}}}{\overset{*}{=}} & \underset{i=1,I}{\min_{i=1,I}} \{x_{ij}\} \end{aligned}$$

 ${\tt Dr Phil Smith} \ {\tt ValFunctAddWeight.wpd}$


CuuDuongThanCong.com

https://fb.com/tailieudientucntt


	А	В	С	D	E	F	G
1	1 Addditive Weighting						
2		C1	C2	C3	C4	C5	
3	A1	0.62	9.5	7.58	287	0	
4	A2	0.62	9.5	7.42	235	1050	
5	A3	0.53	13.3	8.22	284	2800	
6	A4	0.91	9.6	7.49	310	1050	
7	A5	0.43	10.7	7.73	266	400	
8							
9	MAX	0.91	13.3	8.22	310	2800	
10	MIN	0.43	9.5	7.42	235	0	
11							
12	Weight	0.1	0.4	0.3	0.05	0.15	
13					0		
14		C1	C2	C3	C4	C5	
15	A1	0.60417	0	0.8	0.30667	1	
16	A2	0.60417	0	1	1	0.625	
17	A3	0.79167	1	0	0.34667	0	
18	A4	0	0.02632	0.9125	0	0.625	
19	A5	1	0.31579	0.6125	0.58667	0.85714	
20							
21	A1	0.46575					
22	A2	0.50417					
23	A3	0.4965					
24	A4	0.37803					
25	A5	0.56797	auong	unan cu	ong, ço	n	
26							

KARLSTREET.XLS

	Α	В	С	D	E	F
1						
2		C1	C2	C3	C4	C5
3	A1	0.62	9.5	7.58	287	0
4	A2	0.62	9.5	7.42	235	1050
5	A3	0.53	13.3	8.22	284	2800
6	A4	0.91	9.6	7.49	310	1050
7	A5	0.43	10.7	7.73	266	400
8						
	MAX	=MAX(B3:B7)	=MAX(C3:C7)	=MAX(D3:D7)	=MAX(E3:E7)	=MAX(F3:F7)
10	MIN	=MIN(B3:B7)	=MIN(C3:C7)	=MIN(D3:D7)	=MIN(E3:E7)	=MIN(F3:F7)
11						
	Weight	0.1	0.4	0.3	0.05	0.15
13				D stratt serior s		
14		C1	C2	C3	C4	C5
15	A1	=1- (B3 -\$B\$10)/(\$B\$9 - \$B\$10)		=1- (D3 -\$D\$10)/(\$D\$9 - \$D\$10)	=1- (E3 -\$E\$10)/(\$E\$9 - \$E\$10)	=1- (F3 -\$F\$10)/(\$F\$9 - \$F\$10)
16	A2	=1- (B4 -\$B\$10)/(\$B\$9 - \$B\$10)		=1- (D4 -\$D\$10)/(\$D\$9 - \$D\$10)		=1- (F4 -\$F\$10)/(\$F\$9 - \$F\$10)
17	A3	=1- (B5 -\$B\$10)/(\$B\$9 - \$B\$10)		=1- (D5 -\$D\$10)/(\$D\$9 - \$D\$10)		=1- (F5 -\$F\$10)/(\$F\$9 - \$F\$10)
18	A4	=1- (B6 -\$B\$10)/(\$B\$9 - \$B\$10)		=1- (D6 -\$D\$10)/(\$D\$9 - \$D\$10)		=1- (F6 -\$F\$10)/(\$F\$9 - \$F\$10)
19	A5	=1- (B7 -\$B\$10)/(\$B\$9 - \$B\$10)	=(C7 -\$C\$10)/(\$C\$9 - \$C\$10)	=1- (D7 -\$D\$10)/(\$D\$9 - \$D\$10)	=1- (E7 -\$E\$10)/(\$E\$9 - \$E\$10)	=1- (F7 -\$F\$10)/(\$F\$9 - \$F\$10)
20						
21						
22	A1	=SUMPRODUCT(\$B\$12:\$F\$12,B15:F15)				
23	A2	=SUMPRODUCT(\$B\$12:\$F\$12,B16:F16)				
24	A3	=SUMPRODUCT(\$B\$12:\$F\$12,B17:F17)				
25	A4	=SUMPRODUCT(\$B\$12:\$F\$12,B18:F18)				
26	A5	=SUMPRODUCT(\$B\$12:\$F\$12,B19:F19)				
27			CUUL duop	g Than cong. c	0m	

(V/C ratio)

