Analytic Hierarchy Process

- Analytic hierarchy process (AHP) methodology
 introduced by Thomas Saaty (1977) has had
 numerous applications in a wide range of contexts
- ☆ AHP explicitly recognises the *hierarchical value* structure of evaluation problems.
- $\stackrel{\text{tr}}{\Rightarrow}$ In addition to hierarchical structuring, AHP is based on two other compelling and widely accepted concepts,
 - ***** use of *pairwise*, *relative comparisons*
 - use of *redundancy* in judgements to improve accuracy and deal with 'fuzziness'
- ☆ The limited *cognitive capacity* of individuals in terms of both *short term memory* and *discriminability* (channel capacity) is cited in support of the AHP.

- ☆ Hierarchical structures are a means of coping with complexity
- Relative judgements assumed to be more easily generated and more meaningful than absolute judgements (which, in a sense, are relative to information stored in long term memory (and perhaps, in new situations, relative to no information)).
- ☆ Redundancy reduces errors and provides a measure of consistency.
- AHP process represents an evaluation problem hierarchically and involves pairwise comparisons of elements (projects, criteria, sub-criteria, etc.) at each level with respect to elements at the adjacent higher level.
- In a three level hierarchy, each project is compared to each other project with respect to each criterion (criterion), and each criterion is compared relative to each other criterion with respect some overriding goal.
- ☆ Comparison is in terms of the extent to which one project 'dominates' another.

- Such subjectively determined pairwise comparisons (values) are commonly expressed on a 1-9 scale of 'dominance' (or preference).
- For example, if project A performs outstandingly relative to project B with respect to criterion C₁ then
 '9' might be used to represent this dominance.
- If A and B perform equally with respect to C_1 , then a score of '1' would be used, and other scores used as appropriate to represent intermediate degrees of dominance.
- Pairwise comparisons are considered to be 'reciprocal' such that, for example, if the dominance of A relative to B for C_1 is say '5', then the dominance of B relative to A for C_1 must be '1/5'.
- Numbers 1,3,5,7,9 are associated with verbal expressions of dominance (respectively, 'equal', 'weak', 'strong', 'very strong', 'absolute') and the numbers 2,4,6,8 represent intermediate values between adjacent scale values.

- Criteria are then compared to each other in terms
 their importance in achieving some overall goal (e.g. select a 'best' project), again using a 1-9 scale.
- Numbers 1,3,5,7,9 are now associated with verbal expressions of relative importance (respectively, 'equal', 'weak', 'strong', 'very strong', 'absolute') and the numbers 2,4,6,8 represent intermediate values between adjacent scale values.
- For each reciprocal pairwise comparison matrix of Q elements, A = [a_{ij}], 'scores' representing the 'dominance' of elements may be derived by solving the matrix equation

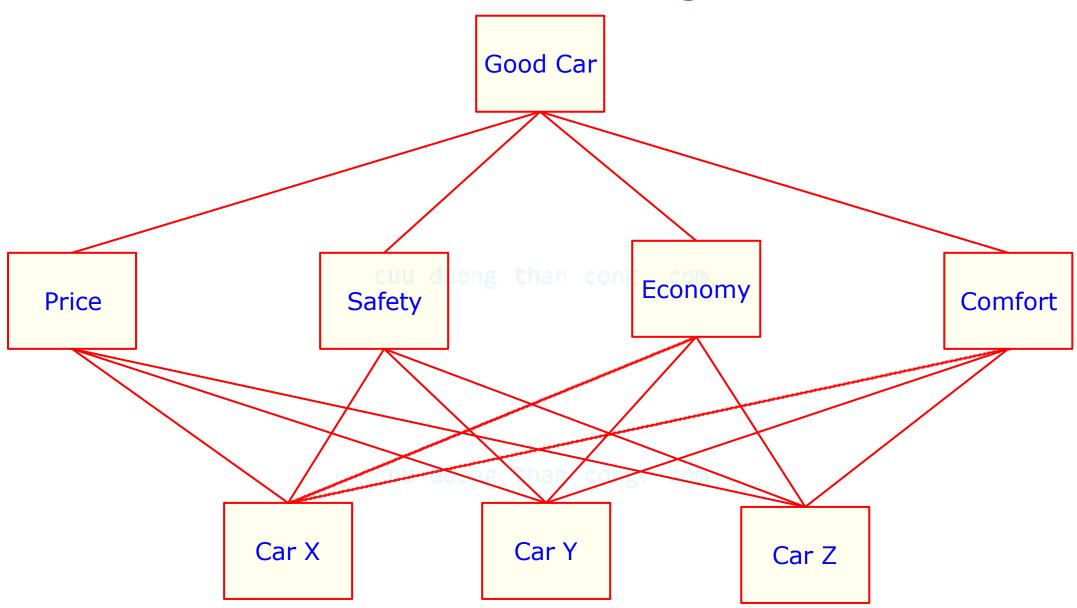
$$\mathbf{A} \mathbf{q} = \lambda_{\max} \mathbf{q}$$

for $\mathbf{q} = [q_1, q_2, ..., q_Q]$, the eigenvector associated with the largest eigenvalue, λ_{max} , of **A**.

