Lesson 4: Consumer Behavior

Uncertainty
 Market Demand
 Market equilibrium

1. Uncertainty Uncertainty is Pervasive

- What is uncertain in economic systems?
 - -tomorrow's prices
 - -future wealth
 - -future availability of commodities
 - present and future actions of other people.

Uncertainty is Pervasive

- What are rational responses to uncertainty?
 - buying insurance (health, life, auto)
 a portfolio of contingent consumption goods.

States of Nature

Possible states of Nature: -"car accident" (a) -"no car accident" (na). \diamond Accident occurs with probability π_{a} does not with probability π_{na} ; $\pi_a + \pi_{na} = 1.$ Accident causes a loss of \$L.

Contingencies

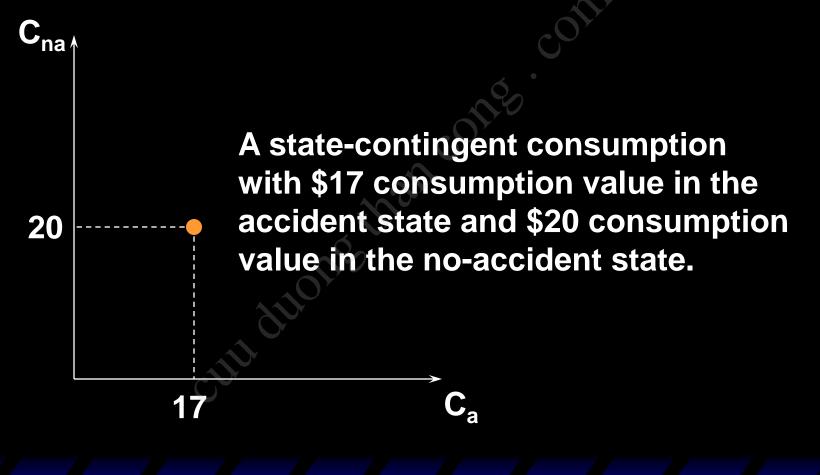
 A contract implemented only when a particular state of Nature occurs is state-contingent.

 E.g. the insurer pays only if there is an accident.

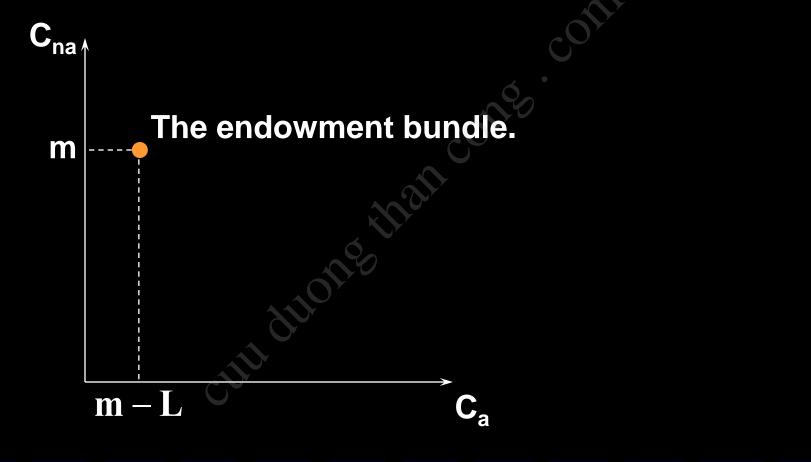
Contingencies

- A state-contingent consumption plan is implemented only when a particular state of Nature occurs.
- E.g. take a vacation only if there is no accident.

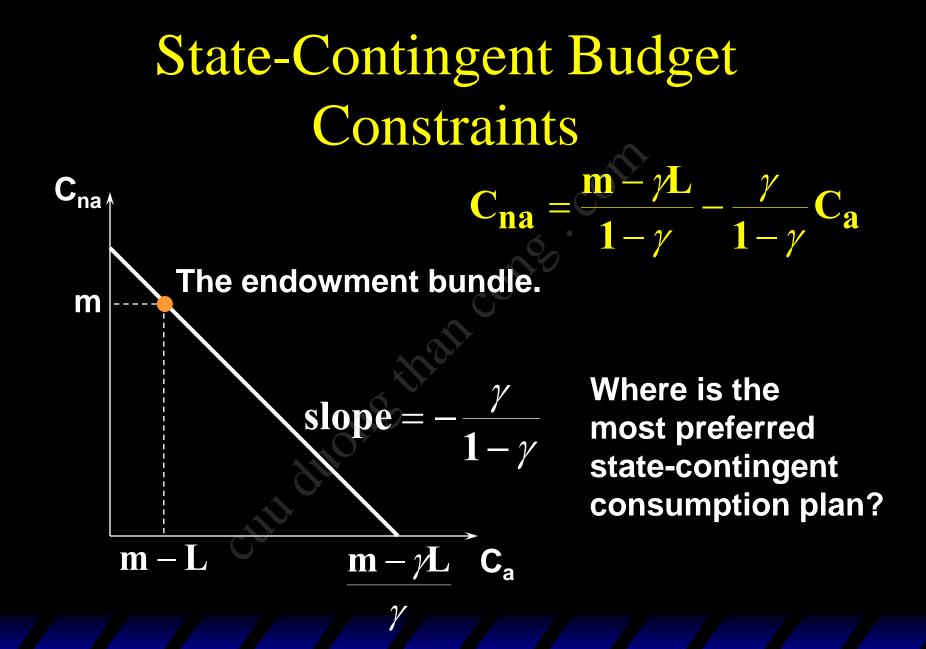
- Each \$1 of accident insurance costs γ .
- Consumer has \$m of wealth.
- C_{na} is consumption value in the noaccident state.
- C_a is consumption value in the accident state.



Without insurance,
 C_a = m - L
 C_{na} = m.



Buy \$K of accident insurance. $\diamond C_{na} = m - \gamma K.$ $\diamond C_a = m - L - \gamma K + K = m - L + (1 - \gamma)K.$ $\diamond So(K) = (C_a - m + L)/(1 - \gamma)$ $And C_{na} = m - \gamma (C_a - m + L)/(1 - \gamma)$ $\mathbf{C_{na}} = \frac{\mathbf{m} - \gamma \mathbf{L}}{1 - \gamma} - \frac{\gamma}{1 - \gamma} \mathbf{C_{a}}$ ♦ I.e.



Think of a lottery.

Win \$90 with probability 1/2 and win \$0 with probability 1/2.

♦ U(\$90) = 12, U(\$0) = 2.

Expected utility is

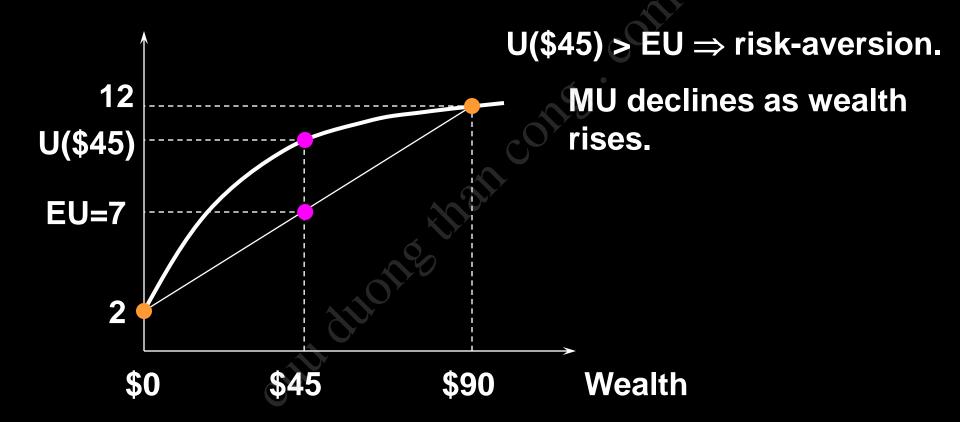
 $EU = \frac{1}{2} \times U(\$90) + \frac{1}{2} \times U(\$0)$ $= \frac{1}{2} \times 12 + \frac{1}{2} \times 2 = 7.$

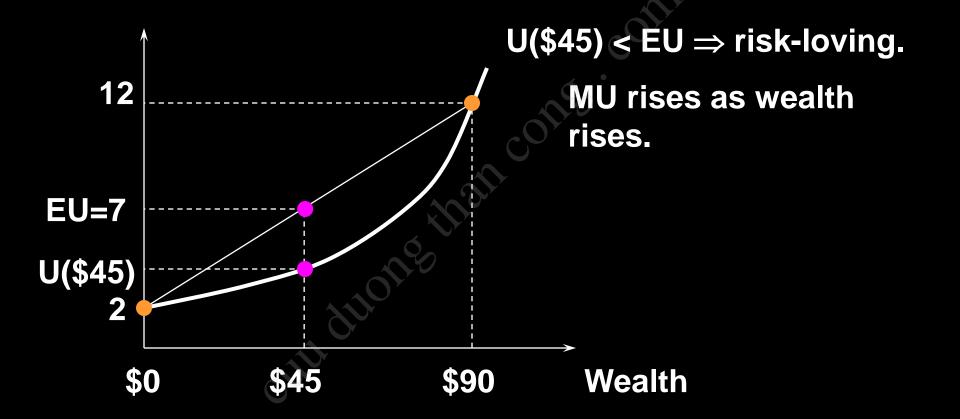
Think of a lottery.

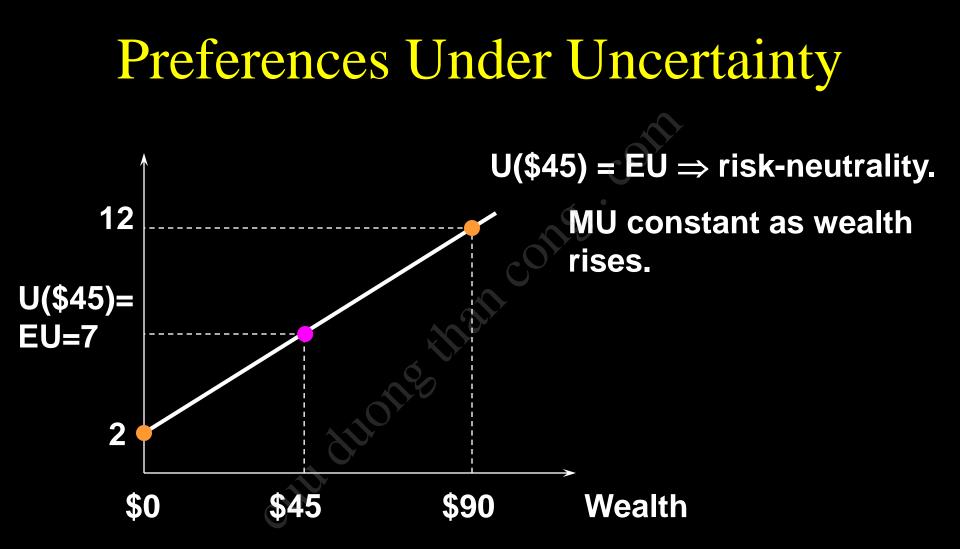
- Win \$90 with probability 1/2 and win \$0 with probability 1/2.
- Expected money value of the lottery is $EM = \frac{1}{2} \times \$90 + \frac{1}{2} \times \$0 = \$45.$

♦ EU = 7 and EM = \$45.

