Decision Theory

- Introduce framework or model for process of decisionmaking
- \Rightarrow Simplest form three elements

(1) choice/action/alternative

- (2) chance/uncertainty
- (3) consequence/payoff/outcome

Choice + Chance ⇒ Consequence

(1) Choice

Central element - involves selection of alternative
 (or alternatives) that decision-maker's analysis has shown
 to be the 'best' approach to the solution of the problem

(2) Chance

☆ Refers to uncertain nature of outcomes (usually measured at some time in the future) resulting from choices (which are made at present)

uu duong than cong. com

(3) Consequence

- Consequence ('payoff', 'outcome') of an action (choice) and an event (chance) forms the objective function that we wish to optimise (maximise or minimise) in making the selection among available alternatives
- Nature of consequences may be positive ('profit', 'revenue', 'utility', 'sales') or negative ('cost', 'time', 'regret') which will determine the direction of our optimisation

- Three classes of decisions, based on the degree of knowledge (or lack of it) of the likelihoods of occurrence of various outcomes
 - (A) Certainty
 - (B) Uncertainty
 - (C) Risk

(A) Certainty duong than cong. com

- Under conditions of certainty, we know at the time of decision what the eventual outcome of each alternative will be
- Decision-making process involves systematic evaluation of each available alternative and selection of alternative with most attractive result

(B) Uncertainty

- Decision making under conditions of uncertainty, requires that decisions be made with no knowledge of the likelihoods of the various outcomes
- Obviously chances of making a less than optimal decision under these conditions substantial

(C) Risk ^{CUU} duong than cong. com

- Relates to those decisions all of whose outcomes are known and each is able to be assigned a probability of occurrence
- Solution procedures involve applications of mathematical expectation

Decision Making Under Certainty

- Consider three projects that can be developed in each of three sites
- \Rightarrow Assume cost of each project varies according to site:

\$00,000	Α	В	С
Project 1 (P_1)	3	7	4
Project 2 (P_2)	4	6	6
Project 3 (P_3)	3	8	5

uu duong than cong. com:

- \Rightarrow There is only one state of nature (certainty)
- \Rightarrow Complete enumeration of every payoff is:

Alternatives	Total cost	
$P_1 \stackrel{<}{\Rightarrow} A, P_2 \stackrel{<}{\Rightarrow} B, P_3 \stackrel{<}{\Rightarrow} C$	3 + 6 + 5 = 14	
$P_1 \stackrel{<}{\Rightarrow} A, P_2 \stackrel{<}{\Rightarrow} C, P_3 \stackrel{<}{\Rightarrow} B$	3 + 6 + 8 = 17	
$P_1 \stackrel{<}{\Rightarrow} B, P_2 \stackrel{\Rightarrow}{\Rightarrow} A, P_3 \stackrel{\Rightarrow}{\Rightarrow} C$	7 + 4 + 5 = 16	
$P_1 \stackrel{<}{\Rightarrow} B, P_2 \stackrel{<}{\Rightarrow} C, P_3 \stackrel{<}{\Rightarrow} A$	7 + 6 + 3 = 16	
$P_1 \stackrel{<}{\Rightarrow} C, P_2 \stackrel{<}{\Rightarrow} B, P_3 \stackrel{<}{\Rightarrow} A$	$4 + 6 + 3 = 13^*$	
$P_1 \stackrel{<}{\Rightarrow} C, P_2 \stackrel{\simeq}{\Rightarrow} A, P_3 \stackrel{\simeq}{\Rightarrow} B$	4 + 4 + 8 = 16	
i	i	

* Minimum cost

Decision Making Under Uncertainty

- Decision making under uncertainty (as under risk) involves alternative actions whose payoff depend on the (random) states of nature (event, possible future)
- Specifically payoff matrix (decision matrix) of a decision problem with m alternative actions and n states of natures

S ₁	S ₂		S _n
$a_1 v(a_1,s_1)$	v(a ₁ ,s ₂)		v(a ₁ ,s _n)
$a_2 v(a_2, s_1) cuu$	v(a ₂ ,s ₂)	cong	$com v(a_2,s_n)$
· ·	•		•
$a_m v(a_m,s_1)$	v(a _m ,s ₂)		v(a _m ,s _n)

$$a_i = action (alternative) i (i = 1,,m) s_j = state of nature j (j = 1,,n) v(a_i,s_j) = outcome (payoff) of action i under state of nature j$$

☆ Under uncertainty, probability distribution associated with states s_i unknown or cannot be determined

