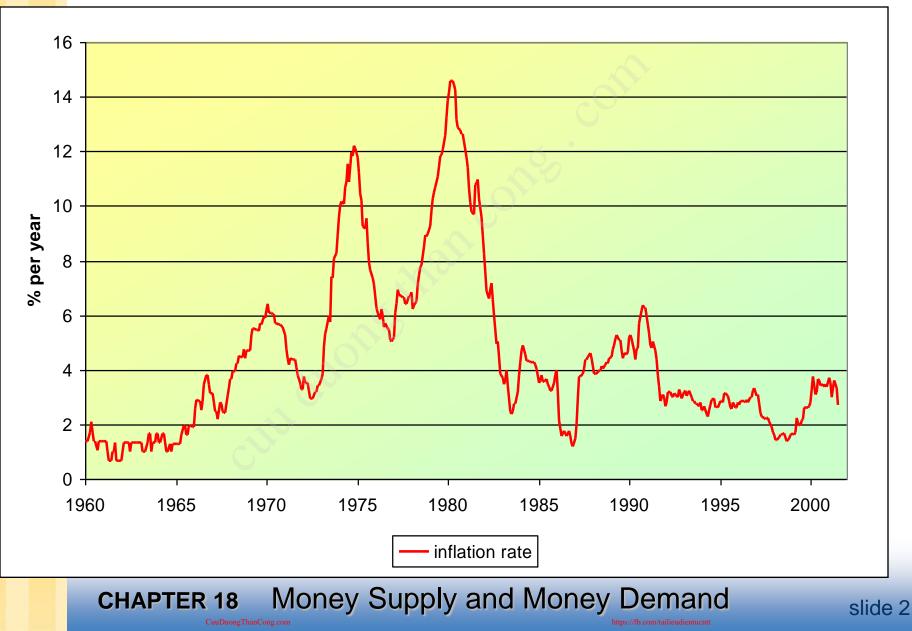
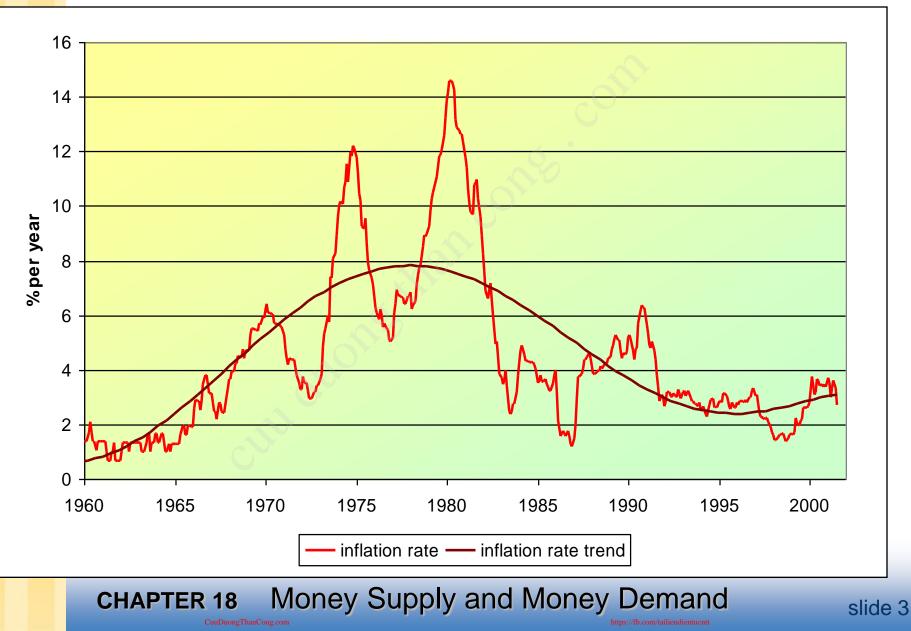
Money and Inflation (chapter 4)


In this chapter you will learn

- The classical theory of inflation
 - causes
 - effects
 - social costs
- "Classical" -- assumes prices are flexible & markets clear.


slide 1

Applies to the long run.

U.S. inflation & its trend, 1960-2001

U.S. inflation & its trend, 1960-2001

The connection between money and prices

- Inflation rate = the percentage increase in the average level of prices.
- price = amount of money required to buy a good.
- Because prices are defined in terms of money, we need to consider the nature of money, the supply of money, and how it is controlled.

Money: definition

Money is the stock of assets that can be readily used to make transactions.

Money: functions

1. medium of exchange *we use it to buy stuff*

2. store of value

transfers purchasing power from the present to the future

3. unit of account

the common unit by which everyone measures prices and values

Money: types

1. fiat money

- has no intrinsic value
- example: the paper currency we use

2. commodity money

- has intrinsic value
- examples: gold coins, cigarettes in P.O.W. camps

Discussion Question

Which of these are money?

- a. Currency
- b. Checks
- *c.* Deposits in checking accounts (called demand deposits)
- d. Credit cards
- *e.* Certificates of deposit (called time deposits)

The money supply & monetary policy

- The money supply is the quantity of money available in the economy.
- Monetary policy is the control over the money supply.

The central bank

- Monetary policy is conducted by a country's central bank.
- In the U.S., the central bank is called the Federal Reserve ("the Fed").

The Federal Reserve Building Washington, DC

Money supply measures, April 2002

Symbol	Assets included	Amount	(billions)
С	Currency		\$598.7
M1	C + demand deposits, travelers' checks, other checkable deposits		1174.0
M2	M1 + small time deposits, savings deposits, money market mutual fu money market deposit a	inds,	5480.1
M3	M2 + large time deposits, repurchase agreements, institutional money mark mutual fund balances	ket	8054.4

The Quantity Theory of Money

- A simple theory linking the inflation rate to the growth rate of the money supply.
- Begins with a concept called "velocity"...

Velocity

- basic concept: the rate at which money circulates
- *definition:* the number of times the average dollar bill changes hands in a given time period
- example: In 2001,
 - \$500 billion in transactions
 - money supply = \$100 billion
 - The average dollar is used in five transactions in 2001
 - So, velocity = 5

Velocity, cont.

This suggests the following definition:

$$V = \frac{T}{M}$$

where

V = velocity

- *T* = value of all transactions
- *M* = money supply

Velocity, cont.

Use nominal GDP as a proxy for total transactions.

Then,
$$v = \frac{P \times Y}{M}$$

where

P = price of output(GDP deflator) Y = quantity of output(real GDP) $P \times Y = value of output$ (nominal GDP)

The quantity equation

The quantity equation $M \times V = P \times Y$

follows from the preceding definition of velocity.

 It is an *identity:* it holds by definition of the variables.