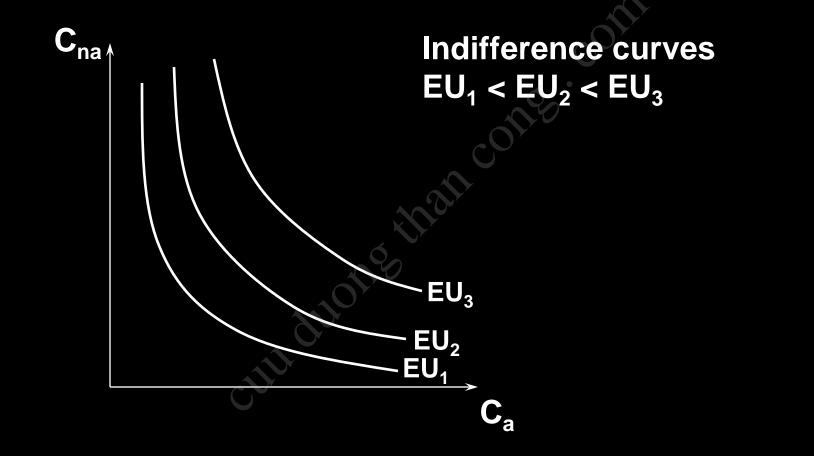
- ♦ U(\$45) > 7 ⇒ \$45 for sure is preferred to the lottery ⇒ risk-aversion.
- ♦ U(\$45) < 7 ⇒ the lottery is preferred to \$45 for sure ⇒ risk-loving.
- ♦ U(\$45) = 7 ⇒ the lottery is preferred equally to \$45 for sure ⇒ riskneutrality.





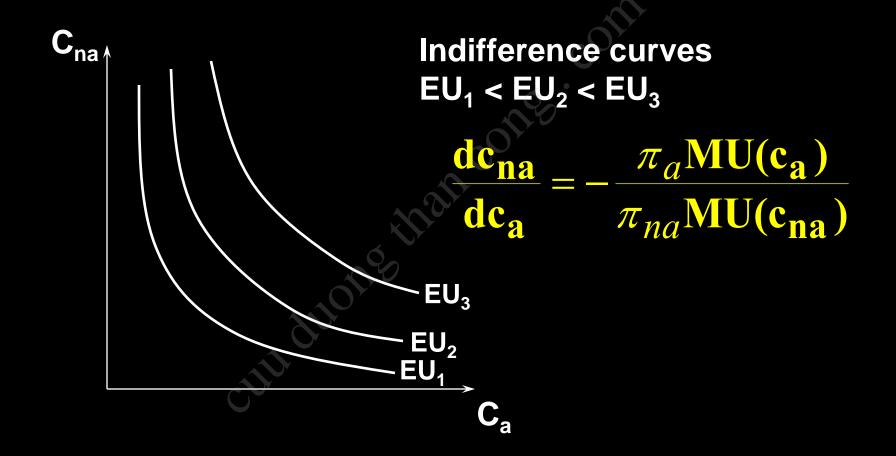


 State-contingent consumption plans that give equal expected utility are equally preferred.



- What is the MRS of an indifference curve?
- ♦ Get consumption c₁ with prob. π₁ and c₂ with prob. π₂ (π₁ + π₂ = 1).
 ♦ EU = π₁U(c₁) + π₂U(c₂).
 ♦ For constant EU, dEU = 0.

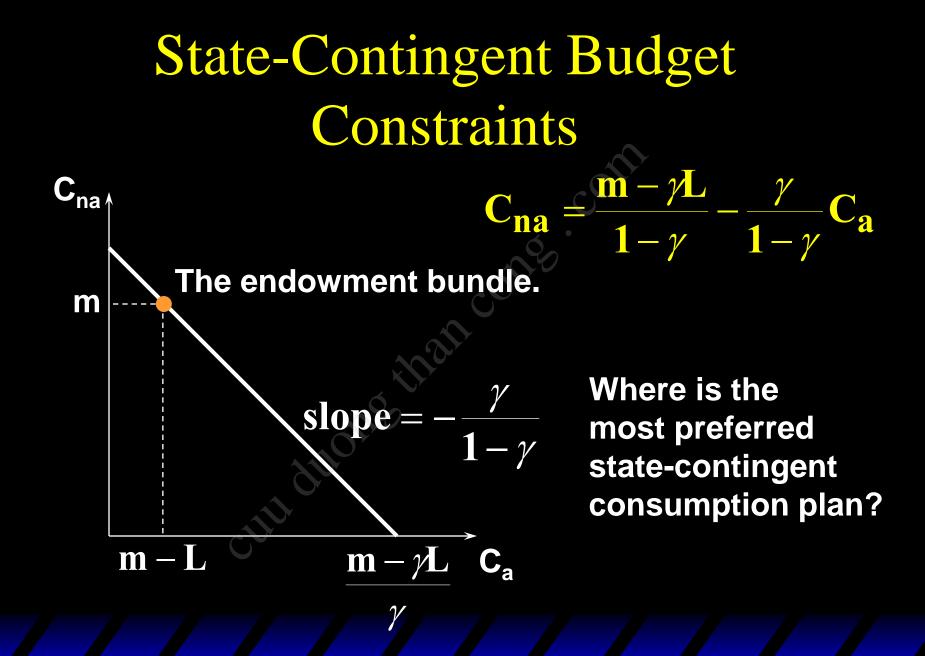
Preferences Under Uncertainty $\mathbf{E}\mathbf{U} = \pi_1 \mathbf{U}(\mathbf{c}_1) + \pi_2 \mathbf{U}(\mathbf{c}_2)$ $dEU = \pi_1 MU(c_1)dc_1 + \pi_2 MU(c_2)dc_2$ $dEU = 0 \Rightarrow \pi_1 MU(c_1)dc_1 + \pi_2 MU(c_2)dc_2 = 0$ $\Rightarrow \pi_1 \mathrm{MU}(\mathbf{c}_1) \mathrm{d} \mathbf{c}_1 = -\pi_2 \mathrm{MU}(\mathbf{c}_2) \mathrm{d} \mathbf{c}_2$ $\Rightarrow \frac{dc_2}{dc_1} = \frac{\pi_1 MU(c_1)}{\pi_2 MU(c_2)}$

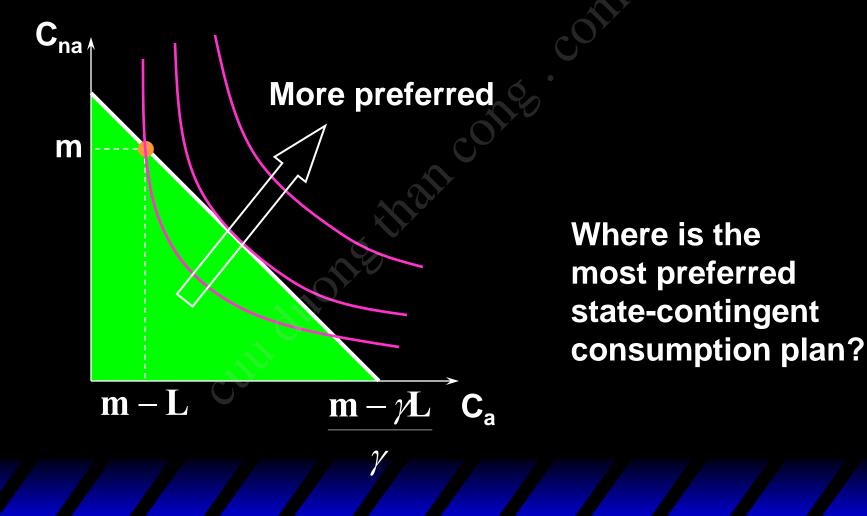


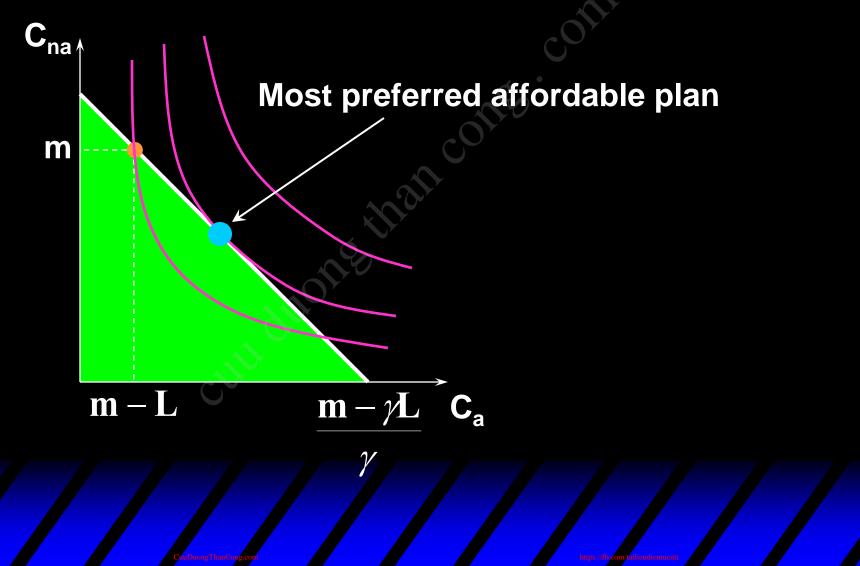
Choice Under Uncertainty

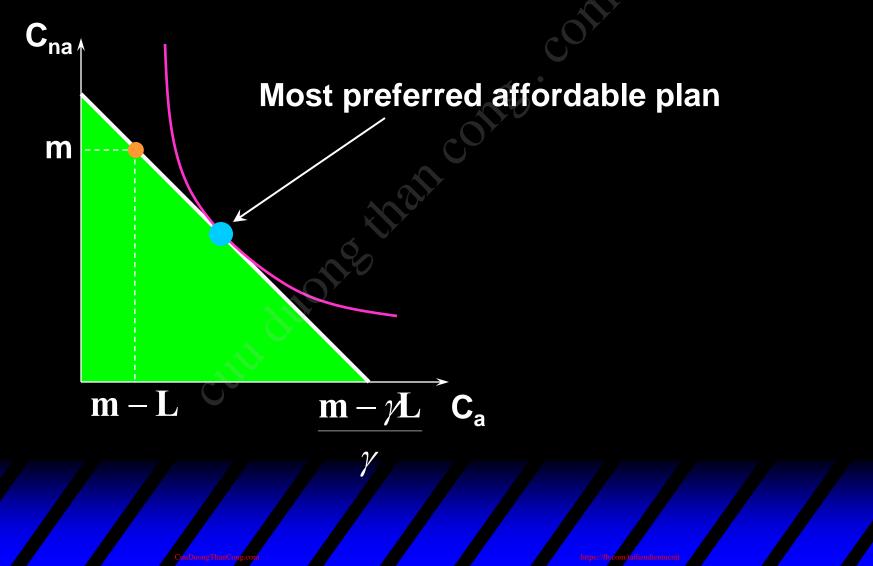
Q: How is a rational choice made under uncertainty?