- ☆ Following criteria used for analysing decision problem under uncertainty
 - (1) Laplace
 (2) Minimax (Wald)
 (3) Maximax cong. condition
 (4) Minimax regret (Savage)
 (5) Hurwicz
- ☆ Criteria differ in degree of conservatism the decision maker exhibits in the face of uncertainty

cuu duong than cong. com

(1) Laplace Criterion

- \Rightarrow Laplace criterion based on `principle of insufficient reason'
- Because the probability distributions of the states of nature unknown, there is no reason to believe they are different
- Thus alternatives are evaluated using optimistic assumption that the are equal, i.e.

$$P(s_1) = P(s_2) = ... = P(s_n) = 1/n$$

☆ Given that payoffs, v(a_i,s_j) represent gain (i.e. are positive), best alternative is the one that yields

$$max_{a_i}\!\left\{\!\frac{1}{n}\!\sum_{j=1}^n v(a_i,\!s_j)\!\right\}$$

☆ If payoffs, v(a_i,s_j) represent loss (i.e. are negative), then best alternative is the one that yields

$$min_{a_i}\left\{\frac{1}{n}\sum_{j=1}^n v(a_i,s_j)\right\}$$

	State of		
	P(f) = 0.5 $P(u) = 0.5$		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	
Apartment Building	\$50,000	\$30,000	\$40,000*
Office Building	\$100,000	-\$40,000	\$30,000
Warehouse	\$30,000	\$10,000	\$20,000

*Laplace solution

(Apart Bld

\$50,000(0.5) + \$30,000(0.5) = \$40,000*

(Office Bld)

\$100,000(0.5) - \$40,000(0.5) = \$30,000(Warehouse)

30,000(0.5) + 10,000(0.5) = 20,000

(2) Maximin (Minimax) Wald Criterion

- Maximin (minimax) criterion based on the conservative attitude of making the best out of the worst possible conditions
- A Maximin (gain), minimax (loss) criterion of pessimism
- ☆ If payoffs, v(a_i,s_j) represent gain (i.e. are positive), then best alternative is the one that corresponds to maximin criterion

$$\max_{\mathbf{a}_{i}} \left\{ \min_{\mathbf{s}_{j}} \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}) \right\}$$

☆ If payoffs, v(a_i,s_j) represent loss (i.e. are negative), then best alternative is the one that corresponds to minimax criterion

cuu duong than cong. com

$$min_{a_i} \left\{ max_{s_j} v(a_i, s_j) \right\}$$

	State of		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	Row Minimum
Apartment Building	\$50,000 ch	\$30,000 con	\$30,000*
Office Building	\$100,000	-\$40,000	-\$40,000
Warehouse	\$30,000	\$10,000	\$10,000

* maximin solution

cuu duong than cong. com

(3) Maximax

- ☆ Maximax criterion is optimistic
- \Rightarrow Appeals to highly venturesome individual
- ☆ If payoffs, v(a_i,s_j) represent gain (i.e. are positive), then best alternative is the one that corresponds to maximax criterion

cuu duong than cong. com

$$\max_{\mathbf{a}_{i}} \left\{ \max_{\mathbf{s}_{j}} \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}) \right\}$$

☆ If payoffs, v(a_i,s_j) represent loss (i.e. are negative), then best alternative is the one that corresponds to minimin criterion

$$\begin{array}{c} \text{cuu duong than cong. com} \\ \min_{a_i} \left\{ \min_{s_j} v(a_i,s_j) \right\} \end{array}$$

	State of		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	Row Maximum
Apartment Building	\$50,000	\$30,000	\$50,000
Office Building	\$100,000	-\$40,000	\$100,000*
Warehouse	\$30,000	\$10,000	\$30,000

* maximax solution

(note possibility of significant loss of \$40,000)

cuu duong than cong. com

(4) Savage Minimax Regret Criterion

Savage regret criterion aims at moderating conservatism in the minimax (maximin) criterion by replacing the (gain or loss) payoff matrix v(a_i,s_j) with a loss (or `regret') r(a_i,s_j) matrix

cuu duong than cong. com

$$\mathbf{r}(\mathbf{a}_{i},\mathbf{s}_{j}) = \begin{cases} \max_{\mathbf{a}_{k}} \left\{ \mathbf{v}(\mathbf{a}_{k},\mathbf{s}_{j}) \right\} \cdot \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}), & \text{if } \mathbf{v} \text{ is a gain} \\ \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}) \cdot \min_{\mathbf{a}_{k}} \left\{ \mathbf{v}(\mathbf{a}_{k},\mathbf{s}_{j}) \right\}, & \text{if } \mathbf{v} \text{ is a loss} \end{cases}$$