 $\label{eq:product} \begin{array}{l} \overleftrightarrow \\ \end{array} \ \mbox{These scores are normalised to } {\bf p} = [p_1, p_2, ..., p_Q] \\ \ \mbox{where } p_i = q_i / \sum_k q_k \ (i = 1, ..., Q). \end{array}$

Dr Phil Smith\AHP.wpd

4


Alternatively, 'scores' may be approximated by calculating the arithmetic means of the normalised rows of A, that is,

$$q_{i} = (1/Q) \{a_{i1} / \sum_{k=1,Q} a_{k1} + a_{i2} / \sum_{k=1,Q} a_{k2} \dots + a_{iQ} / \sum_{k=1,Q} a_{kQ} \}$$

Normalised scores associated with each pairwise comparison matrix are concatenated throughout the hierarchical structure to form scores for each lowest level project.

cuu duong than cong. com

Car Selection Using AHP

Car Selection Using AHP

Criteria:

- 1. Price
- 2. Safety
- 3. Economy
- 4. Comfort

	Price	Safety	Economy	Comfort	Priority		
Price	1	1/7	1/2	1/5	0.0655		
Safety	7	7 1 4		2	0.5177		
Economy	2	1/4	1	1/2	0.1335		
Comfort	5	1/2	2	1	0.2833		

 $\lambda_{\rm max} = 4.012, \, {\rm CI} = 0.004$

CR = CI/RI = 0.004/0.9 = 0.0044

	Price													
	Car X	Car Y	Car Z	Idealised Priorities										
Car X	1	1/4	3	0.2109	0.2992									
Car Y	4	1	7	0.7049	1.0000									
Car Z	1/3	1/7	1	0.0841	0.1194									

 $\lambda_{max} = 3.032, CI = 0.016$ CR = CI/RI = 0.016/0.58 = 0.0276

Safety											
	Car X	Car Y	Car Y Car Z Priorities								
Car X	1	1/2	3	0.2854	0.4543						
Car Y	2	1	8	0.6282	1.0000						
Car Z	1/3	1/8	1	0.0864	0.1376						

 λ_{max} = 3.009, CI = 0.005

CR = CI/RI = 0.005/0.58 = 0.0086

	Economy											
	Car X	Car Y	Car Z	Normalised Priorities	Idealised Priorities							
Car X	1 1/3		1/6	0.0953	0.1456							
Car Y	3	1	1/3	0.2499	0.3816							
Car Z	6	3	1	0.6548	1.0000							

 λ_{max} = 3.018, CI = 0.009 CR = CI/RI = 0.009/0.58 = 0.0155

	Comfort												
	Car X	Car Y	Car Z	Normalised Priorities	Idealised Priorities								
Car X	1	1/4	1/8	0.0732	0.1092								
Car Y	4 _{CU}	ı d i lon;			0.3816								
Car Z	8	3	1	0.6708	1.0000								
	$\lambda_{max} =$	3.018, C	I = 0.00	9									