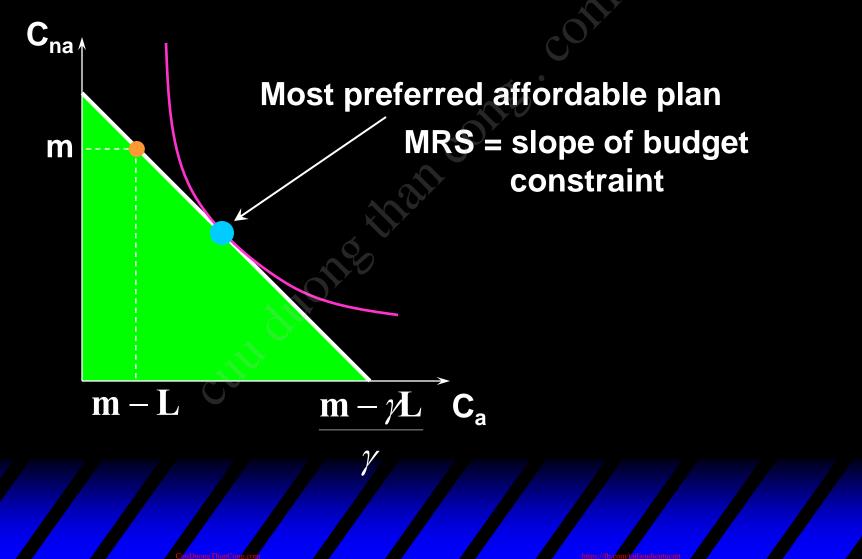
 A: Choose the most preferred affordable state-contingent consumption plan.

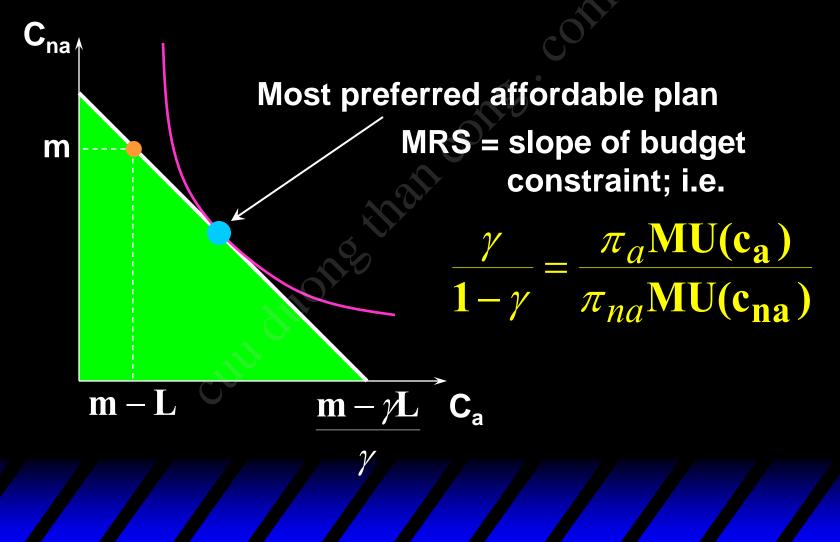












Competitive Insurance

 Suppose entry to the insurance industry is free. Expected economic profit = 0. • I.e. $\gamma K - \pi_a K - (1 - \pi_a) 0 = (\gamma - \pi_a) K = 0$. ♦ I.e. free entry \Rightarrow $\gamma = \pi_a$. If price of \$1 insurance = accident probability, then insurance is fair.

Competitive Insurance

When insurance is fair, rational insurance choices satisfy $\frac{\gamma}{1-\gamma} = \frac{\pi_a}{1-\pi_a} = \frac{\pi_a MU(c_a)}{\pi_{na}MU(c_{na})}$ • I.e. $MU(c_a) = MU(c_{na})$ Marginal utility of income must be the same in both states.

Competitive Insurance

♦ How much fair insurance does a risk-averse consumer buy? MU(c_a) = MU(c_{na})
♦ Risk-aversion ⇒ MU(c) ↓ as c ↑.
♦ Hence c_a = c_{na}.
♦ I.e. full-insurance.

"Unfair" Insurance

• Suppose insurers make positive expected economic profit. • I.e. $\gamma K - \pi_a K - (1 - \pi_a)0 = (\gamma - \pi_a)K > 0$. • Then $\Rightarrow \gamma > \pi_a \Rightarrow \frac{\gamma}{1 - \gamma} > \frac{\pi_a}{1 - \pi_a}$. "Unfair" Insurance

 Rational choice requires $\frac{\gamma}{1-\gamma} = \frac{\pi_a MU(c_a)}{\pi_{na} MU(c_{na})}$ $\bullet \text{ Since } \frac{\gamma}{1-\gamma} > \frac{\pi_a}{1-\pi_a}, \quad \text{MU}(\mathbf{c}_a) > \text{MU}(\mathbf{c}_{na})$ \diamond Hence $c_a < c_{na}$ for a risk-averter. I.e. a risk-averter buys less than full "unfair" insurance.

Uncertainty is Pervasive

- What are rational responses to uncertainty?
- ✓ buying insurance (health, life, auto)
- ? -a portfolio of contingent consumption goods.

- Two firms, A and B. Shares cost \$10.
- With prob. 1/2 A's profit is \$100 and B's profit is \$20.
- With prob. 1/2 A's profit is \$20 and B's profit is \$100.
- You have \$100 to invest. How?

Buy only firm A's stock?
\$100/10 = 10 shares.
You earn \$1000 with prob. 1/2 and \$200 with prob. 1/2.
Expected earning: \$500 + \$100 = \$600

Buy only firm B's stock?
\$100/10 = 10 shares.
You earn \$1000 with prob. 1/2 and \$200 with prob. 1/2.
Expected earning: \$500 + \$100 = \$600

Buy 5 shares in each firm? You earn \$600 for sure. Oiversification has maintained expected earning and lowered risk. Typically, diversification lowers expected earnings in exchange for lowered risk.

Risk Spreading/Mutual Insurance

100 risk-neutral persons each independently risk a \$10,000 loss. Loss probability = 0.01. Initial wealth is \$40,000. No insurance: expected wealth is $0.99 \times \$40,000 + 0.01(\$40,000 - \$10,000)$ =\$39,900.

Risk Spreading/Mutual Insurance

• Mutual insurance: Expected loss is $0 \cdot 01 \times \$10,000 = \$100.$

- Each of the 100 persons pays \$1 into a mutual insurance fund.
- Mutual insurance: expected wealth is \$40,000 \$1 = \$39,999 > \$39,900.
- Risk-spreading benefits everyone.

2. Market Demand

From Individual to Market Demand Functions

Think of an economy containing n consumers, denoted by i = 1, ...,n.
 Consumer i's ordinary demand

 $x_{i}^{*i}(p_{1},p_{2},m^{i})$

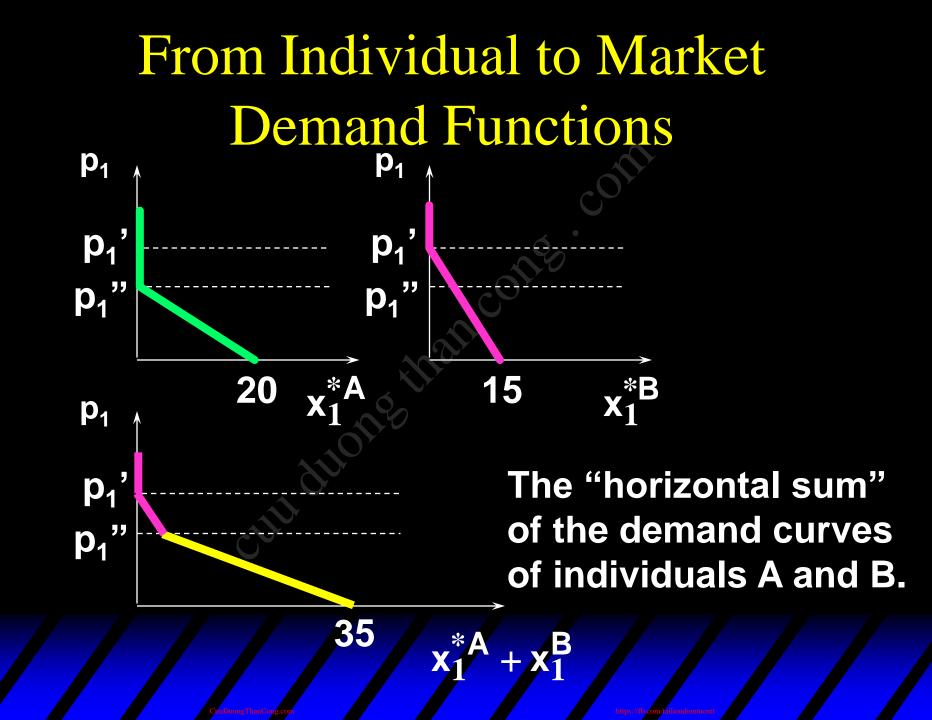
function for commodity j is

From Individual to Market **Demand Functions** When all consumers are price-takers, the market demand function for commodity j is $X_{j}(p_{1},p_{2},m^{1},\Lambda,m^{n}) = \sum_{j=1}^{n} x_{j}^{*i}(p_{1},p_{2},m^{i}).$ If all consumers are identical then $X_j(p_1,p_2,M) = n \times x_i^*(p_1,p_2,m)$ where M = nm.

From Individual to Market Demand Functions

 The market demand curve is the "horizontal sum" of the individual consumers' demand curves.

E.g. suppose there are only two consumers; i = A,B.



Elasticities

 Elasticity measures the "sensitivity" of one variable with respect to another.

<u>⁰∕₀∆</u>X

- <mark>% Δy</mark>

The elasticity of variable X with respect to variable Y is

Ex,y

Economic Applications of Economists use elasticities to measure the sensitivity of -quantity demanded of commodity i with respect to the price of commodity i (own-price elasticity of demand)

 demand for commodity i with respect to the price of commodity j (cross-price elasticity of demand). Economic Applications of Elasticity

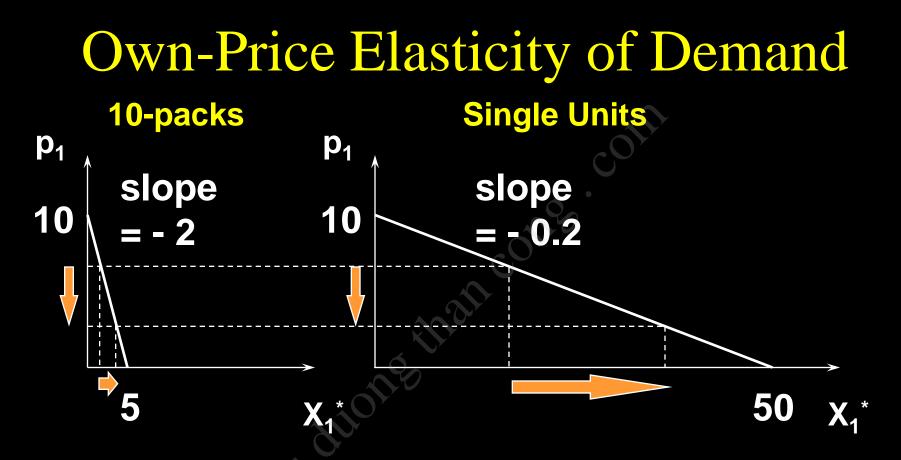
- demand for commodity i with respect to income (income elasticity of demand)
- quantity supplied of commodity i with respect to the price of commodity i (own-price elasticity of supply)

Economic Applications of Elasticity

- quantity supplied of commodity i with respect to the wage rate (elasticity of supply with respect to the price of labor)
- -and many, many others.

Own-Price Elasticity of Demand

 Q: Why not use a demand curve's slope to measure the sensitivity of quantity demanded to a change in a commodity's own price?



In which case is the quantity demanded X_1^* more sensitive to changes to p_1 ? It is the same in both cases.

Own-Price Elasticity of Demand

Q: Why not just use the slope of a demand curve to measure the sensitivity of quantity demanded to a change in a commodity's own price? A: Because the value of sensitivity then depends upon the (arbitrary) units of measurement used for quantity demanded.