	Congestion Bus Speed		Air Pollution	Fuel Consumption	Capital Cost
	(V/C ratio at worst case intersection)	(Both routes during peak period)	(CO concentration at worst reception location over 1 hour)	(All vehicles, one mile length)	
	dimensionless	mph	ppm	gallons	\$
\mathbf{A}_{1}	0.60	0.00	0.80	0.31	1.00
A ₂	0.60	0.00	1.00	1.00	0.63
A ₃	0.79	1.00	than 0.00	g. con _{0.35}	0.00
A ₄	0.00	0.03	0.91	0.0	0.63
A ₅	1.00	0.32	0.61	0.59	0.86

Transformed Outcome Matrix

- **A**₁ **Present situation**
- A₂ No parking in either direction
- **A**₃ Exclusive bus-lane northbound
- **A**₄ **Parking permitted in both directions**
- **A**₅ Traffic engineering improvements

Weights

- \therefore Let x_i^* be the best level of attribute x_i
- \therefore Let x_{i^*} be the worst level of attribute x_i
- A Hypothetical best alternative $\{x_1^*, x_2^*, \dots, x_j^*\}$
- A Hypothetical worst alternative $\{x_{1*}, x_{2*}, ..., x_{J*}\}$
- Given $\{x_{1*}, x_{2*}, ..., x_{3*}\}$, DM asked which attribute he/she would **move from its worst value to its best value**
- Then DM asked which one should be changed second, third, etc.
- ☆ Order in which DM wants to change attribute levels from worst to best depends on the relative value difference between x_j^{*} and x_{j*}
- Attribute that seems to make the most difference in value should be improved first, etc.

Process establishes a rank order of weights, since it ranksorders the terms

$$V(x_{1*}, x_{2*}, ..., x_{j}^{*}, ..., x_{j*}) - V(x_{1*}, x_{2*}, ..., x_{j*}, ..., x_{j*})$$

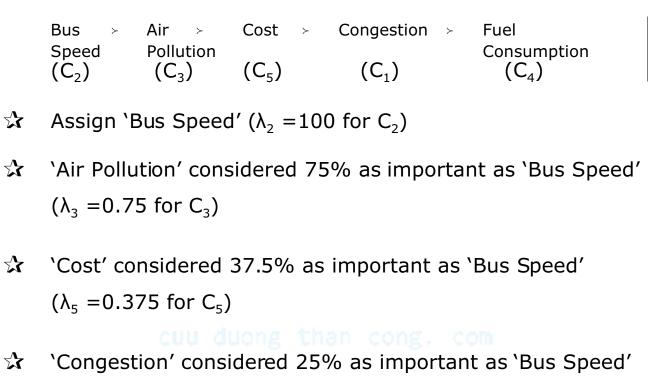
- \Rightarrow These terms are the weights w_j.
- To show this, assume $v_j(x_j^*) = 1$, $v_j(x_{j^*}) = 0$.
- 🖈 Then

$$V(x_{1*}, x_{2*}, ..., x_{j}^{*}, ..., x_{J*})$$

$$= w_{j}v_{j}(x_{j}^{*}) + \sum_{k \neq j} w_{k}v_{k}(x_{k*})$$

$$= w_{j}(1) + \sum_{k \neq j} w_{k}(0)$$
cuu dueng whan cong. com

- $rac{1}{2}$ To obtain ratio-scaled weights from these rank orders:
 - Arbitrarily assign a raw value difference of 100 to an attribute that was selected first choice for improvement from worst to best
 - ☆ Equally arbitrarily assign a raw value difference of 0 to an attribute (not necessarily one of {x₁, x₂,..., x₃}) that for which it would make absolutely no (value) difference for improvement from worst to best


cuu duong than cong. com

- Express all other value differences as percentages of 100
- E.g. 50 per cent means that the value improvement resulting from moving an attribute from its worst to its best level is half as great as that obtained from moving the attribute chosen first.
- \Rightarrow Renormalise the raw weights thus obtained
- \Rightarrow These weights called *swing weights*

cuu duong than cong. com

Weighting in Additive Weighting Karl Street Example

🖈 Assume

 $(\lambda_1 = 0.25 \text{ for } C_1)$

↔ `Fuel Consumption' considered 12.5% as important as `Bus Speed' ($λ_4$ =0.125 for C₁)

$$w_{2} = \lambda_{2} / \sum_{j=1,5} \lambda_{j} = 100/250 = 0.40$$

$$w_{3} = \lambda_{3} / \sum_{j=1,5} \lambda_{j} = 75/250 = 0.30$$

$$w_{5} = \lambda_{5} / \sum_{j=1,5} \lambda_{j} = 37.5/250 = 0.15$$

$$w_{1} = \lambda_{1} / \sum_{j=1,5} \lambda_{j} = 25/250 = 0.10$$

$$w_{4} = \lambda_{4} / \sum_{j=1,5} \lambda_{j} = 12.5/250 = 0.05$$