CR = CI/RI = 0.009/0.58 = 0.0155

Distributive mode

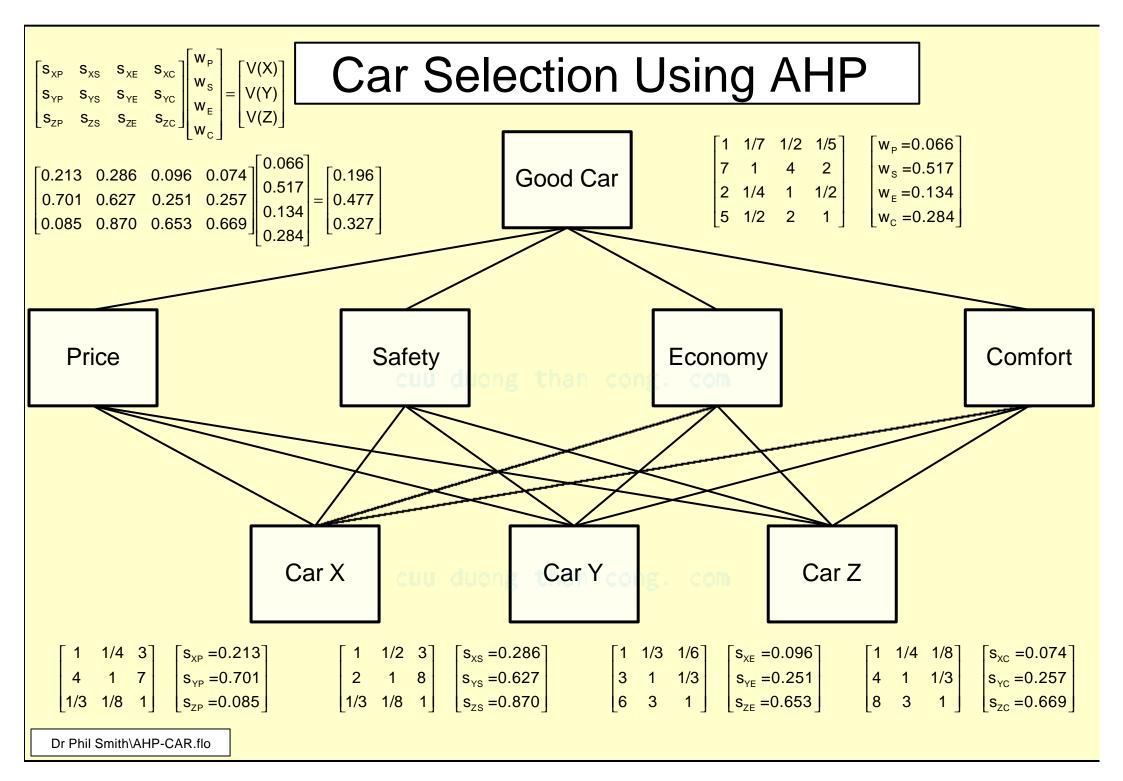
	Price	Safety	Economy	Comfort	
	0.0655	0.5177	0.1335	0.2833	
Car X	0.2109	0.2854	0.0953	0.0732	0.1950
Car Y	0.7049	0.6282	0.2499	0.2560	0.4773
Car Z	0.0841	0.0864	0.6548	0.6708	0.3277

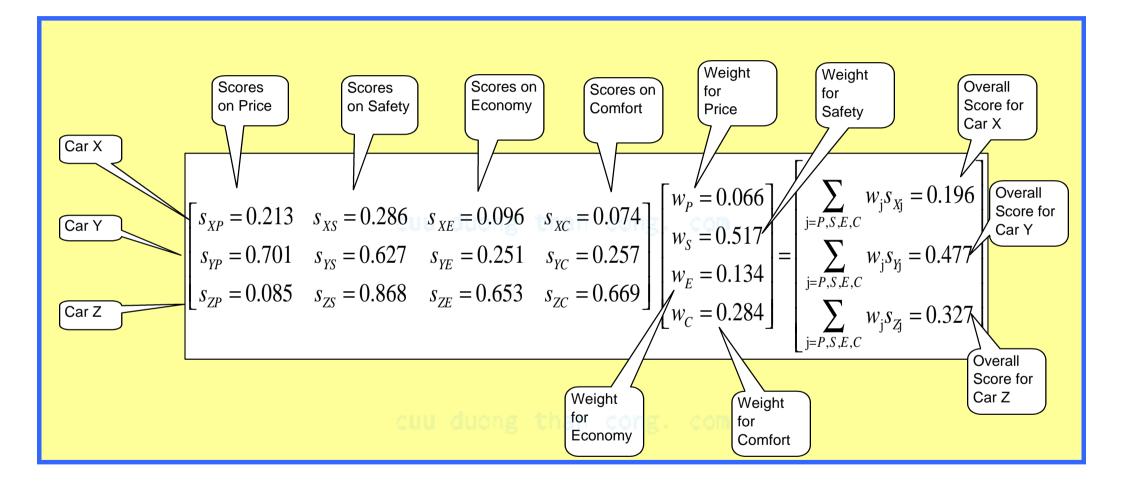
Ideal mode

cuu duong than cong. com

	Price	Safety	Economy	Comfort	
	0.0655	0.5177	0.1335	0.2833	
Car X	0.2992	0.4543	0.1456	0.1092	0.3051
Car Y	1.0000	1.0000	0.3816	0.3816	0.7422
Car Z	0.1194	0.1376	1.0000	1.0000	0.4959

cuu duong than cong. com


AHP: The Fundamental Scale


Intensity of importance	Definition	Explanation
1	Equal Importance	Two activities contribute equally to the objective
2	Weak	
3	Moderate Importance	Experience and judgement slightly favour one activity over another
4	Moderate Plus	
5	Strong Importance cuu duong than	Experience and judgement strongly favour one activity over another
6	Strong Plus	
7	Very Strong or Demonstrated Importance	An activity is favoured very strongly over another; its dominance is demonstrated in practice
8	Very, very strong	congcom
9	Extreme Importance	The evidence favouring one activity over another is of the highest possible order of affirmation