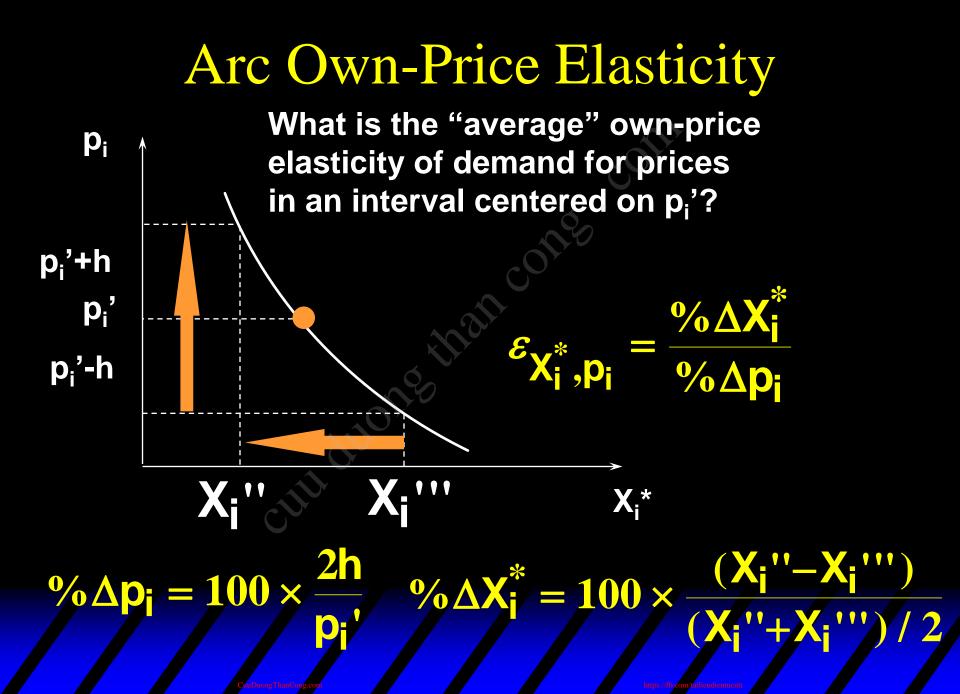
Own-Price Elasticity of Demand $\mathcal{E}_{\mathbf{x}_{1}^{*},\mathbf{p}_{1}} = \frac{\sqrt[6]{\Delta \mathbf{x}_{1}^{*}}}{\sqrt[6]{\Delta \mathbf{p}_{1}}}$

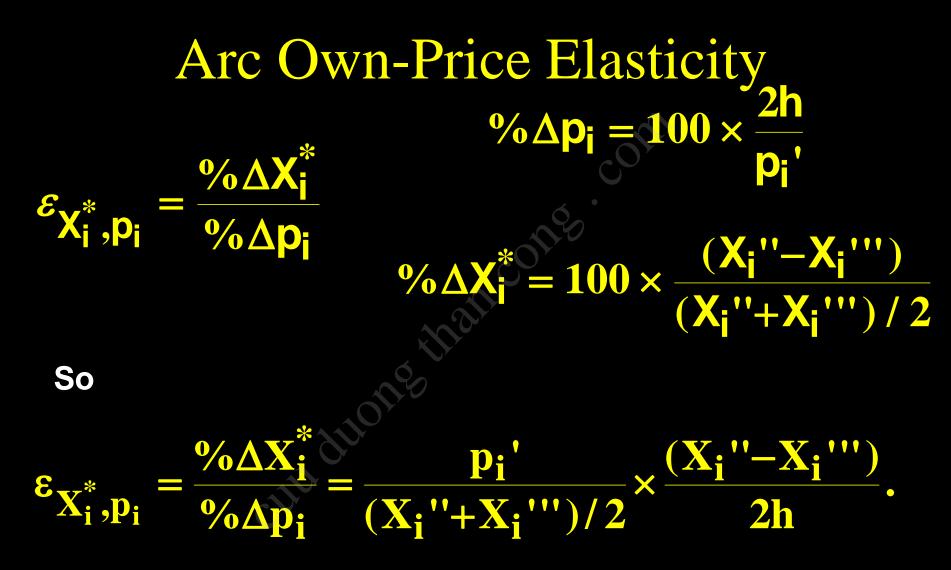
is a ratio of percentages and so has no units of measurement. Hence own-price elasticity of demand is a sensitivity measure that is independent of units of measurement.

Arc and Point Elasticities

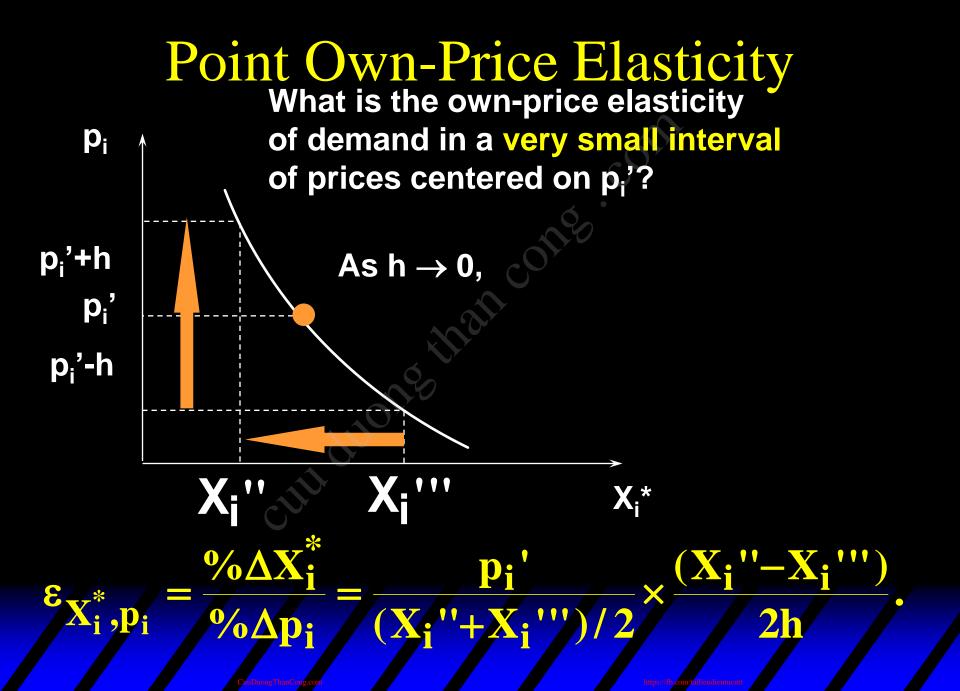
An "average" own-price elasticity of demand for commodity i over an interval of values for p_i is an arcelasticity, usually computed by a mid-point formula.

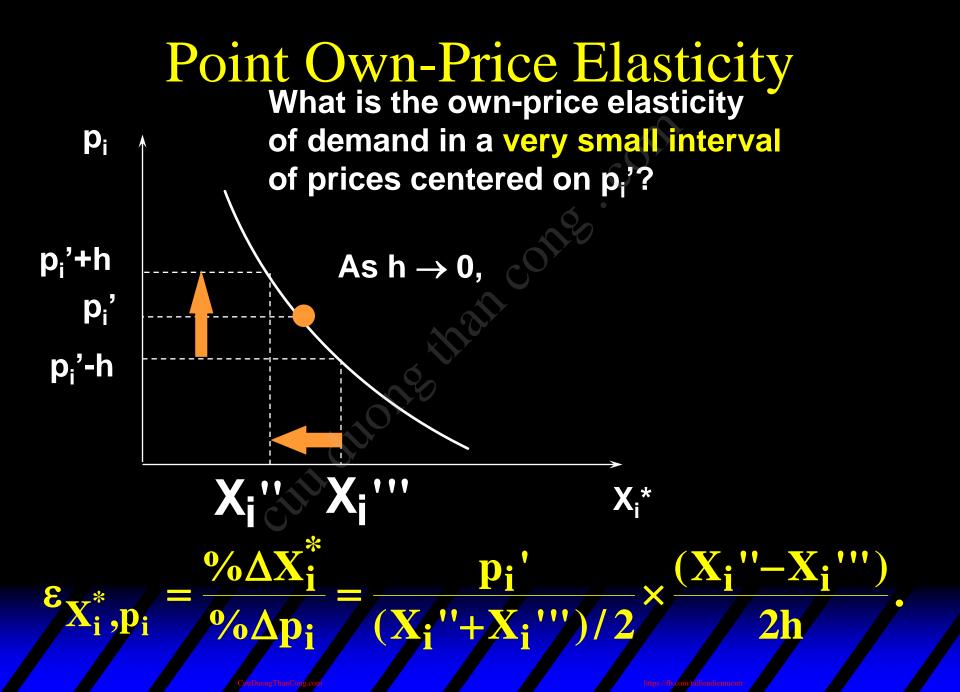
 Elasticity computed for a single value of p_i is a point elasticity.