Money demand and the quantity equation

- *M*/*P* = real money balances, the purchasing power of the money supply.
- A simple money demand function:
 (*M*/*P*)^d = *kY*

where

k = how much money people wish to holdfor each dollar of income.(*k* is exogenous)

Money demand and the quantity equation

- money demand: (*M*/*P*)^d = *kY*
- quantity equation: $M \times V = P \times Y$
- The connection between them: $\mathbf{k} = 1/\mathbf{V}$
- When people hold lots of money relative to their incomes (*k* is high), money changes hands infrequently (*V* is low).

back to the Quantity Theory of Money

starts with quantity equation

assumes V is constant & exogenous:

 $\mathbf{V} = \mathbf{V}^{\circ}$

 With this assumption, the quantity equation can be written as

 $\mathcal{N} \mathcal{M} \times \mathbf{V} = \mathbf{P} \times \mathbf{Y}$

$\boldsymbol{M} \times \boldsymbol{V} = \boldsymbol{P} \times \boldsymbol{Y}$

How the price level is determined:

- With V constant, the money supply determines nominal GDP (P×Y)
- Real GDP is determined by the economy's supplies of *K* and *L* and the production function (chap 3)
- The price level is
 P = (nominal GDP)/(real GDP)

Percent Changes

 The growth rate of a product equals the sum of the growth rates.

Can see this using derivatives of logs:

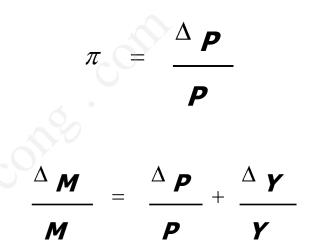
MV = PY

 $\log(\boldsymbol{M} \boldsymbol{V}) = \log(\boldsymbol{P} \boldsymbol{Y})$

 $\log(\boldsymbol{M}) + \log(\boldsymbol{V}) = \log(\boldsymbol{P}) + \log(\boldsymbol{Y})$

take total differential of logs

 $\frac{\partial M}{M} + \frac{\partial V}{V} = \frac{\partial P}{P} + \frac{\partial Y}{Y}$ where $\frac{\partial M}{M}$ is a 'percentage change' in M **CHAPTER 18** Money Supply and Money Demand


slide 21

The quantity equation in growth rates:

$$\frac{\Delta \mathbf{M}}{\mathbf{M}} + \frac{\Delta \mathbf{V}}{\mathbf{V}} = \frac{\Delta \mathbf{P}}{\mathbf{P}} + \frac{\Delta \mathbf{Y}}{\mathbf{Y}}$$

The quantity theory of money assumes
 \mathbf{V} is constant, so $\frac{\Delta \mathbf{V}}{\mathbf{V}} = 0$.

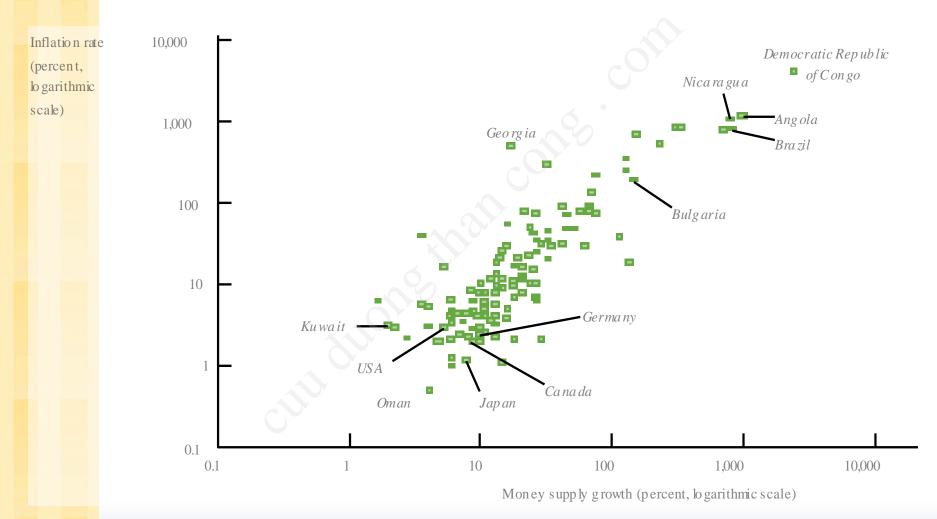
Let π (Greek letter "pi") denote the inflation rate:

The result from the preceding slide was:

Solve this result for π to get

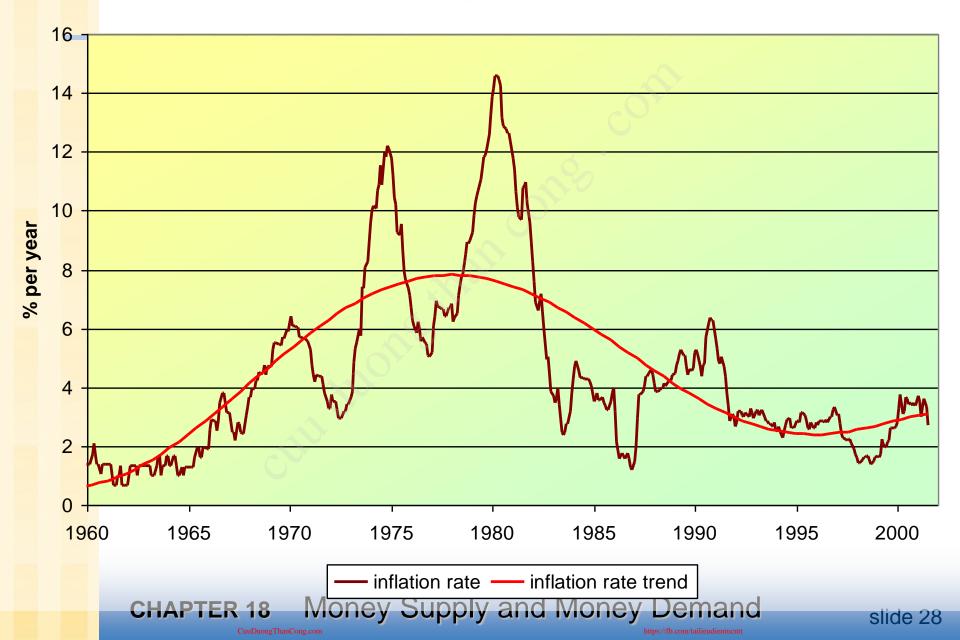
$$\pi = \frac{\Delta \mathbf{M}}{\mathbf{M}} - \frac{\Delta \mathbf{Y}}{\mathbf{Y}}$$