Reciprocals:

If activity i has one of the nonzero numbers $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ assigned to it when compared with activity j, the j has the reciprocal value when compared with i, that is $\{1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9\}$.

cuu duong than cong. com

	А	В	С	D	E	F	G	Н	I	J	Κ	L	М	N
1	Car Selection	on Using	Analytica	l Hierarchy I	Process									
2														
3	Pairwise com	parisons a	mong objec	tives			Normalized	d matrix				Weights		
4		Price	Safety	Economy	Comfort									
5	Price	1	1/7	1/2	1/5		0.0667	0.0755	0.0667	0.0541		0.0657		
6	Safety	7	1	4	2		0.4667	0.5283	0.5333	0.5405		0.5172		
7	Economy	2	1/4	1	1/2		0.1333	0.1321	0.1333	0.1351		0.1335		
8	Comfort	5	1/2	2	1		0.3333	0.2642	0.2667	0.2703		0.2836		
9														
	Pairwise com						Normalized	d matrix				Scores		
11		Car X	Car Y	Car Z										
	Car X	1	1/4	3			0.1875	0.1795	0.2727			0.2132		
	Car Y	4	1	7			0.7500	0.7179	0.6364			0.7014		
	Car Z	1/3	1/7	1			0.0625	0.1026	0.0909			0.0853		
15														
	Pairwise com						Normalized	d matrix				Scores		
17		Car X	Car Y	Car Z										
	Car X	1	1/2	3			0.3000	0.3077	0.2500			0.2859		
	Car Y	2	1	8	duong		0.6000	0.6154	0.6667			0.6274		
	Car Z	1/3	1/8	1			0.1000	0.0769	0.0833			0.0868		
21														
	Pairwise com				Normalized matrix				Scores					
23		Car X	Car Y	Car Z										
	Car X	1	1/3				0.1000	0.0769	0.1111			0.0960		
	Car Y	3					0.3000	0.2308	0.2222			0.2510		
	Car Z	6	3	1			0.6000	0.6923	0.6667			0.6530		
27				_				-				-		
	Pairwise com						Normalized	d matrix				Scores		
29	- ×	Car X	Car Y	Car Z										
	Car X	1	1/4		duong		0.0769	0.0588	0.0857			0.0738		
	Car Y	4			Car Y has		0.3077	0.2353	0.2286			0.2572		
	Car Z	8	3	1	- the highest		0.6154	0.7059	0.6857			0.6690		
33	Defense i i i i				score					multiclicet			020	Ļ
	Determining b						Quarallas			•		select G37:		
	Matrix of scor		0-6-6-			\setminus	Overall sco					array 1 ; sele JLT, press c		
36	A . Y	Price	Safety	Economy	Comfort	A/	0 1 0		•	-		o∟i, press c ow (performa		
	Car X	0.2132	0.286			1	0.1956	_		•		s) multiplicat		<i>'</i>
	Car Y	0.7014		0.251			0.4770		a column (c. me time .	interiori wel	ynts	s) multiplicat	ions at the	
	Car Z	0.0853	0.087	0.653	0.669		0.3274	Sa						
40														