Savage criterion 'moderates' the minimax (maximin) criterion

	State of Nature			
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)		
Apartment Building	\$50,000	\$30,000		
Office Building	\$100,000	-\$40,000		
Warehouse	\$30,000	\$10,000		
Column Maximum	\$100,000	\$30,000		

Opportunity Loss Table

	State of		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	Maximum Regret
Apartment Building	\$50,000	\$0	\$50,000*
Office Building	uu duc\$g th	\$70,000	\$70,000
Warehouse	\$70,000	\$20,000	\$70,000

* minimax regret

 \Rightarrow Consider the following *loss*, v(a_i,s_j) matrix

	S_1	S ₂	row max
a1	\$11,000	\$90	\$11,000
a_2	\$10,000	\$10,000	\$10,000 <minimax< td=""></minimax<>

- Application of minimax criterion shows that a_2 with a definite loss of \$10,000, is preferable
- A However, we may select a_1 because there is a chance of a loss of only \$90 if s_2 is realised
- $rac{1}{2}$ If use regret r(a_i,s_j) matrix instead

	S_1	S ₂	row max
a_1	\$1,000	\$0	\$1000 <minimax< td=""></minimax<>
a ₂	\$0	\$9910	\$9910

Thus, minimax criterion, when applied to regret matrix, will select a_1 , as desired

(5) Hurwicz Criterion

- Hurwicz criterion designed to reflect range of decisionmaking attitudes from most optimistic to most pessimistic (conservative)
- $rac{1}{2}$ Define 0 $\leq \alpha \leq 1$, and assume that v(a_i,s_i) represents a gain
- \Rightarrow Then selected action must be associated with

$$\max_{\mathbf{a}_{i}} \left\{ \alpha \max_{\mathbf{s}_{j}} \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}) + (1-\alpha) \min_{\mathbf{s}_{j}} \mathbf{v}(\mathbf{a}_{i},\mathbf{s}_{j}) \right\}$$

- Parameter known as 'index of optimism'
- If $\alpha = 0$, criterion is conservative because equivalent to applying regular maximin (best of the worst) criterion
- If $\alpha = 1$, criterion yield optimistic results (equivalent to applying a maximax (best of the best) criterion)
- Can adjust degree of optimism/pessimism in range (0,1) range - in absence of strong feeling regarding optimism/pessimism, set α = 05

 \bigstar If $v(a_{i},s_{j})$ represents a loss, then Hurwicz criterion is

$$\min_{\mathbf{a}_{i}} \left\{ \alpha \min_{\mathbf{s}_{j}} v(\mathbf{a}_{i},\mathbf{s}_{j}) + (1-\alpha) \max_{\mathbf{s}_{j}} v(\mathbf{a}_{i},\mathbf{s}_{j}) \right\}$$

cuu duong than cong. com

	State of		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	α = 0.4
Apartment Building	\$50,000	\$30,000	\$38,000*
Office Building	\$100,000	-\$40,000	\$16,000
Warehouse	\$30,000	\$10,000	\$18,000

*Hurwicz (Coefficient of optimism, $\alpha = 0.4$)

(Apart Bld)	\$50,000(0.4)	+	\$30,000(0.6)	=	\$38,000*
(Office Bld)	\$100,000(0.4)	-	\$40,000(0.6)	=	\$16,000
(Warehouse)	\$30,000(0.4)	+	\$10,000(0.6)	=	\$18,000

cuu duong than cong. com

Decision Making Under Risk

- Under conditions of risk, payoffs associated with each decision alternative are usually described by probability distributions
- Decision making under risk usually based on 'expected value' criterion in which alternatives are compared based on the maximisation of 'expected profit' or the minimisation of 'expected cost'

cuu duong than cong. com

Decision problem may include n states of nature and m alternatives.

 $p_j > 0$ = probability of occurrence for state of nature j

 $a_{ij} = v(a_i, s_j) = payoff of alternative i given$ state of nature j(i = 1,...,m; j = 1,...,n)

☆ Expected payoff for alternative i computed as

 $EV_i = \sum_{j=1,n} a_{ij} p_j$ (i = 1,...,m)

- A By definition, $\sum_{j=1,n} p_j = 1$.
- \Rightarrow Best alternative is the one associated with

 $EV_i^* = max_{i=1,m} \{EV_i\}$

or

$$EV_i^* = min_{i=1,m} \{EV_i\}$$

depending on whether the payoff of the problem represents profit (income) or loss (expense), respectively.