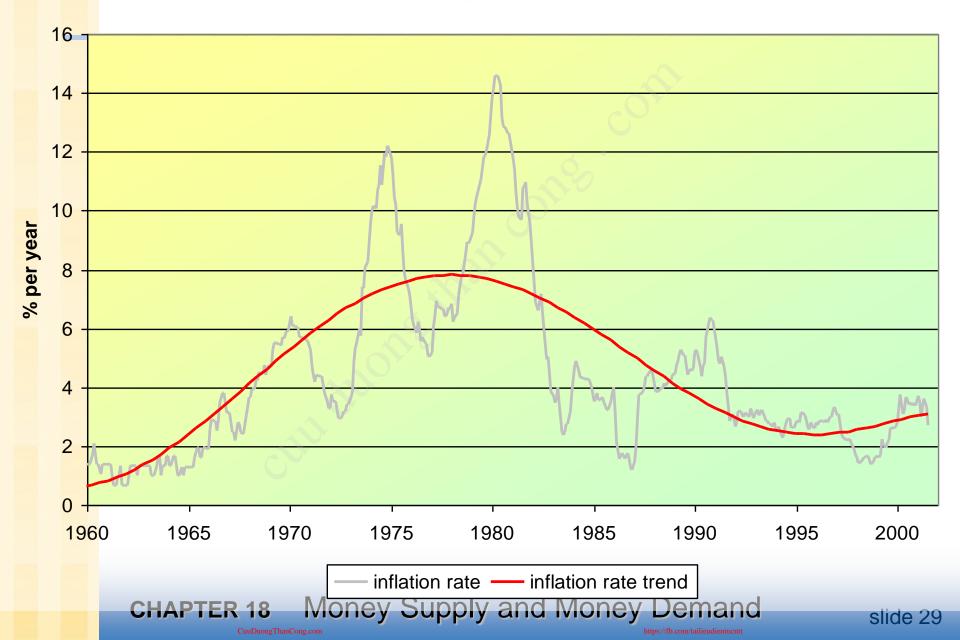
$$\pi = \frac{\Delta \mathbf{M}}{\mathbf{M}} - \frac{\Delta \mathbf{Y}}{\mathbf{Y}}$$

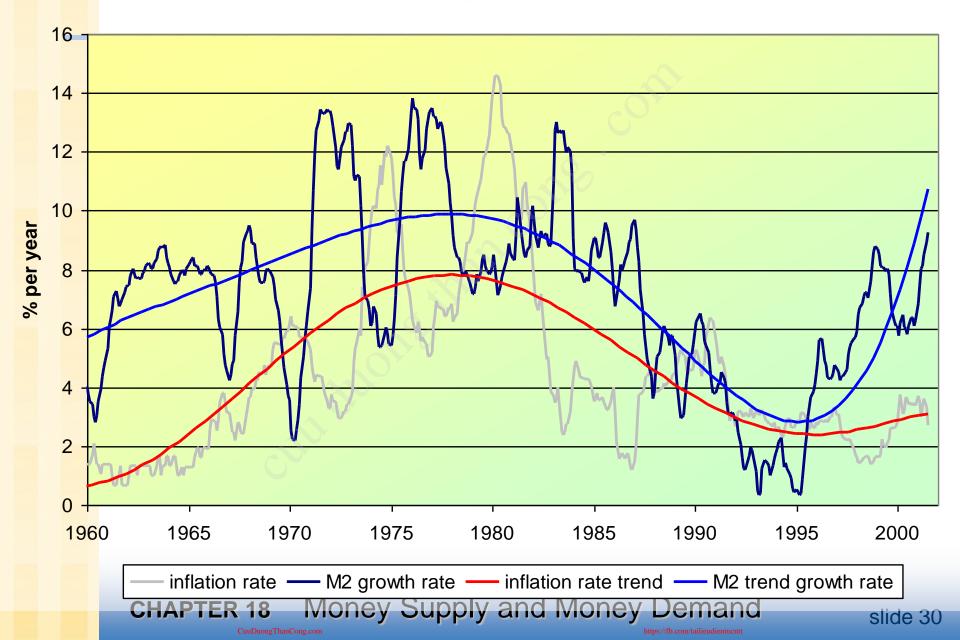

- Normal economic growth requires a certain amount of money supply growth to facilitate the growth in transactions.
- Money growth in excess of this amount leads to inflation.

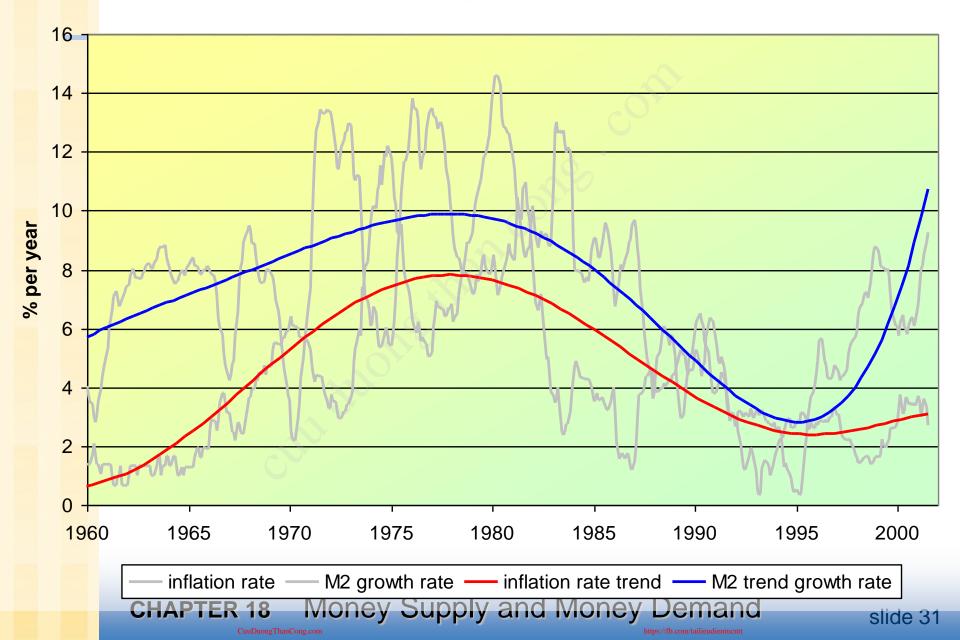
$$\pi = \frac{\Delta \mathbf{M}}{\mathbf{M}} - \frac{\Delta \mathbf{Y}}{\mathbf{Y}}$$

 $\Delta Y/Y$ depends on growth in the factors of production and on technological progress (all of which we take as given, for now).


Hence, the Quantity Theory of Money predicts a one-for-one relation between changes in the money growth rate and changes in the inflation rate.