	Α	В	С	D	E	F G
1	Car Selection Using Analytical Hierarchy Process	_	.	-	_	
2	our obloation obling Analytical metarony ricocos					
	Pairwise comparisons among objectives					Normalized matrix
4	· ····································	Price	Safety	Economy	Comfort	
5	Price	1	0.142857142857143	0.5	0.2	=B5/SUM(B\$5:B\$8)
6	Safety	7		4	2	=B6/SUM(B\$5:B\$8)
	Economy	2	0.25	1	0.5	=B7/SUM(B\$5:B\$8)
8	Comfort	5	0.5	2	1	=B8/SUM(B\$5:B\$8)
9						
10	Pairwise comparisons among cars on price					Normalized matrix
11		Car X	Car Y	Car Z		
12	Car X	1	0.25	3		=B12/SUM(B\$12:B\$14)
13	Car Y	4	•	7		=B13/SUM(B\$12:B\$14)
14	Car Z	0.333333333333333333333	0.142857142857143	1		=B14/SUM(B\$12:B\$14)
15						
	Pairwise comparisons among cars on safety					Normalized matrix
17		Car X	Car Y	Car Z		
	Car X	1		3		=B18/SUM(B\$18:B\$20)
	Car Y Cu U	2		8		=B19/SUM(B\$18:B\$20)
	Car Z	0.333333333333333333	0.125	1		=B20/SUM(B\$18:B\$20)
21						
	Pairwise comparisons among cars on economy		A 1/			Normalized matrix
23		Car X	Car Y	Car Z		
	Car X	1	0.333333333333333333			=B24/SUM(B\$24:B\$26)
	Car Y	3		0.333333333333333333		=B25/SUM(B\$24:B\$26)
	Car Z	6	3	1		=B26/SUM(B\$24:B\$26)
27						
28 29	Pairwise comparisons among cars on comfort	Car X	Car Y	Car Z		Normalized matrix
	Car X			0.125		=B30/SUM(B\$30:B\$32)
	Car X Car Y	1		0.3333333333333333333333333333333333333		=B30/SUM(B\$30:B\$32) =B31/SUM(B\$30:B\$32)
		8	3	0.0000000000000000000000000000000000000		=B31/SUM(B\$30:B\$32) =B32/SUM(B\$30:B\$32)
32 33		0	5			-D32/301VI(D\$30.D\$32)
	Determining best car					
	Matrix of scores					Overall scores
36		Price	Safety	Economy	Comfort	
	Car 1	=L12	=L18	=L24	=L30	=MMULT(B37:E39,L5:L8)
	Car 2	=L13	=L19	=L25	=L31	=MMULT(B37:E39,L5:L8)
39	Car 3	=L14	=L20	=L26	=L32	=MMULT(B37:E39,L5:L8)
40						

CAR-AHP.xls

Dr Phil Smith

	Н	I	J	Κ	L
1					
2					
3					Weights
4					-
5	=C5/SUM(C\$5:C\$8)	=D5/SUM(D\$5:D\$8)	=E5/SUM(E\$5:E\$8)		=AVERAGE(G5:J5)
6	=C6/SUM(C\$5:C\$8)	=D6/SUM(D\$5:D\$8)	=E6/SUM(E\$5:E\$8)		=AVERAGE(G6:J6)
7	=C7/SUM(C\$5:C\$8)	=D7/SUM(D\$5:D\$8)	=E7/SUM(E\$5:E\$8)		=AVERAGE(G7:J7)
8	=C8/SUM(C\$5:C\$8)	=D8/SUM(D\$5:D\$8)	=E8/SUM(E\$5:E\$8)		=AVERAGE(G8:J8)
9					
10					Scores
11					
	=C12/SUM(C\$12:C\$14)	=D12/SUM(D\$12:D\$14)			=AVERAGE(G12:I12)
13		=D13/SUM(D\$12:D\$14)			=AVERAGE(G13:I13)
14	=C14/SUM(C\$12:C\$14)	=D14/SUM(D\$12:D\$14)			=AVERAGE(G14:I14)
15					
16					Scores
17					
18	=C18/SUM(C\$18:C\$20)	=D18/SUM(D\$18:D\$20)			=AVERAGE(G18:I18)
19	=C19/SUM(C\$18:C\$20)	=D19/SUM(D\$18:D\$20)	n cong. co		=AVERAGE(G19:I19)
20	=C20/SUM(C\$18:C\$20)	=D20/SUM(D\$18:D\$20)			=AVERAGE(G20:I20)
21					
22					Scores
23					
24	=C24/SUM(C\$24:C\$26)	=D24/SUM(D\$24:D\$26)			=AVERAGE(G24:I24)
25	=C25/SUM(C\$24:C\$26)	=D25/SUM(D\$24:D\$26)			=AVERAGE(G25:I25)
26	=C26/SUM(C\$24:C\$26)	=D26/SUM(D\$24:D\$26)			=AVERAGE(G26:I26)
27					
28					Scores
29					
30	=C30/SUM(C\$30:C\$32)	=D30/SUM(D\$30:D\$32)	n cong. co	BM	=AVERAGE(G30:I30)
31	=C31/SUM(C\$30:C\$32)	=D31/SUM(D\$30:D\$32)			=AVERAGE(G31:I31)
32	=C32/SUM(C\$30:C\$32)	=D32/SUM(D\$30:D\$32)			=AVERAGE(G32:I32)
33					
34					
35					
36					
37 38					
38 39					
39 40					
40				1	