	State of		
	P(f) = 0.6	P(u) = 0.4	
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	
Apartment Building	\$50,000	\$30,000	\$42,000
Office Building	\$100,000	-\$40,000	\$44,000*
Warehouse	\$30,000 th	\$10,000 con	\$22,000

*Expected value solution

(Apart Bld)

50,000(0.6) + 30,000(0.4) = 42,000

(Office Bld)

\$100,000(0.6) - \$40,000(0.4) = \$44,000*(Warehouse)

```
30,000(0.6) + 10,000(0.4) = 22,000
```

Expected Opportunity Loss (EOL)

- Decision criterion closely related to EV is the expected opportunity loss
- ☆ To use this, multiply probabilities by the regret (opportunity loss) for each decision outcome
- As with the minimax regret criterion, the best decision results from minimising the regret, or, in this case minimising the expected regret or opportunity loss
- \Rightarrow Decisions recommended by EV and EOL are the same
- \Rightarrow These two methods always result in the same decision

cuu duong than cong. com

Opportunity Loss Table

	State of		
	P(f) = 0.6	P(u) = 0.4	
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	Expected Opportunity Loss (EOL)
Apartment Building	\$50,000	\$0	\$30,000
Office Building	\$0	\$70,000	\$28,000*
Warehouse	\$70,000	\$20,000	\$70,000
Column Maximum	\$100,000 th	³¹⁰ \$30,000 ^{COI}	

* minimum expected opportunity loss

(Apart Bld)

\$50,000(0.6) + \$0(0.4) = \$30,000

(Office Bld)

(Warehouse)

70,000(0.6) + 20,000(0.4) = 50,000

	⁻ Nature		
	P(f) = 0.6	P(u) = 0.4	
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	
Apartment Building \$50,000		\$30,000	\$42,000
Office Building	\$100,000	-\$40,000	\$44,000*
Warehouse	\$30,000	\$10,000	\$22,000
Column Maximum	\$100,00 th	^{an} \$30,000 ^{co}	1

*Expected value solution

(Apart Bld)

50,000(0.6) + 30,000(0.4) = 42,000

(Office Bld)

\$100,000(0.6) - \$40,000(0.4) = \$44,000*

(Warehouse)

30,000(0.6) + 10,000(0.4) = 22,000

Expected value of the decision given perfect information is given as

\$100,000(0.6) + \$30,000(0.4) = \$72,000

Expected value of perfect information (EVPI) is maximum amount that would be paid to gain information that would result in a decision better than the one made without perfect information (e.g. expected value solution)

$$EVPI = $72,000 - $44,000 = $28,000$$

- Note that EVPI is the same as expected opportunity loss
 (EOL) cuu duong than cong. com
- $rac{1}{2}$ To see this, let $o_{ij} = max_i\{a_{ij}\} a_{ij}$

🖈 Then,

EOL =
$$\min_{i} \{\sum_{j=1,n} o_{ij}p_{j}\}$$

= $\min_{i} \{\sum_{j=1,n} [\max_{i} \{a_{ij}\} - a_{ij}]p_{j}\}$
= $\min_{i} \{\sum_{j=1,n} \max_{i} \{a_{ij}\}p_{j} - \sum_{j=1,n} a_{ij}p_{j}\}$
= $\sum_{j=1,n} \max_{i} \{a_{ij}\}p_{j} - \max_{i} \{\sum_{j=1,n} a_{ij}p_{j}\}$
= EVWPI - EV
= EVPI

Most Probable State of Nature

- ☆ If payoffs, v(a_i,s_j) represent gain (i.e. are positive), then best alternative under the most probable state of nature criterion involves selecting that alternative with the maximum payoff for the most probable state (i.e. the state for which p_j is a maximum)
- ☆ If payoffs, v(a_i,s_j) represent loss (i.e. are negative), then best alternative under the most probable state of nature criterion involves selecting that alternative with the minimum payoff for the most probable state (i.e. the state for which p_j is a maximum)

cuu duong than cong. com

	State of		
	P(f) = 0.6 $P(u) = 0.4$		
Decision Purchase	Favourable Economic Conditions (f)	Unfavourable Economic Conditions (u)	
Apartment Building	11 \$50,000 th	an \$30,000 con	\$50,000
Office Building	\$100,000	-\$40,000	\$100,000*
Warehouse	\$30,000	\$10,000	\$30,000