International data on inflation and money growth




CHAPTER 18 Money Supply and Money Demand

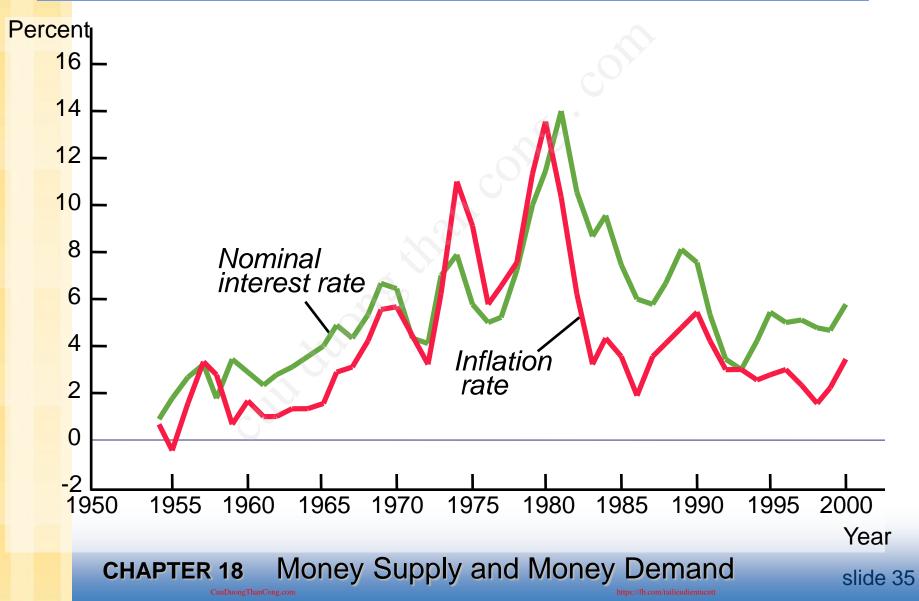
slide 26

Seigniorage

- To spend more without raising taxes or selling bonds, the govt can print money.
- The "revenue" raised from printing money is called seigniorage (pronounced SEEN-your-ige)
- The inflation tax: Printing money to raise revenue causes inflation. Inflation is like a tax on people who hold money.

Inflation and interest rates

- Nominal interest rate, *i* not adjusted for inflation
- Real interest rate, r adjusted for inflation:


$$r = i - \pi$$

The Fisher Effect

- The Fisher equation: $i = r + \pi$
- Chap 3: S = I determines r.
- Hence, an increase in π
 causes an equal increase in *i*.
- This one-for-one relationship is called the Fisher effect.

U.S. inflation and nominal interest rates, 1952-1998

Inflation and nominal interest rates across countries

Exercise:

Suppose V is constant, M is growing 5% per year, Y is growing 2% per year, and r = 4.

a. Solve for *i* (the nominal interest rate).

- b. If the Fed increases the money growth rate by 2 percentage points per year, find Δi .
- c. Suppose the growth rate of Y falls to 1% per year.
 - What will happen to π ?
 - What must the Fed do if it wishes to keep π constant?

Answers:

Suppose *V* is constant, *M* is growing 5% per year, *Y* is growing 2% per year, and r = 4.

a. First, find $\pi = 5 - 2 = 3$.

Then, find $i = r + \pi = 4 + 3 = 7$.

- b. $\Delta i = 2$, same as the increase in the money growth rate.
- c. If the Fed does nothing, $\Delta \pi = 1$. To prevent inflation from rising, Fed must reduce the money growth rate by 1 percentage point per year.

Two real interest rates

- π = actual inflation rate
 (not known until after it has occurred)
- π^e = expected inflation rate
- *i* π^e = *ex ante* real interest rate: what people expect at the time they buy a bond or take out a loan
- *i* π = *ex post* real interest rate:
 what people actually end up earning on their bond or paying on their loan

Money demand and the nominal interest rate

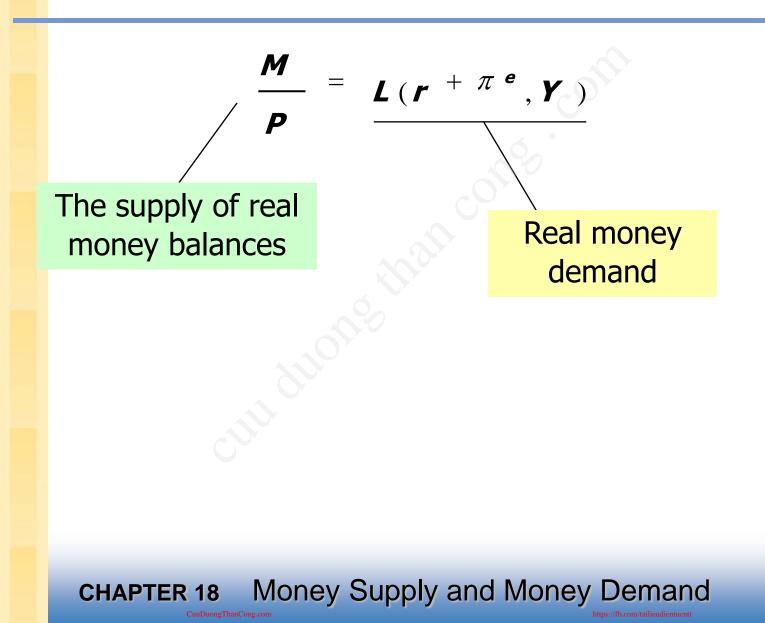
- The Quantity Theory of Money assumes that the demand for real money balances depends only on real income Y.
- We now consider another determinant of money demand: the nominal interest rate.
- The nominal interest rate *i* is the opportunity cost of holding money (instead of bonds or other interest-earning assets).
- Hence, $\uparrow i \Rightarrow \downarrow$ in money demand.

The money demand function

$$(\boldsymbol{M} / \boldsymbol{P})^{d} = \boldsymbol{L}(\boldsymbol{i}, \boldsymbol{Y})$$

(M/P)^d = real money demand, depends
negatively on *i i* is the opp. cost of holding money
positively on Y
higher Y ⇒ more spending
⇒ so, need more money
(L is used for the money demand function

because money is the most liquid asset.)


The money demand function

$$\left(\boldsymbol{M} \middle/ \boldsymbol{P} \right)^{d} = \boldsymbol{L} \left(\boldsymbol{i}, \boldsymbol{Y} \right)$$
$$= \boldsymbol{L} \left(\boldsymbol{r}^{+} \pi^{e}, \boldsymbol{Y} \right)$$

When people are deciding whether to hold money or bonds, they don't know what inflation will turn out to be.

Hence, the nominal interest rate relevant for money demand is $\mathbf{r} + \pi^{e}$.

Equilibrium

slide 43

What determines what

$$\frac{M}{P} = L(r + \pi^{e}, Y)$$

variablehow determined (in the long run)Mexogenous (the Fed)

slide 44

 \rightarrow adjusts to make S = I

 $\mathbf{P} = \mathbf{F}(\mathbf{K}, \mathbf{L})$ adjusts to make $\frac{\mathbf{M}}{\mathbf{P}} = \mathbf{L}(\mathbf{i}, \mathbf{Y})$

How **P** responds to ΔM

$$\frac{M}{P} = L(r + \pi^{e}, Y)$$

 For given values of *r*, *Y*, and π^e,
 a change in *M* causes *P* to change by the same percentage --- just like in the Quantity Theory of Money.