https://fb.com/tailieudientucntt

	Α	В	С	D	E	F G	Н	I	J	K	L
4		Price	Safety	Economy	Comfort						
5	Price	1	1/7	1/2	1/5	0.0667	0.0755	0.0667	0.0541		0.0657
6	Safety	7	1	4	2	0.4667	0.5283	0.5333	0.5405		0.5172
7	Economy	2	1/4	1	1/2	0.1333	0.1321	0.1333	0.1351		0.1335
8	Comfort	5	1/2	2	1	0.3333	0.2642	0.2667	0.2703		0.2836
9											
	Pairwise comparisons among cars on price					Normalized matrix					Scores
11		Car X	Car Y	Car Z							
	Car X	1	1/4	3		0.1875	0.1795	0.2727			0.2132
	Car Y	4	1	7		0.7500	0.7179	0.6364			0.7014
	Car Z	1/3	1/7	1		0.0625	0.1026	0.0909			0.0853
15											
	Pairwise comparisons among cars on safety	• • • •	a 14			Normalized matrix					Scores
17		Car X		Car Z							
	Car X	1	1/2	3		0.3000	0.3077	0.2500			0.2859
	Car Y	2	1	8		0.6000	0.6154	0.6667			0.6274
	Car Z	1/3	1/8	d (1	ing.	0.1000	0.0769	0.0833			0.0868
21											
	Pairwise comparisons among cars on economy	• • •	A 14	~ -		Normalized matrix					Scores
23		Car X	Car Y	Car Z							
	Car X	1	1/3	1/6		0.1000	0.0769	0.1111			0.0960
	Car Y	3		1/3		0.3000	0.2308	0.2222			0.2510
	Car Z	6	3	1		0.6000	0.6923	0.6667			0.6530
27											•
28 29	Pairwise comparisons among cars on comfort	Carl	Carl	Car Z		Normalized matrix					Scores
		Car X				0.0700	0.0500	0.0057			0.0700
	Car X Car Y	1	1/4	1/8		0.0769	0.0588	0.0857			0.0738
		4	1	1/3	ing.	0.3077	0.2353	0.2286			0.2572
32	Car Z	8	3	1		0.6154	0.7059	0.6857		┝──┡	0.6690
33	Determining best cor										
34 35	Determining best car Matrix of scores					Overall scores					
35		Price	Safety	Economy	Comfort						
	Car 1	0.2132		0.096	0.074	0.1956					
	Car 2	0.7014	0.627	0.050	0.257	0.4770					
	Car 3	0.0853		0.653	0.669	0.3274					
		5.0000	0.007	5.000	0.000	0.0214					

	М	Ν	0	Р	Q	R	S
4							
5	0.2631	4.0030					
6	2.0783	4.0183				RI < 0.	1,
7	0.5360	4.0159			then	ency 🛛	
8	1.1377	4.0116				ifactory	<i>'</i>
9	CI	0.0041	CI/RI	0.0045		liactory	/
10							
11					Random li	ndices	
12	0.6446	3.022773856			n	RI	
13	2.1517	3.067502077			2	0	
14	0.2566	3.00745318			3	0.58	
15	CI	0.016288186	CI/RI	0.0281	4		
16					5		
17					6		
18	0.8598	3.0075			7	1.32	
19	1.8932	3.0177			8		
20	0.2605	3.0025	g	çnan	9		
21	CI	0.0046	CI/RI	0.0079	10	1.59	
22							
23							
24	0.2885	3.0049					
25	0.7567	3.0148					
26	1.9821	3.0353					
27	CI	0.0092	CI/RI	0.0158			
28							
29							
30	0.2217	3.0038					
31	0.7755	3.0152	g ·	than	cong	. com	
32	2.0311	3.0361	0		1110		
33	CI	0.0092	CI/RI	0.0158			
34							
35							
36							
37							
38							
39							