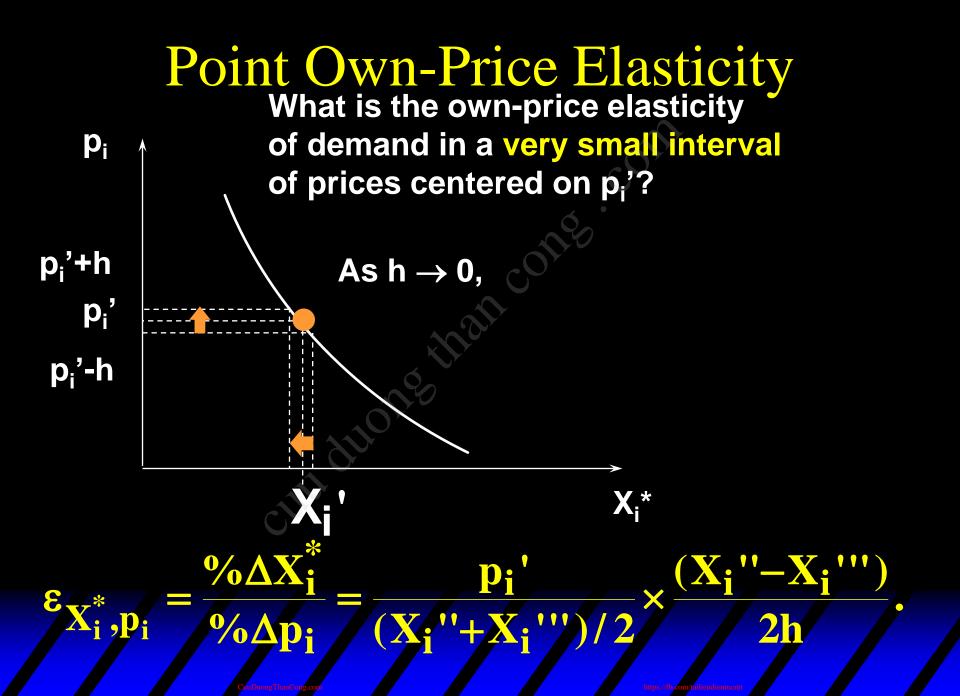


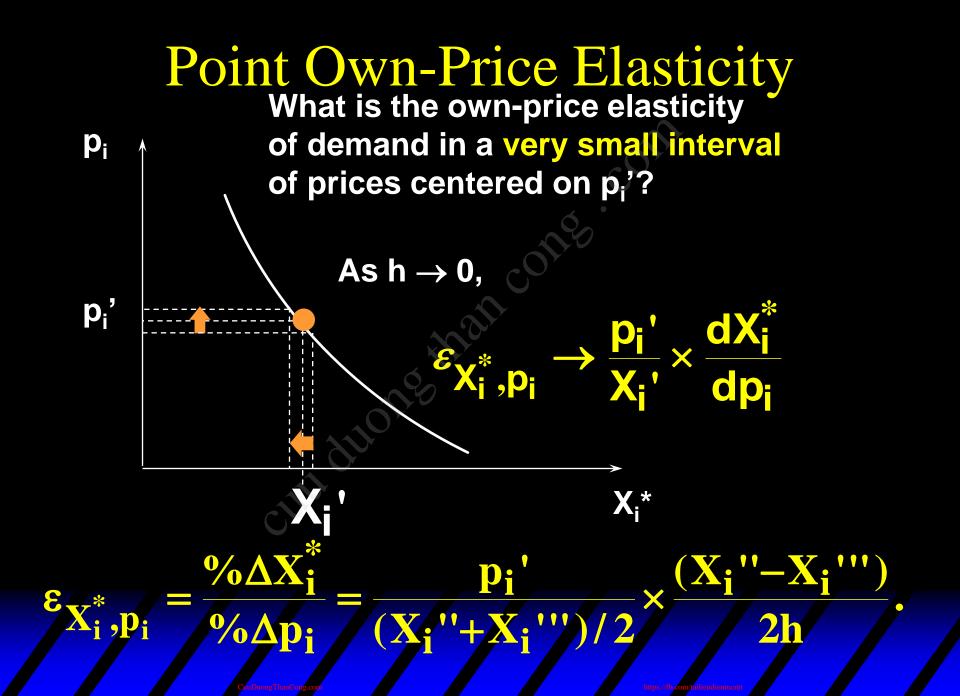


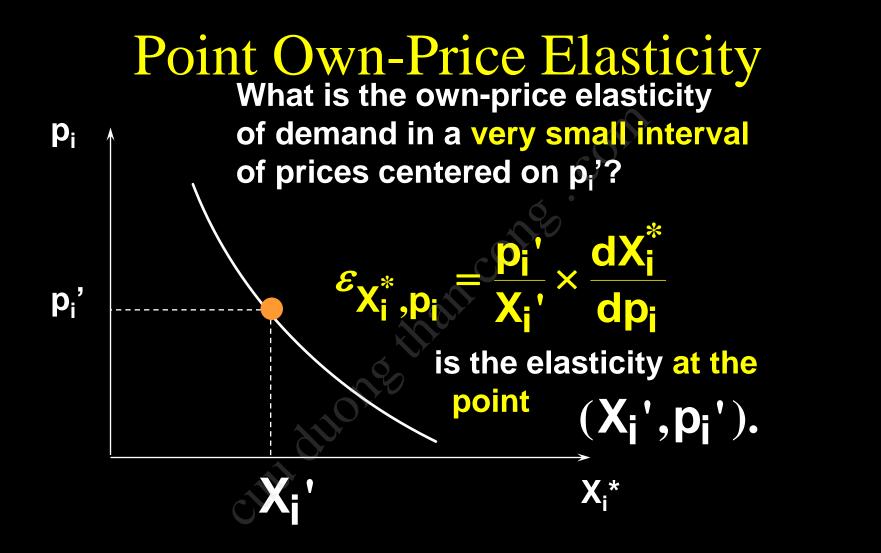
is the arc own-price elasticity of demand.