What about expected inflation?

- Over the long run, people don't consistently over- or under-forecast inflation, so π^e = π on average.
- In the short run, π^e may change when people get new information.
- EX: Suppose Fed announces it will increase
 M next year. People will expect next year's *P* to be higher, so π^e rises.
- This will affect *P* now, even though *M* hasn't changed yet. (continued...)

How *P* responds to $\Delta \pi^e$

$$\frac{M}{P} = L(r + \pi^{e}, Y)$$

For given values of r, Y, and M,

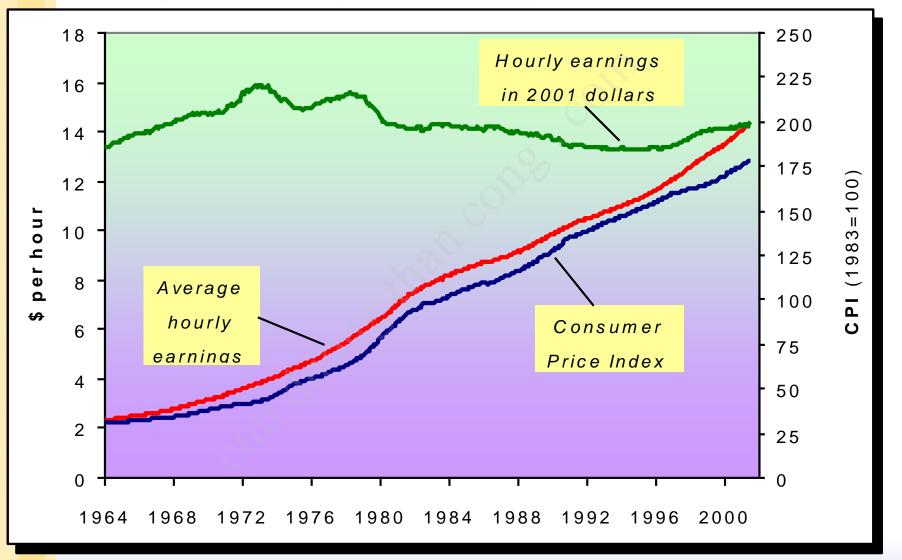
$$\uparrow \pi^{e} \Rightarrow \uparrow i \quad (\text{the Fisher effect}) \Rightarrow \downarrow M / P ^{d} \Rightarrow \uparrow P \quad \text{to make} M / P \quad \text{fall} \quad \text{to re-establish eq'm}$$

CHAPTER 18 Money Supply and Money Demand

slide 47

Discussion Question

Why is inflation bad?


- What costs does inflation impose on society? List all the ones you can think of.
- Focus on the long run.
- Think like an economist.

A common misperception

- Common misperception: inflation reduces real wages
- This is true only in the short run, when nominal wages are fixed by contracts.
- (Chap 3) In the long run, the <u>real</u> wage is determined by labor supply and the marginal product of labor, *not the price level or inflation rate*.
- Consider the data...

Average hourly earnings & the CPI

The classical view of inflation

 The classical view: A change in the price level is merely a change in the units of measurement.

So why, then, is inflation a social problem?

The social costs of inflation

- ...fall into two categories:
- 1. costs when inflation is expected
- additional costs when inflation is different than people had expected.

The costs of expected inflation: **1. shoeleather cost**

- def: the costs and inconveniences of reducing money balances to avoid the inflation tax.
- $\ \ \uparrow \pi \ \Rightarrow \ \ \uparrow i$

 $\Rightarrow \downarrow$ real money balances

- Remember: In long run, inflation doesn't affect real income or real spending.
- So, same monthly spending but lower average money holdings means more frequent trips to the bank to withdraw smaller amounts of cash.

The costs of expected inflation: 2. menu costs

- def: The costs of changing prices.
- Examples:
 - print new menus
 - print & mail new catalogs
- The higher is inflation, the more frequently firms must change their prices and incur these costs.

The costs of expected inflation: 3. relative price distortions

- Firms facing menu costs change prices infrequently.
- Example:

Suppose a firm issues new catalog each January. As the general price level rises throughout the year, the firm's relative price will fall.

- Different firms change their prices at different times, leading to relative price distortions...
- ...which cause microeconomic inefficiencies in the allocation of resources.

The costs of expected inflation: 4. unfair tax treatment

Some taxes are not adjusted to account for inflation, such as the capital gains tax.

Example:

- 1/1/2001: you bought \$10,000 worth of Starbucks stock
- 12/31/2001: you sold the stock for \$11,000, so your nominal capital gain was \$1000 (10%).
- Suppose $\pi = 10\%$ in 2001. Your real capital gain is \$0.
- But the govt requires you to pay taxes on your \$1000 nominal gain!!

The costs of expected inflation: 4. General inconvenience

- Inflation makes it harder to compare nominal values from different time periods.
- This complicates long-range financial planning.

Additional cost of *unexpected* inflation: arbitrary redistributions of purchasing power

- Many long-term contracts not indexed, but based on π^{e} .
- If π turns out different from π^e, then some gain at others' expense.
 Example: borrowers & lenders
 - If π > π^e, then (r π) < (r π^e) and purchasing power is transferred from lenders to borrowers.
 - If $\pi < \pi^{e}$, then purchasing power is transferred from borrowers to lenders.

Additional cost of high inflation: increased uncertainty

- When inflation is high, it's more variable and unpredictable:
 π turns out different from π^e more often, and the differences tend to be larger (though not systematically positive or negative)
- Arbitrary redistributions of wealth become more likely.
- This creates higher uncertainty, which makes risk averse people worse off.

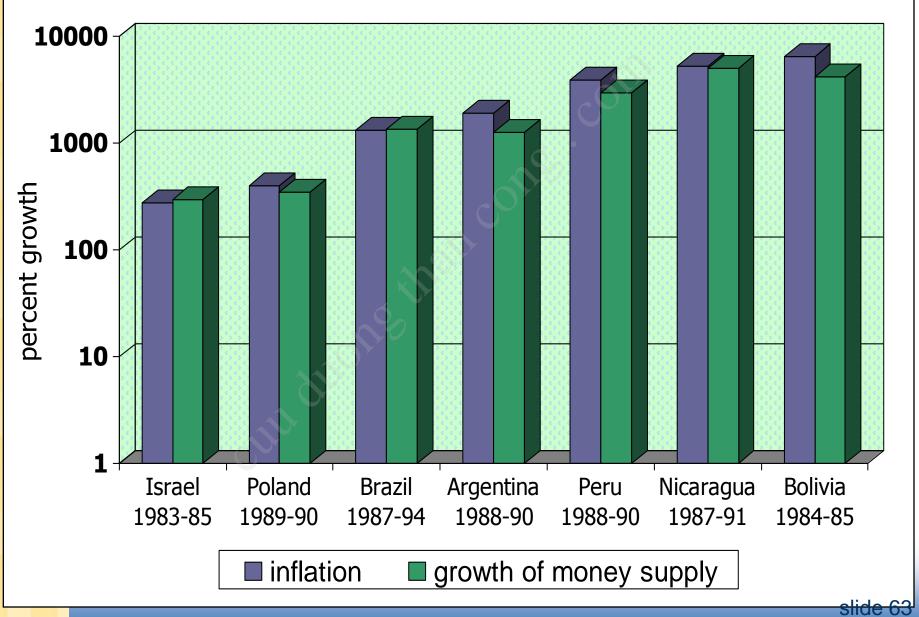
One benefit of inflation

- Nominal wages are rarely reduced, even when the equilibrium real wage falls.
- Inflation allows the real wages to reach equilibrium levels without nominal wage cuts.