1	Α	В	С	D	E	F G		Н
1	Car Selection Using Analytical Hierarchy Process							
2								
3	Pairwise comparisons among objectives					Normalized	matrix	
4		Price	Safety	Economy	Comfort			
5	Price	1	0.14285714	0.5	0.2	=B5/SUM(BS	\$5:B\$8)	=C5/SUM(C\$5:C\$8)
6	Safety	7	1	4	2	=B6/SUM(BS	\$5:B\$8)	=C6/SUM(C\$5:C\$8)
7	Economy	2	0.25	1	0.5	=B7/SUM(BS	\$5:B\$8)	=C7/SUM(C\$5:C\$8)
8	Comfort	5	0.5	2	1	=B8/SUM(BS	\$5:B\$8)	=C8/SUM(C\$5:C\$8)
9								
10	Pairwise comparisons among cars on price					Normalized	matrix	
11		Car X	Car Y	Car Z				
	Car X	1	0.25	3				=C12/SUM(C\$12:C\$1
	Car Y	4	1	7				=C13/SUM(C\$12:C\$14
14	Car Z	0.33333	0.14285714	1		=B14/SUM(E	3\$12:B\$14	=C14/SUM(C\$12:C\$14
15								
	Pairwise comparisons among cars on safety					Normalized	matrix	
17		Car X	Car Y	Car Z				
	Car X	1	0.5	3	om			=C18/SUM(C\$18:C\$2
	Car Y	2	1	8				=C19/SUM(C\$18:C\$2
20	Car Z	0.33333	0.125	1		=B20/SUM(E	3\$18:B\$20	=C20/SUM(C\$18:C\$2
21								
	Pairwise comparisons among cars on economy					Normalized	matrix	
23		Car X	Car Y	Car Z				
	Car X	1	0.33333333	0.1666666666				=C24/SUM(C\$24:C\$2
	Car Y	3	1	0.33333333333	X.			=C25/SUM(C\$24:C\$2
	Car Z	6	3	1		=B26/SUM(E	3\$24:B\$26	=C26/SUM(C\$24:C\$2
27								
	Pairwise comparisons among cars on comfort					Normalized	matrix	
29		Car X	Car Y	Car Z				
	Car X CUU CUU	1	0.25	0.125	QM	,		=C30/SUM(C\$30:C\$3
	Car Y	4	1	0.33333333333	5 <mark>1</mark>			=C31/SUM(C\$30:C\$3
	Car Z	8	3	1		=B32/SUM(E	3\$30:B\$ <mark>3</mark> 2	=C32/SUM(C\$30:C\$3
33								
	Determining best car							
	Matrix of scores					Overall score	es	
36		Price	Safety	Economy	Comfort			
	Car 1	=L12	=L18	=L24	=L30	=MMULT(B3		
	Car 2	=L13	=L19	=L25	=L31	=MMULT(B3		
39	Car 3	=L14	=L20	=L26	=L32	=MMULT(B3	87:E39,L5	

https://fb.com/tailieudientucntt

	I	J	Κ	L	М	Ν	0	Р
1					Consistency Calculations			
2								
3				Weights	Product	Ratios		
4								
5	=D5/SUM(D\$5:D\$8)	=E5/SUM(E\$5:E\$8)		=AVERAGE(G5:J5)	=MMULT(B5:E8,L5:L8)	=M5/L5		
6	=D6/SUM(D\$5:D\$8)	=E6/SUM(E\$5:E\$8)		=AVERAGE(G6:J6)	=MMULT(B5:E8,L5:L8)	=M6/L6		
7	=D7/SUM(D\$5:D\$8)	=E7/SUM(E\$5:E\$8)		=AVERAGE(G7:J7)	=MMULT(B5:E8,L5:L8)	=M7/L7		
8	=D8/SUM(D\$5:D\$8)	=E8/SUM(E\$5:E\$8)		=AVERAGE(G8:J8)	=MMULT(B5:E8,L5:L8)	=M8/L8		
9					CI	=(AVERAGE(N5:N8)-4)/3	CI/RI	=N9/0.9
10				Scores				
11								
12	=D12/SUM(D\$12:D\$14			=AVERAGE(G12:I12)	=MMULT(B12:D14,L12:L14)	=M12/L12		
13	=D13/SUM(D\$12:D\$14			=AVERAGE(G13:I13)	=MMULT(B12:D14,L12:L14)	=M13/L13		
14	=D14/SUM(D\$12:D\$14			=AVERAGE(G14:I14)	=MMULT(B12:D14,L12:L14)	=M14/L14		
15					CI	=(AVERAGE(N12:N14)-3)/2	CI/RI	=N15/0.58
16				Scores				
17								
18			c_1	=AVERAGE(G18:I18)	=MMULT(B18:D20,L18:L20)	=M18/L18		
-	=D19/SUM(D\$18:D\$2(=AVERAGE(G19:I19)	=MMULT(B18:D20,L18:L20)	=M19/L19		
20	=D20/SUM(D\$18:D\$20			=AVERAGE(G20:I20)	=MMULT(B18:D20,L18:L20)	=M20/L20		
21					CI	=(AVERAGE(N18:N20)-3)/2	CI/RI	=N21/0.58
22				Scores				
23								
24	=D24/SUM(D\$24:D\$26			=AVERAGE(G24:I24)	=MMULT(B24:D26,L24:L26)	=M24/L24		
25	=D25/SUM(D\$24:D\$26			=AVERAGE(G25:I25)	=MMULT(B24:D26,L24:L26)	=M25/L25		
26	=D26/SUM(D\$24:D\$26			=AVERAGE(G26:I26)	=MMULT(B24:D26,L24:L26)	=M26/L26		
27					CI	=(AVERAGE(N24:N26)-3)/2	CI/RI	=N27/0.58
28				Scores				
29						1.000 // 0.0		
30	=D30/SUM(D\$30:D\$32		ÇI,	=AVERAGE(G30:I30)	=MMULT(B30:D32,L30:L32)	=M30/L30		
31	=D31/SUM(D\$30:D\$32			=AVERAGE(G31:I31)	=MMULT(B30:D32,L30:L32)	=M31/L31		
32	=D32/SUM(D\$30:D\$32			=AVERAGE(G32:I32)	=MMULT(B30:D32,L30:L32)	=M32/L32		
33					CI	=(AVERAGE(N30:N32)-3)/2	CI/RI	=N33/0.58
34								
35								
36								
37								
38 39								
39]					