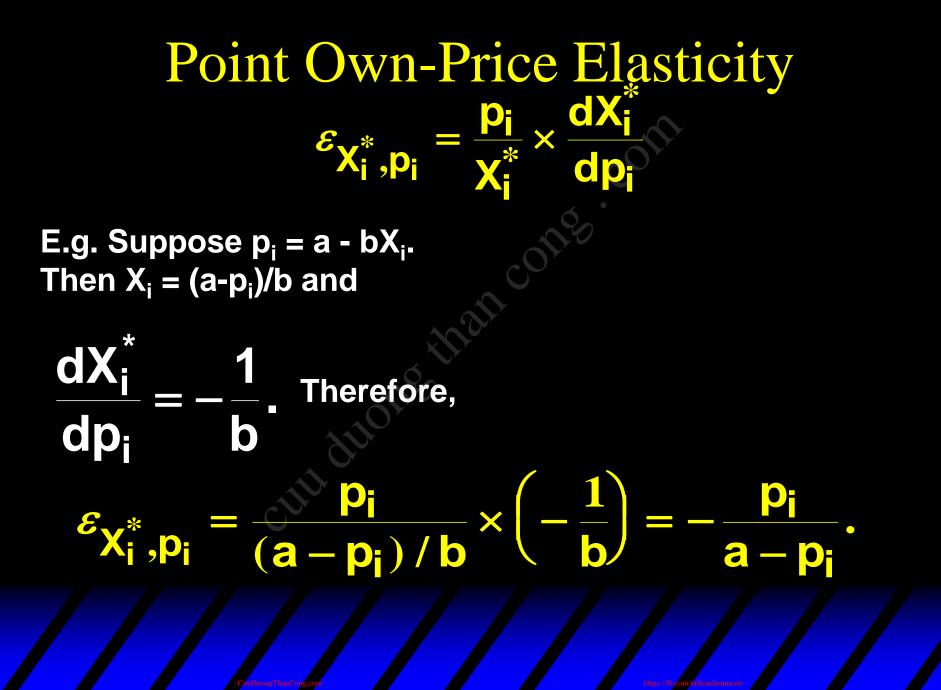


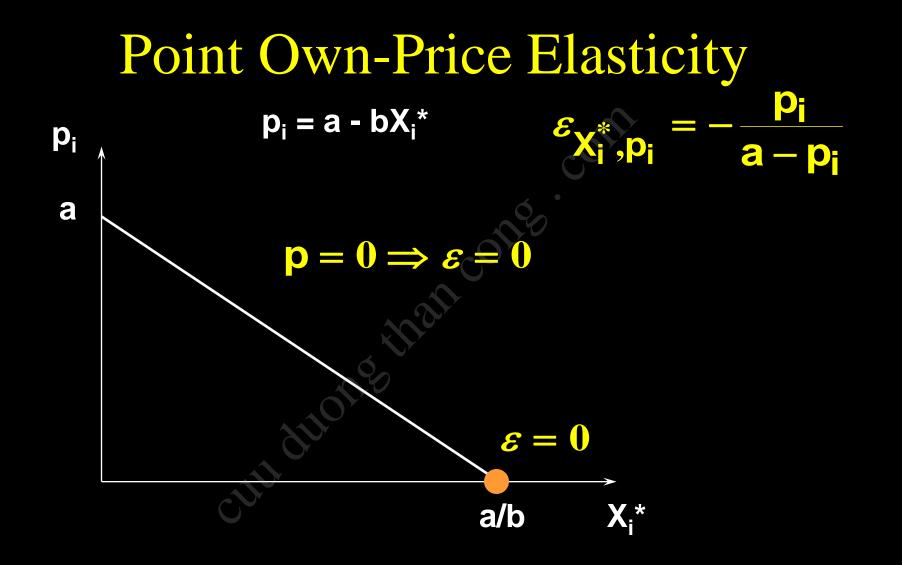


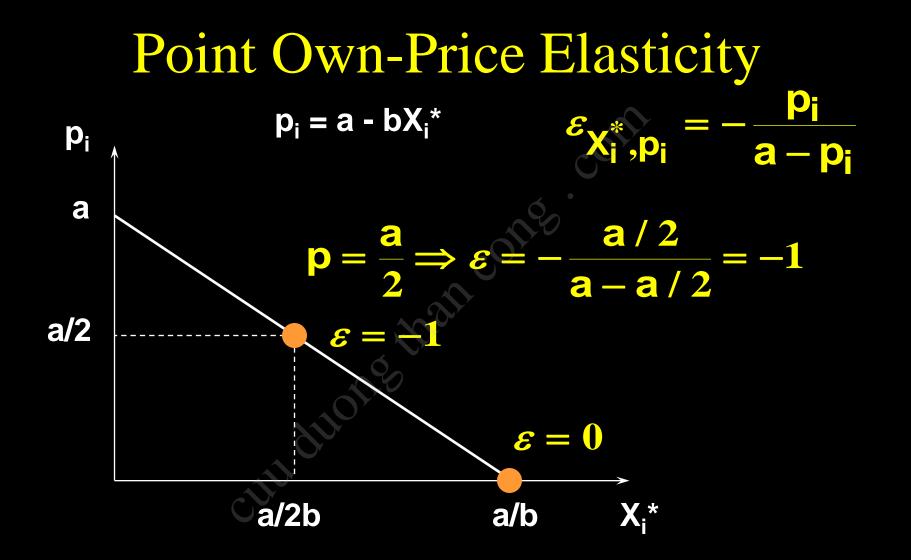


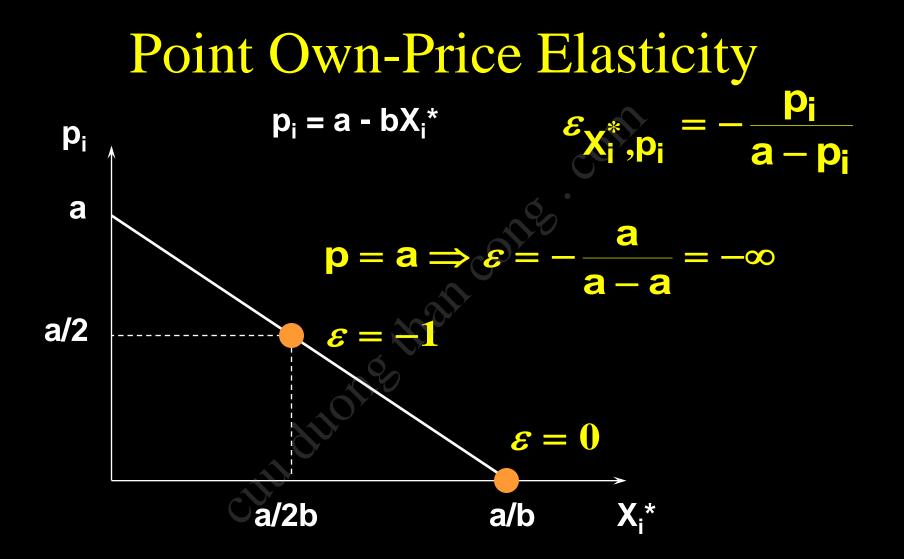


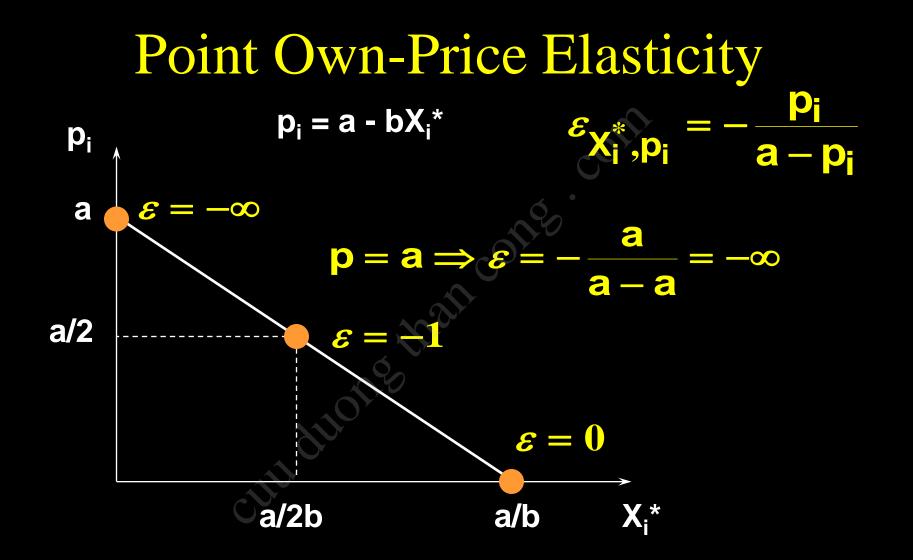


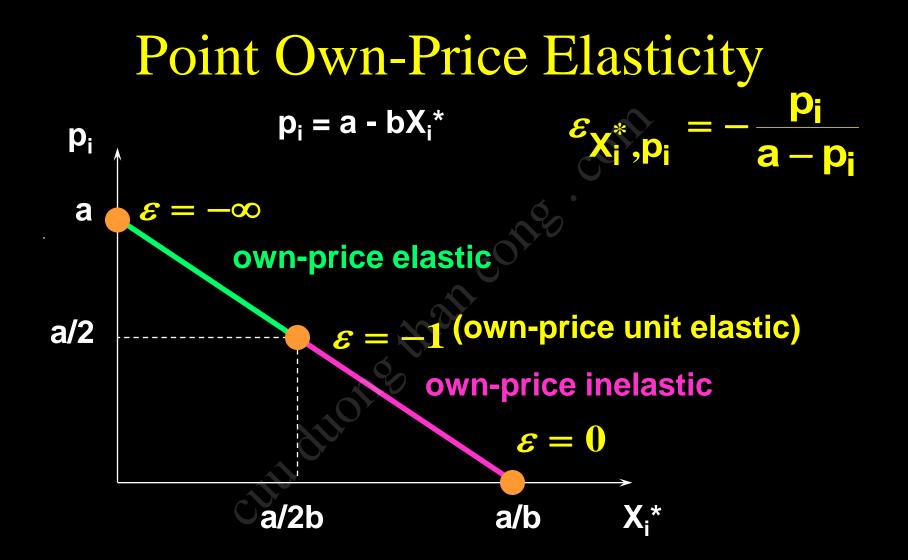


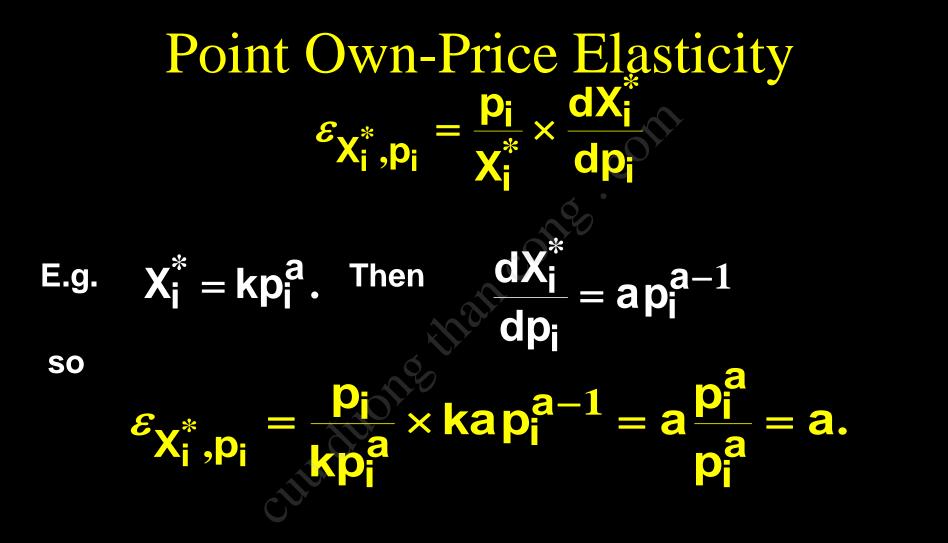


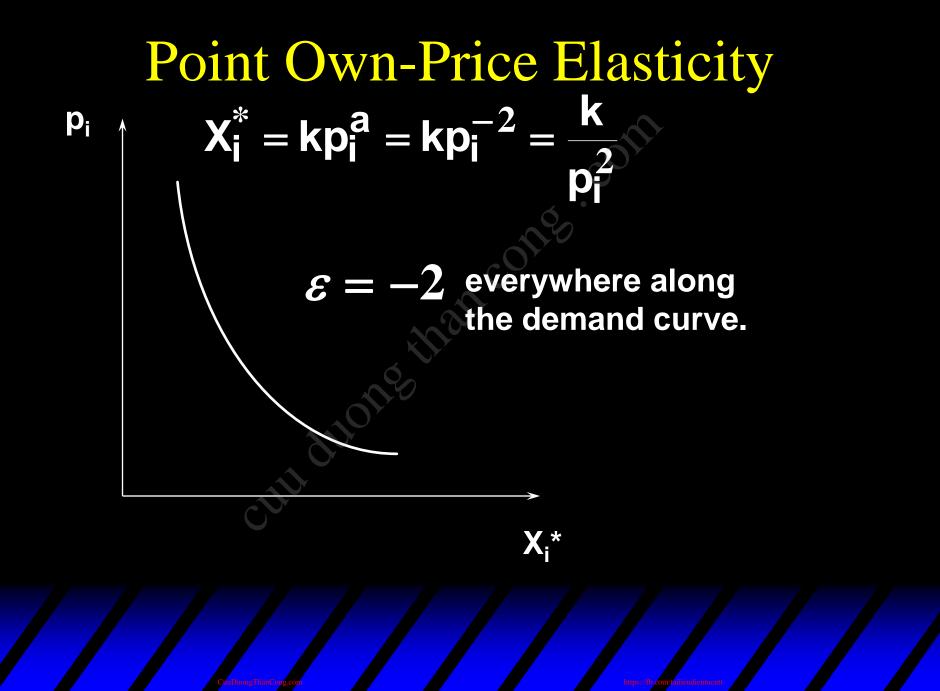












Revenue and Own-Price Elasticity of Demand

- If raising a commodity's price causes little decrease in quantity demanded, then sellers' revenues rise.
- Hence own-price inelastic demand causes sellers' revenues to rise as price rises.

Revenue and Own-Price Elasticity of Demand

- If raising a commodity's price causes a large decrease in quantity demanded, then sellers' revenues fall.
- Hence own-price elastic demand causes sellers' revenues to fall as price rises.

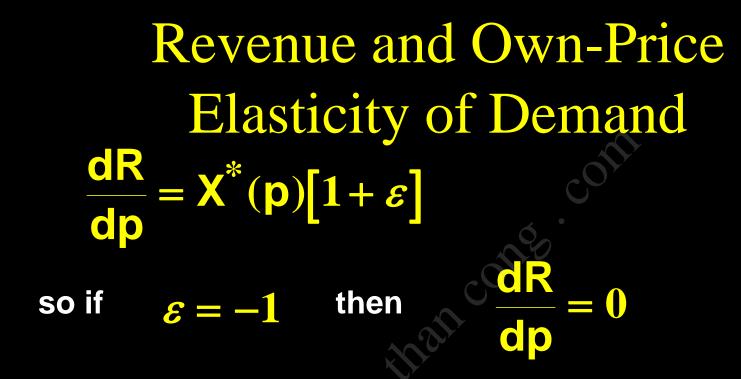
Revenue and Own-PriceElasticity of DemandSellers' revenue is $R(p) = p \times X^*(p)$.

Revenue and Own-Price Elasticity of Demand revenue is $R(p) = p \times X^{*}(p)$. Sellers' revenue is $\frac{dR}{dp} = X^{*}(p) + p\frac{dX}{dp}$ So

Revenue and Own-Price Elasticity of Demand $\mathbf{R}(\mathbf{p}) = \mathbf{p} \times \mathbf{X}^{*}(\mathbf{p}).$ Sellers' revenue is $\frac{dR}{dp} = X^*(p) + p\frac{dX}{dp}$ So $= \mathbf{X}^{*}(\mathbf{p}) \left[1 + \frac{\mathbf{p}}{\mathbf{X}^{*}(\mathbf{p})} \frac{\mathbf{dX}^{*}}{\mathbf{dp}} \right]$

Revenue and Own-Price Elasticity of Demand $R(p) = p \times X^{*}(p).$ Sellers' revenue is $\frac{dR}{dp} = X^{*}(p) + p\frac{dX^{*}}{dp}$ So $= \mathbf{X}^{*}(\mathbf{p}) \left[\mathbf{1} + \frac{\mathbf{p}}{\mathbf{X}^{*}(\mathbf{p})} \frac{\mathbf{dX}^{*}}{\mathbf{dp}} \right]$ $= \mathbf{X}^*(\mathbf{p}) [1 + \varepsilon].$

Revenue and Own-Price Elasticity of Demand $\frac{\mathrm{dR}}{\mathrm{dp}} = \mathbf{X}^*(\mathbf{p}) [1 + \varepsilon]$



and a change to price does not alter sellers' revenue.

Revenue and Own-Price Elasticity of Demand $\frac{dR}{dp} = X^{*}(p)[1+\varepsilon]$ but if $-1 < \varepsilon \le 0$ then $\frac{dR}{dp} > 0$

and a price increase raises sellers' revenue.

Revenue and Own-Price Elasticity of Demand $\frac{dR}{dp} = X^{*}(p)[1+\varepsilon]$ And if $\varepsilon < -1$ then $\frac{dR}{dp} < 0$

and a price increase reduces sellers' revenue.

Revenue and Own-Price Elasticity of Demand In summary:

Own-price inelastic demand; $-1 < \varepsilon \leq 0$ price rise causes rise in sellers' revenue.

 $\mathcal{E} = -1$

Own-price unit elastic demand; price rise causes no change in sellers' revenue.

Own-price elastic demand; $\mathcal{E} < -1$ price rise causes fall in sellers' revenue. Marginal Revenue and Own-Price Elasticity of Demand
A seller's marginal revenue is the rate at which revenue changes with the number of units sold by the seller.