 Therefore, moderate inflation improves the functioning of labor markets.

Hyperinflation

- def: $\pi \ge 50\%$ per month
- All the costs of moderate inflation described above become *HUGE* under hyperinflation.
- Money ceases to function as a store of value, and may not serve its other functions (unit of account, medium of exchange).
- People may conduct transactions with barter or a stable foreign currency.



What causes hyperinflation?

- Hyperinflation is caused by excessive money supply growth:
- When the central bank prints money, the price level rises.
- If it prints money rapidly enough, the result is hyperinflation.

Recent episodes of hyperinflation

Why governments create hyperinflation

- When a government cannot raise taxes or sell bonds,
- it must finance spending increases by printing money.
- In theory, the solution to hyperinflation is simple: stop printing money.
- In the real world, this requires drastic and painful fiscal restraint.

The Classical Dichotomy

Real variables are measured in physical units: quantities and relative prices, e.g.

- quantity of output produced
- real wage: output earned per hour of work
- real interest rate: output earned in the future by lending one unit of output today

Nominal variables: measured in money units, e.g.

- nominal wage: dollars per hour of work
- nominal interest rate: dollars earned in future by lending one dollar today
- the price level: the amount of dollars needed to buy a representative basket of goods

The Classical Dichotomy

- Note: Real variables were explained in Chap 3, nominal ones in Chap 4.
- Classical Dichotomy: the theoretical separation of real and nominal variables in the classical model, which implies nominal variables do not affect real variables.
- Neutrality of Money: Changes in the money supply do not affect real variables.
 In the real world, money is approximately neutral in the long run.

slide 66

1. Money

- the stock of assets used for transactions
- serves as a medium of exchange, store of value, and unit of account.
- Commodity money has intrinsic value, fiat money does not.
- Central bank controls money supply.
- 2. Quantity theory of money
 - assumption: velocity is stable
 - conclusion: the money growth rate determines the inflation rate.

3. Nominal interest rate

- equals real interest rate + inflation rate.
- Fisher effect: nominal interest rate moves one-for-one w/ expected inflation.
- is the opp. cost of holding money
- 4. Money demand
 - depends on income in the Quantity Theory
 - more generally, it also depends on the nominal interest rate;

if so, then changes in expected inflation affect the current price level.

- 5. Costs of inflation
 - Expected inflation shoeleather costs, menu costs, tax & relative price distortions, inconvenience of correcting figures for inflation
 - Unexpected inflation all of the above plus arbitrary redistributions of wealth between debtors and creditors

6. Hyperinflation

- caused by rapid money supply growth when money printed to finance govt budget deficits
- stopping it requires fiscal reforms to eliminate govt's need for printing money

- 7. Classical dichotomy
 - In classical theory, money is neutral--does not affect real variables.
 - So, we can study how real variables are determined w/o reference to nominal ones.
 - Then, eq'm in money market determines price level and all nominal variables.
 - Most economists believe the economy works this way in the long run.

slide 72

Banks' role in the money supply

The money supply equals currency plus demand (checking account) deposits:

$$\boldsymbol{M} = \boldsymbol{C} + \boldsymbol{D}$$

 Since the money supply includes demand deposits, the banking system plays an important role.

A few preliminaries

- Reserves (R): the portion of deposits that banks have not lent.
- To a bank, liabilities include deposits, assets include reserves and outstanding loans
- 100-percent-reserve banking: a system in which banks hold all deposits as reserves.
- Fractional-reserve banking: a system in which banks hold a fraction of their deposits as reserves.

SCENARIO 1: No Banks

With no banks, $\boldsymbol{D} = 0$ and $\boldsymbol{M} = \boldsymbol{C} = \1000 .

SCENARIO 2: 100 Percent Reserve Banking

- Initially C = \$1000, D = \$0, M = \$1000.
- Now suppose households deposit the \$1000 at "Firstbank."

FIRSTBANK'S		
balance sheet		
Assets	Liabilities	
reserves \$1000	deposits \$1000	
Ô		

- After the deposit,
 - C = \$0,
 - D = \$1000,

 100% Reserve Banking has no impact on size of money supply.

- Suppose banks hold 20% of deposits in reserve, making loans with the rest.
- Firstbank will make \$800 in loans.

FIRSTBANK'S balance sheet		
Assets Liabilities		
reserves \$200	deposits \$1000	
loans \$800		

The money supply now equals \$1800: The depositor still has \$1000 in demand deposits, but now the borrower holds \$800 in currency.

Thus, in a fractional-reserve banking system, <u>banks create money</u>.

FIRSTBANK'S		
balance sheet		
Assets	Liabilities	
reserves \$200	deposits \$1000	
loans \$800		

The money supply now equals \$1800: The depositor still has \$1000 in demand deposits, but now the borrower holds \$800 in currency.

- Suppose the borrower deposits the \$800 in Secondbank.
- Initially, Secondbank's balance sheet is:

SECONDBANK'S			
balance sheet			
Asse	ets	Liabilities	
reserves	\$160	deposits \$800	
loans	\$640		

- But then Secondbank will loan 80% of this deposit
- and its balance sheet will look like this:

- If this \$640 is eventually deposited in Thirdbank,
- then Thirdbank will keep 20% of it in reserve, and loan the rest out:

THIRDBANK'S			
balance sheet			
Assets	Liabilities		
reserves \$128	deposits \$640		
loans \$512			

Finding the total amount of money:

- Original deposit = \$1000
- + Firstbank lending = \$ 800
- + Secondbank lending = \$ 640
- + Thirdbank lending = \$512

+ other lending...

Total money supply = $(1/rr) \times \$1000$ where rr = ratio of reserves to deposits In our example, rr = 0.2, so M = \$5000

Money creation in the banking system

A fractional reserve banking system creates money, but it doesn't create wealth: bank loans give borrowers some new money and an equal amount of new debt.