Checking for Consistency in AHP

- Pairwise comparison matrices can suffer from inconsistencies.
- Entries in pairwise comparison matrix have a built-in pairwise consistency since require that a_{ij} = 1/a_{ji},
 i.e. the matrix is a 'reciprocal' matrix.
- However, if $a_{12} = 5$ (C_1 'strongly more important' than C_2), $a_{23} = 2$ (C_2 'very slightly more important' than C_3) and $a_{13} = 2$ (C_1 'very slightly more important' than C_3) Are these judgements consistent?

 $a_{12} \times a_{23} = 5 \times 2 = 10 \neq a_{13} = 2$

Slight inconsistencies are common in pairwise comparisons.

cuu duong than cong. com

 \Rightarrow Major inconsistencies must be resolved.

Dr Phil Smith\AHPConsistency.wpd

☆ Checking for inconsistency: consider the criteria in the car selection problem:

price safety economy comfort

☆ (1) Perform matrix multiplication of pairwise
 comparisons and normalised criteria weights

[1]	1/7	1/2	1/5]	[0.0657]	pn	0.2631	m
7	1	4	2	0.5172		2.0783	
2	1/4	1	1/2	0.1351	-	0.5360	
[5	1/2	2	1]	0.2703		1.1377	

(2) Calculate the average of ratios of the result of matrix multiplication [0.2631, 2.0783, 0.5360, 1.1377] to original normalised weights [0.0657, 0.5172, 0.1351, 0.2703], i.e. calculate current ducing than cong. com

$$\frac{0.2631}{0.0657} + \frac{2.0783}{0.5172} + \frac{0.5360}{0.1335} + \frac{1.1377}{0.2836} = 4.0383$$

Dr Phil Smith\AHPConsistency.wpd

 \Rightarrow (3) Calculate `consistency index' (CI) defined as

$$CI = \frac{(4.0383 - 4)}{4 - 1} = 0.0041$$

 ☆ (4) Calculate ratio of CI to the given `random index' (RI), i.e. calculate CI/RI

 $\frac{\text{CI}}{\text{RI}} = \frac{0.0041}{0.9} = 0.0045$

 \Rightarrow Random indices are give as

	Random Indices						
	Kanuom	mulces					
	n	RI					
cuu	2	0					
	3	0.58					
	4	0.90					
	5	1.12					
	6	1.24					
	7	1.32					
	8	1.41					
	9	1.45					
	10	1.49					
cuu		1.51					
	12	1.48					
	13	1.56					
	14	1.57					
	15	1.59					

Dr Phil Smith\AHPConsistency.wpd

- Values of RI give the average value of CI if the entries in the pairwise comparison matrix, $\mathbf{A} = [a_{ij}]_{n \times n}$, were chosen at random (subject to the constraints that $a_{ii} = 1$, and $a_{ji} = 1/a_{ij}$).
- If the ratio of CI to RI is sufficiently small, then the pairwise comparisons are probably consistent enough to be useful.
- ☆ Saaty suggests that, if CI/RI < 0.10, then the degree of consistency is satisfactory.</p>
- ☆ If CI/RI > 0.10, then serious inconsistencies exist and
 AHP may not yield meaningful results.

cuu duong than cong. com