 $MR(q) = \frac{dR(q)}{dq}.$

Marginal Revenue and Own-Price Elasticity of Demand

p(q) denotes the seller's inverse demand function; i.e. the price at which the seller can sell q units. Then

so $\begin{aligned}
R(q) &= p(q) \times q \\
MR(q) &= \frac{dR(q)}{dq} = \frac{dp(q)}{dq}q + p(q) \\
&= p(q) \left[1 + \frac{q}{p(q)} \frac{dp(q)}{dq} \right].
\end{aligned}$ Marginal Revenue and Own-Price Elasticity of Demand $MR(q) = p(q) \left[1 + \frac{q \ dp(q)}{p(q) \ dq} \right].$ $\varepsilon = \frac{dq}{dp} \times \frac{p}{q}$ and $MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right].$ SO

Marginal Revenue and Own-Price Elasticity of Demand $MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right]$ says that the rate

at which a seller's revenue changes with the number of units it sells depends on the sensitivity of quantity demanded to price; *i.e.*, upon the of the own-price elasticity of demand. Marginal Revenue and Own-Price Elasticity of Demand $MR(q) = p(q) \left[1 + \frac{1}{\varepsilon} \right]$

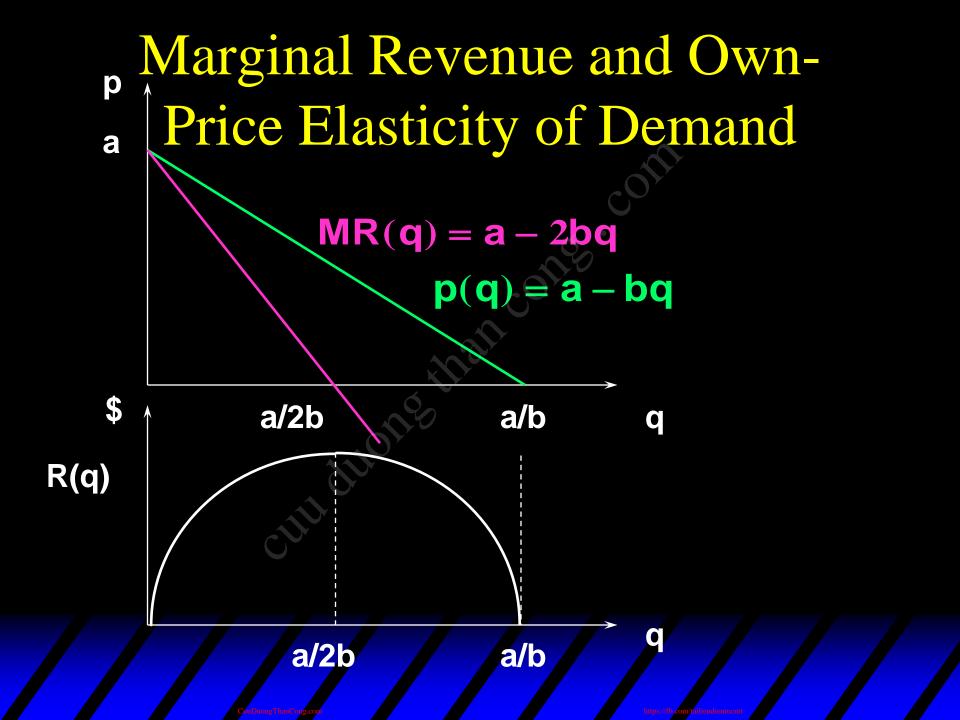
If $\mathcal{E} = -1$ thenMR(q) = 0.If $-1 < \mathcal{E} \leq 0$ thenMR(q) < 0.If $\mathcal{E} < -1$ thenMR(q) > 0.

Marginal Revenue and Own-Price Elasticity of Demand If $\varepsilon = -1$ then MR(q) = 0.

Selling one more unit does not change the seller's revenue.

If $-1 < \varepsilon \leq 0$ then MR(q) < 0. Selling one more unit reduces the seller's revenue. If $\varepsilon < -1$ then MR(q) > 0. Selling one more unit raises the seller's revenue.

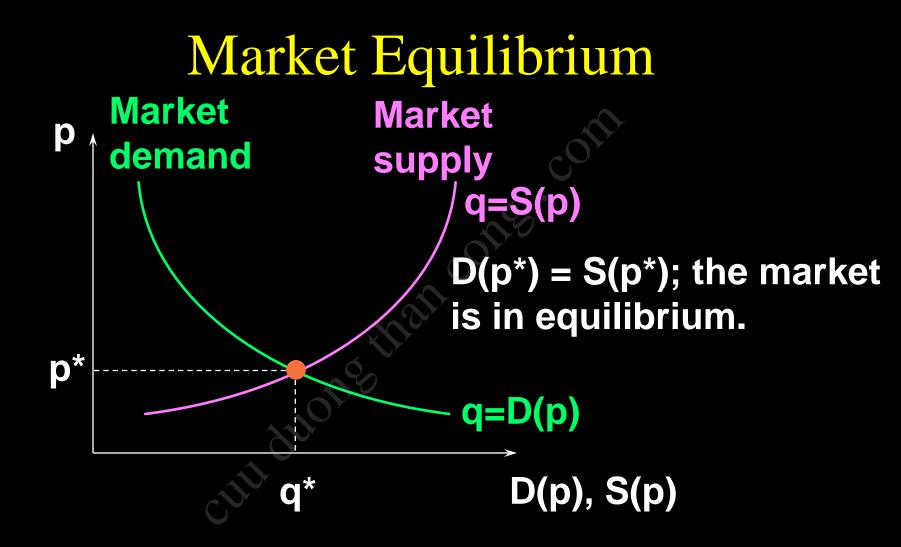
Marginal Revenue and Own-Price Elasticity of Demand An example with linear inverse demand. $\mathbf{p}(\mathbf{q}) = \mathbf{a} - \mathbf{b}\mathbf{q}.$ Then R(q) = p(q)q = (a - bq)qMR(q) = a - 2bq.and

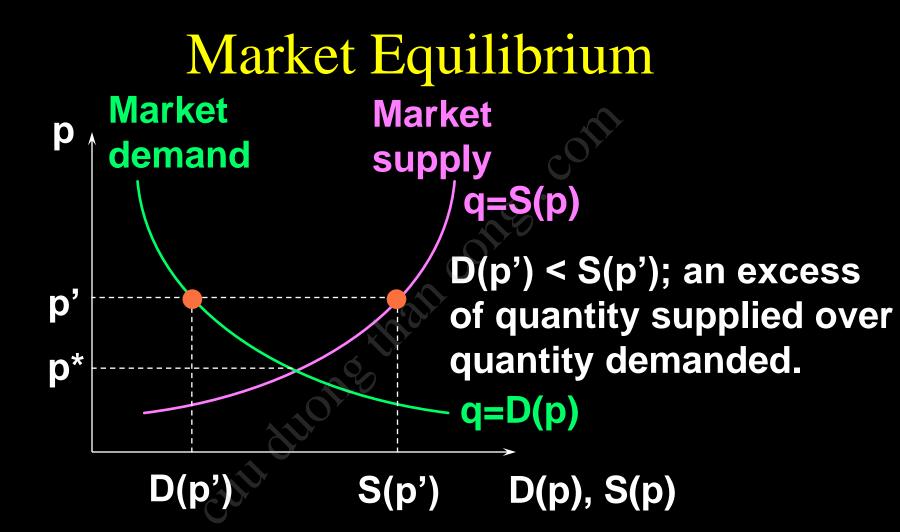


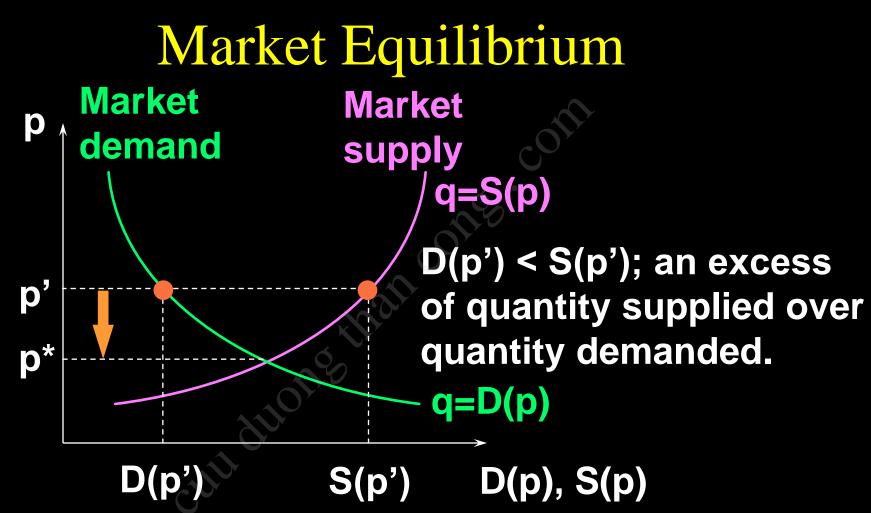
3. Equilibrium

Market Equilibrium

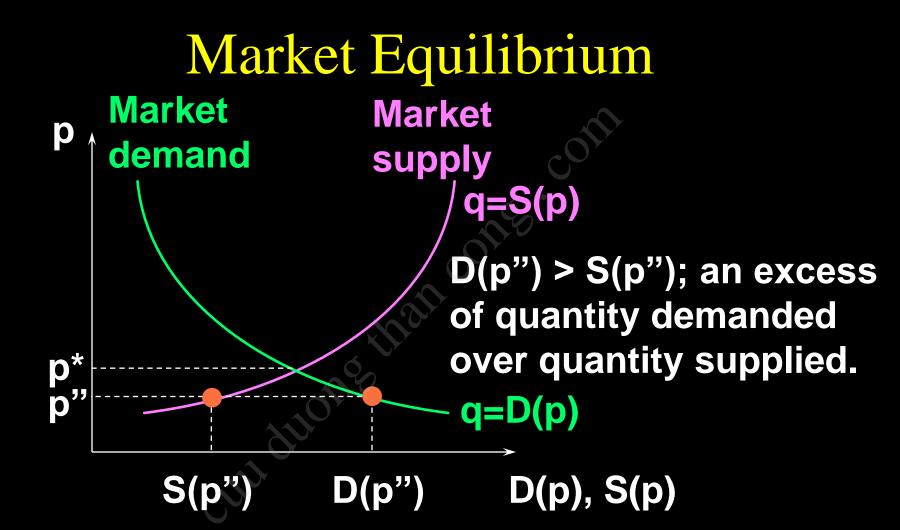
A market is in equilibrium when total quantity demanded by buyers equals total quantity supplied by sellers.

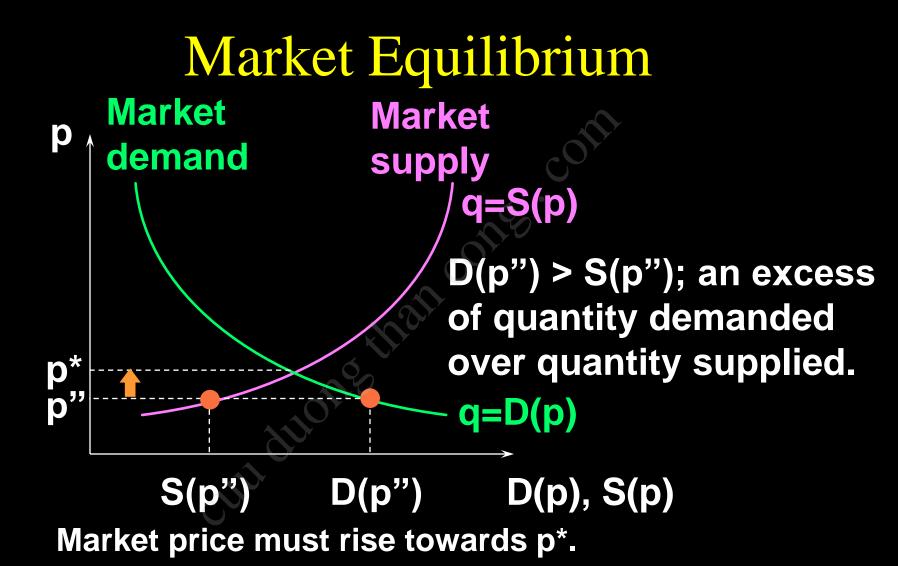






Market price must fall towards p*.