A model of the money supply

exogenous variables

- the monetary base, B = C + R controlled by the central bank
- the reserve-deposit ratio, rr = R/D depends on regulations & bank policies
- the currency-deposit ratio, cr = C/D depends on households' preferences

CHAPTER 18 Money Supply and Money Demand

Solving for the money supply:

The money multiplier

$$M = m \times B$$
, where m

$$\frac{cr + 1}{cr + rr}$$

- If *rr* < 1, then *m* > 1
- If monetary base changes by ΔB , then $\Delta M = m \times \Delta B$
- *m* is called the money multiplier.

Exercise

Suppose households decide to hold more of their money as currency and less in the form of demand deposits.

1. Determine impact on money supply.

2. Explain the intuition for your result.

Solution to exercise

Impact of an increase in the currency-deposit ratio $\Delta cr > 0$.

- An increase in *cr* increases the denominator of *m* proportionally more than the numerator. So *m* falls, causing *M* to fall too.
- If households deposit less of their money, then banks can't make as many loans, so the banking system won't be able to "create" as much money.

Three instruments of monetary policy

Open market operations
 Reserve requirements
 The discount rate

Open market operations

definition:

The purchase or sale of government bonds by the Federal Reserve.

how it works: If Fed buys bonds from the public, it pays with new dollars, increasing *B* and therefore *M*.

Reserve requirements

• definition:

Fed regulations that require banks to hold a minimum reserve-deposit ratio.

how it works:

Reserve requirements affect *rr* and *m*: If Fed reduces reserve requirements, then banks can make more loans and "create" more money from each deposit.

The discount rate

• *definition:*

The interest rate that the Fed charges on loans it makes to banks.

how it works:

When banks borrow from the Fed, their reserves increase, allowing them to make more loans and "create" more money.

The Fed can increase **B** by lowering the discount rate to induce banks to borrow more reserves from the Fed.

Which instrument is used most often?

- Open market operations: Most frequently used.
- Changes in reserve requirements: Least frequently used.
- Changes in the discount rate: Largely symbolic; the Fed is a "lender of last resort," does not usually make loans to banks on demand.

Why the Fed can't precisely control M

$$M = m \times B$$
, where m

$$= \frac{cr + 1}{cr + rr}$$

- Households can change *cr*, causing *m* and *M* to change.
- Banks often hold excess reserves

 (reserves above the reserve requirement).
 If banks change their excess reserves,
 then *rr*, *m* and *M* change.

CASE STUDY: Bank failures in the 1930s

From 1929 to 1933,

- Over 9000 banks closed.
- Money supply fell 28%.

This drop in the money supply may have caused the Great Depression.

It certainly contributed to the Depression's severity.

Table 18-1: The Money Supply and itsDeterminants: 1929 and 1933

	August 1929	March 1933
Money Supply	26.5	19.0
Currency	3.9	5.5
Demand deposits	22.6	13.5
Monetary Base	7.1	8.4
Currency	3.9	5.5
Reserves	3.2	2.9
Money Multiplier	3.7	2.3
Reserve – deposit ratio	0.14	0.21
Currency—deposit ratio	0.17	0.41

cr rose due to loss of confidence in banks

Table 18-1: The Money Supply and itsDeterminants: 1929 and 1933

	August 1929	March 1933
Money Supply	26.5	19.0
Currency	3.9	5.5
Demand deposits	22.6	13.5
Monetary Base	7.1	8.4
Currency	3.9	5.5
Reserves	3.2	2.9
Money Multiplier	3.7	2.3
Reserve — deposit ratio	0.14	0.21
Currency—deposit ratio	0.17	0.41

rr rose because banks became more cautious, increased excess reserves

Table 18-1: The Money Supply and itsDeterminants: 1929 and 1933

	August 1929	March 1933
Money Supply	26.5	19.0
Currency	3.9	5.5
Demand deposits	22.6	13.5
Monetary Base	7.1	8.4
Currency	3.9	5.5
Reserves	3.2	2.9
Money Multiplier	3.7	2.3
Reserve — deposit ratio	0.14	0.21
Currency—deposit ratio	0.17	0.41

The rise in *cr* and *rr* reduced the money multiplier.

Could this happen again?

Many policies have been implemented since the 1930s to prevent such widespread bank failures.

Example: Federal Deposit Insurance, to prevent bank runs and large swings in the currency-deposit ratio.

Money Demand

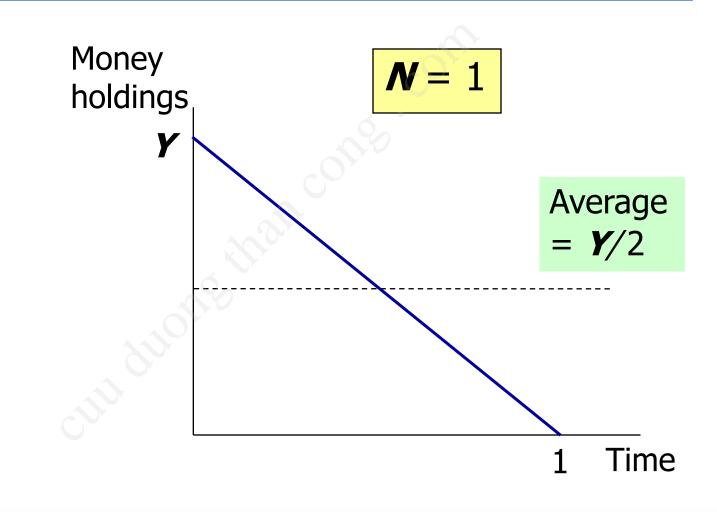
Two types of theories:

- Portfolio theories
 - emphasize "store of value" function
 - relevant for M2, M3
 - not relevant for M1. (As a store of value, M1 is **dominated** by other assets.)
- Transactions theories
 - emphasize "medium of exchange" function
 - also relevant for M1