*Most probable state of nature

cuu duong than cong. com

	А	В	С	D	E	F	G	Н	
1	Payoff							alpha	
2	Matrix	latrix						0.4	
3			State of	of Nature					
4			Favourable	Unfavourable	row	row			
5		Probability	0.5	0.5	maximum	minimum			
6									
7		Apartment Building	\$50,000	\$30,000	\$50,000	\$30,000	\$40,000	\$38,000	
8		Office Building	\$100,000	-\$40,000	\$100,000	-\$40,000	\$30,000	\$16,000	
9		Warehouse	\$30,000	\$10,000	\$30,000	\$10,000	\$20,000	\$18,000	
10									
11		column maximum	\$100,000	\$30,000	\$100,000	\$30,000	\$40,000	\$38,000	
12					maximax	maximin	Laplace	Hurwicz	
13			cuu aut	ng unan	tong. R	ççni			
14	Regret								
15	Matrix								
16			State of	of Nature					
17			Favourable	Unfavourable					
18		Probability	0.5	0.5					
19									
20		Apartment Building	\$50,000	\$0	\$50,000				
21		Office Building	\$0	\$70,000	\$70,000				
22		Warehouse	\$70,000	\$20,000	\$70,000	com			
23									
24					\$50,000				
25					minimax				
26					regret				
27									

DecisionAnalysisXL-1.XLS

Dr Phil Smith

	A	В	C	D	E	F	G	Н
1	Payoff							alpha
2	Matrix							0.4
3			State o	State of Nature				
4			Favourable	Unfavourable	row	row		
5		Probability	0.5	0.5	maximum	minimum		
6								
7		Apartment Building	50000	30000	=MAX(C7:D7)	=MIN(C7:D7)	=SUMPRODUCT(\$C\$5:\$D\$5,C7:D7)	=\$H\$2*E7+(1-\$H\$2)*F7
8		Office Building	100000	-40000	=MAX(C8:D8)	=MIN(C8:D8)	=SUMPRODUCT(\$C\$5:\$D\$5,C8:D8)	=\$H\$2*E8+(1-\$H\$2)*F8
9		Warehouse	30000	10000	=MAX(C9:D9)	=MIN(C9:D9)	=SUMPRODUCT(\$C\$5:\$D\$5,C9:D9)	=\$H\$2*E9+(1-\$H\$2)*F9
10								
11		column maximum	=MAX(C7:C9)	=MAX(D7:D9)	=MAX(E7:E9)	=MAX(F7:F9)	=MAX(G7:G9)	=MAX(H7:H9)
12				ann d	maximax	maximin	Laplace	Hurwicz
13					noue eno	11 60118		
14	Regret							
15	Matrix							
16			State o	of Nature				
17			Favourable	Unfavourable				
18		Probability	0.5	0.5				
19								
20		Apartment Building	=\$C\$11-C7	=\$D\$11-D7	=MAX(C20:D20)			
21		Office Building	=\$C\$11-C8	=\$D\$11-D8	=MAX(C21:D21)			
22		Warehouse	=\$C\$11-C9	=\$D\$11-D9	=MAX(C22:D22)			
23								
24				- ann di	=MIN(E20:E22)	n cong	0.070	
25					minimax	n cong		
26					regret			
27								

	А	В	С	D	E
1	Payoff				
2	Matrix				
3			State of	of Nature	
4			Favourable	Unfavourable	
5		Probability	0.6	0.4	
6					
7		Apartment Building	\$50,000	\$30,000	\$42,000
8		Office Building	\$100,000	-\$40,000	\$44,000
9		Warehouse	\$30,000	\$10,000	\$22,000
10					
11					\$44,000
12					expected
13					value
14					
15		column maximum	\$100,000	\$30,000	\$72,000
16		cuu duong t	han cong	COM	
17					\$28,000
18					EVPI

	Α	В	C	D	E
1	Payoff				
2	Matrix				
3			State of	of Nature	
4			Favourable	Unfavourable	
5		Probability	0.6	0.4	
6					
7		Apartment Building	50000	30000	=SUMPRODUCT(\$C\$5:\$D\$5,C7:D7)
8		Office Building	100000	-40000	=SUMPRODUCT(\$C\$5:\$D\$5,C8:D8)
9		Warehouse	30000	10000	=SUMPRODUCT(\$C\$5:\$D\$5,C9:D9)
10					
11					=MAX(E7:E9)
12					expected
13					value
14					
15		column maximum	=MAX(C7:C9)	=MAX(D7:D9)	=SUMPRODUCT(\$C\$5:\$D\$5,C15:D15)
16			cuu duong	than cong	com
17					=E15-E11
18					EVPI