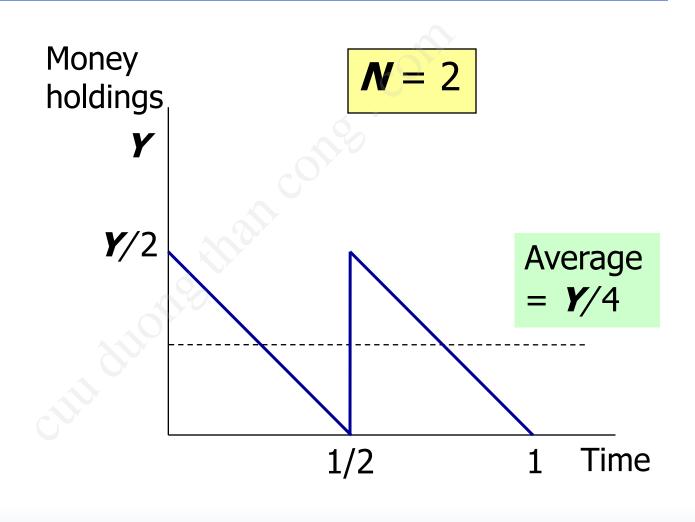
A simple portfolio theory

$$(M / P)^{d} = L(r_{s}, r_{b}, \pi^{e}, W_{+}),$$

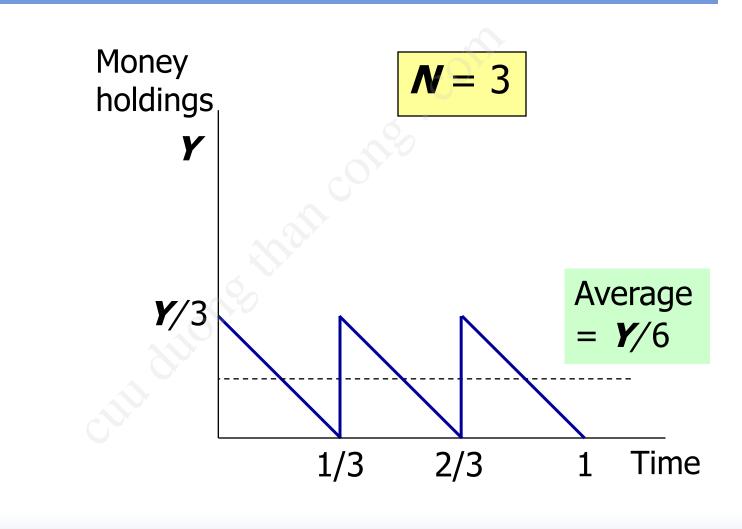
where


- r_s = expected real return on stock
- r_{b} = expected real return on bonds
- π^{e} = expected inflation rate
- ₩ = real wealth

The Baumol-Tobin Model


- A transactions theory of money demand.
- Notation:
 - **Y** = total spending, done gradually over the year
 - *i* = interest rate on savings account
 - N = number of trips consumer makes to the bank to withdraw money from savings account
 - F = cost of a trip to the bank (e.g., if a trip takes 15 minutes and consumer's wage = \$12/hour, then F = \$3)

Money holdings over the year

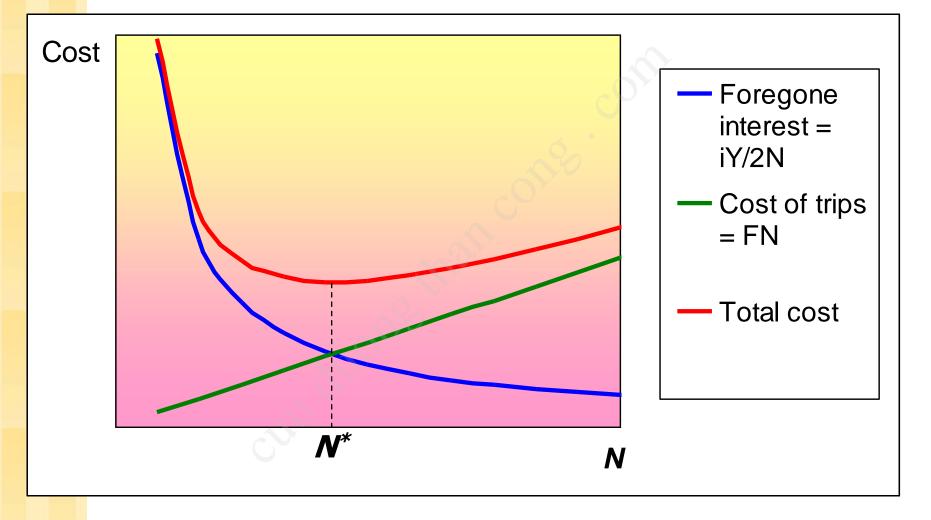

CHAPTER 18 Money Supply and Money Demand

Money holdings over the year

CHAPTER 18 Money Supply and Money Demand

Money holdings over the year

CHAPTER 18 Money Supply and Money Demand


The cost of holding money

- In general, average money holdings = Y/2N
- Foregone interest = *i*×(*Y*/2*N*)
- Cost of **N** trips to bank = $F \times N$
- Thus,

total cost =
$$i \times \frac{Y}{2N} + F \times N$$

 Given Y, i, and F, consumer chooses N to minimize total cost

Finding the cost-minimizing N

CHAPTER 18 Money Supply and Money Demand

The money demand function

- The cost-minimizing value of N: $N^* = \sqrt{\frac{iY}{2F}}$
- To obtain the money demand function, plug N* into the expression for average money holdings:

average money holding =
$$\sqrt{\frac{\gamma}{2}}$$

 Money demand depends positively on Y and F, and negatively on i.

The money demand function

The Baumol-Tobin money demand function:

$$(\boldsymbol{M} | \boldsymbol{P})^{d} = \sqrt{\frac{\boldsymbol{Y} \boldsymbol{F}}{2\boldsymbol{i}}} = \boldsymbol{L}(\boldsymbol{i}, \boldsymbol{Y}, \boldsymbol{F})$$

How the B-T money demand func. differs from the money demand func. from previous chapters:

- B-T shows how F affects money demand
- B-T implies that the income elasticity of money demand = 0.5, interest rate elasticity of money demand = -0.5

EXERCISE: The impact of ATMs on money demand

During the 1980s, automatic teller machines became widely available.

How do you think this affected **N*** and money demand? Explain.

Financial Innovation, Near Money, and the Demise of the Monetary Aggregates

Examples of financial innovation:

- many checking accounts now pay interest
- very easy to buy and sell assets
- mutual funds are baskets of stocks that are easy to redeem - just write a check

Non-monetary assets having some of the liquidity of money are called **near money**.

Money & near money are close substitutes, and switching from one to the other is easy.

Financial Innovation, Near Money, and the Demise of the Monetary Aggregates

- The rise of near money makes money demand less stable and complicates monetary policy.
- 1993: the Fed switched from targeting monetary aggregates to targeting the Federal Funds rate.
- This change may help explain why the U.S. economy was so stable during the rest of the 1990s.

Chapter summary

- Fractional reserve banking creates money because each dollar of reserves generates many dollars of demand deposits.
- 2. The money supply depends on the
 - monetary base
 - currency-deposit ratio
 - reserve ratio
- 3. The Fed can control the money supply with
 - open market operations
 - the reserve requirement
 - the discount rate

Chapter summary

4. Portfolio theories of money demand

- stress the store of value function
- posit that money demand depends on risk/return of money & alternative assets
- 5. The Baumol-Tobin model
 - is an example of the transactions theories of money demand, stresses "medium of exchange" function
 - money demand depends positively on spending, negatively on the interest rate, and positively on the cost of converting nonmonetary assets to money