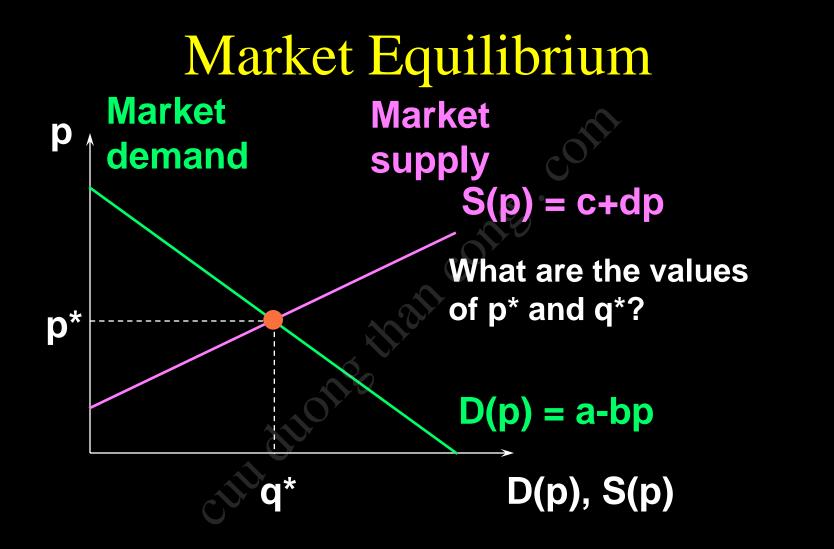




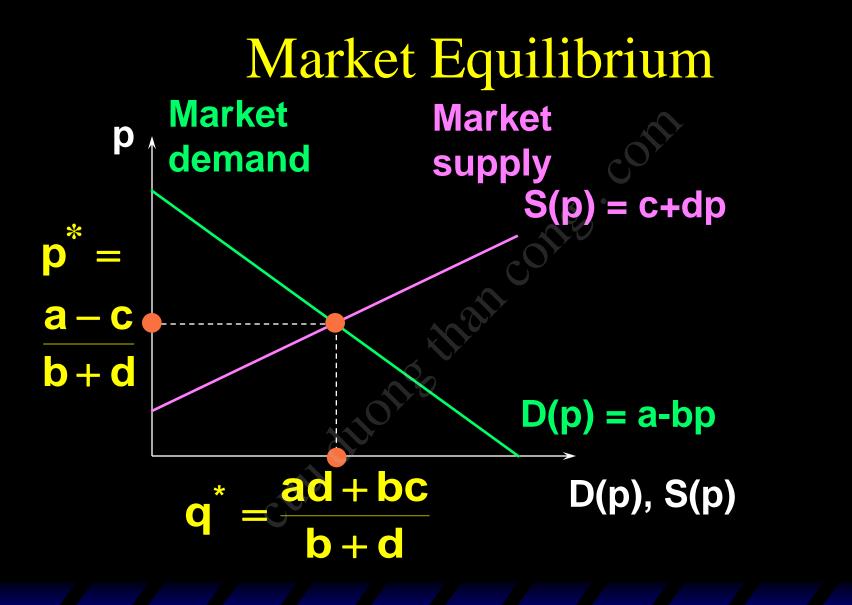
Market Equilibrium

 An example of calculating a market equilibrium when the market demand and supply curves are linear.

D(p) = a - bpS(p) = c + dp



Market Equilibrium D(p) = a - bpS(p) = c + dpAt the equilibrium price p^* , $D(p^*) = S(p^*)$. That is, $a - bp^* = c + dp^*$ $=\frac{\mathbf{a}-\mathbf{c}}{\mathbf{b}+\mathbf{d}}$ which gives $\mathbf{q}^* = \mathbf{D}(\mathbf{p}^*) = \mathbf{S}(\mathbf{p}^*) = \frac{\mathbf{ad} + \mathbf{bc}}{\mathbf{c}}$ and b + d



Market Equilibrium

 Can we calculate the market equilibrium using the inverse market demand and supply curves?

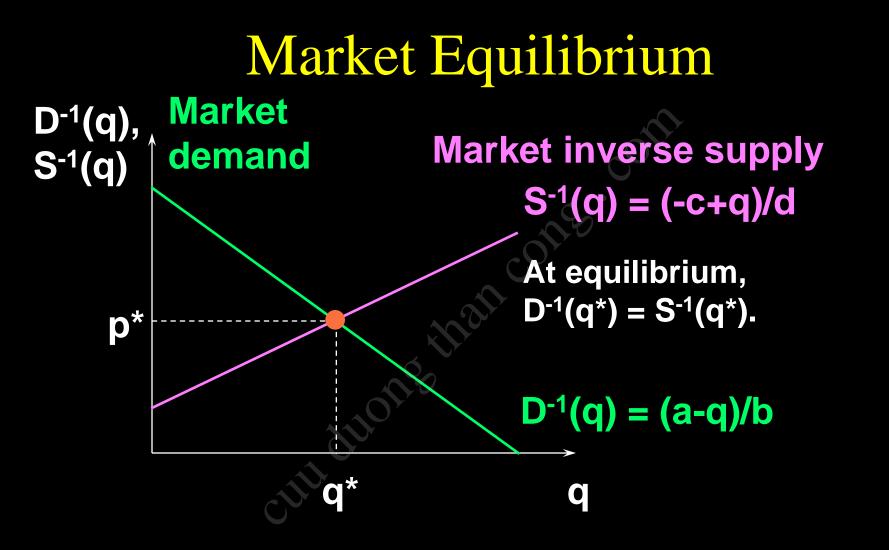
Yes, it is the same calculation.

Market Equilibrium $q = D(p) = a - bp \Leftrightarrow p = \frac{a - q}{b} = D^{-1}(q),$

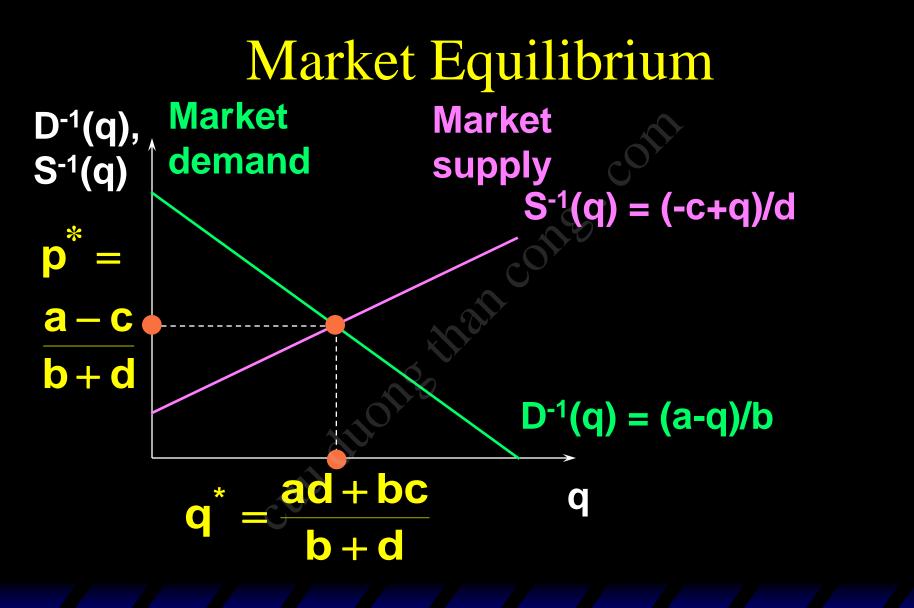
the equation of the inverse market demand curve. And

$q = S(p) = c + dp \Leftrightarrow p = \frac{-c + q}{d} = S^{-1}(q),$

the equation of the inverse market supply curve.

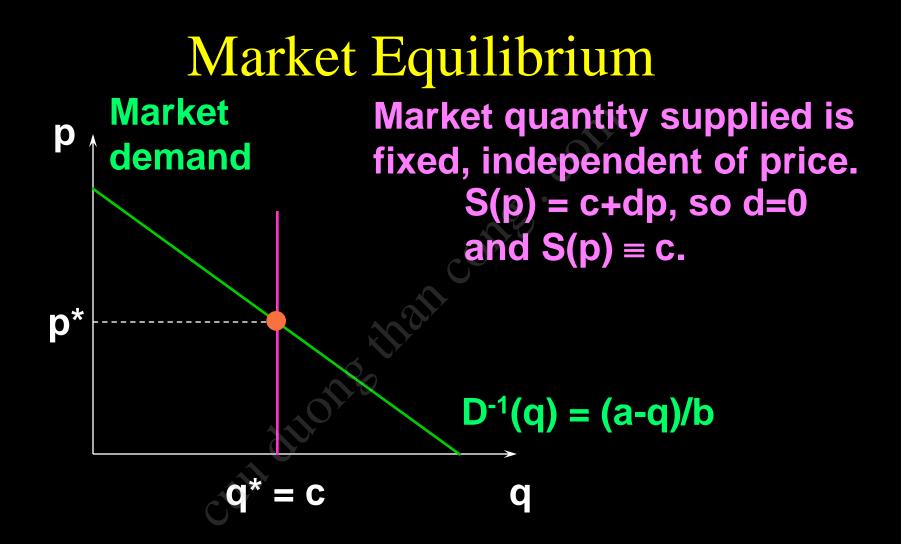


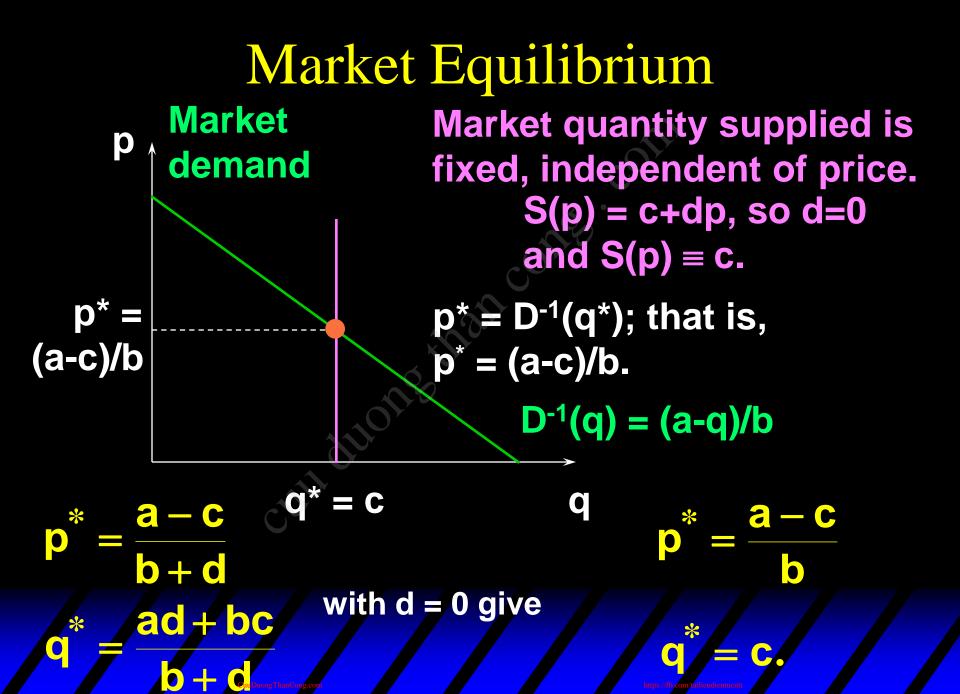
Market Equilibrium $p = D^{-1}(q) = \frac{a - q}{b}$ and $p = S^{-1}(q) = \frac{-c + q}{d}$ At the equilibrium quantity q^* , $D^{-1}(p^*) = S^{-1}(p^*)$. That is, 0 ad+bc which gives **b** + d $p^* = D^{-1}(q^*) = S^{-1}(q^*) = \frac{a}{b+1}$ and



Market Equilibrium

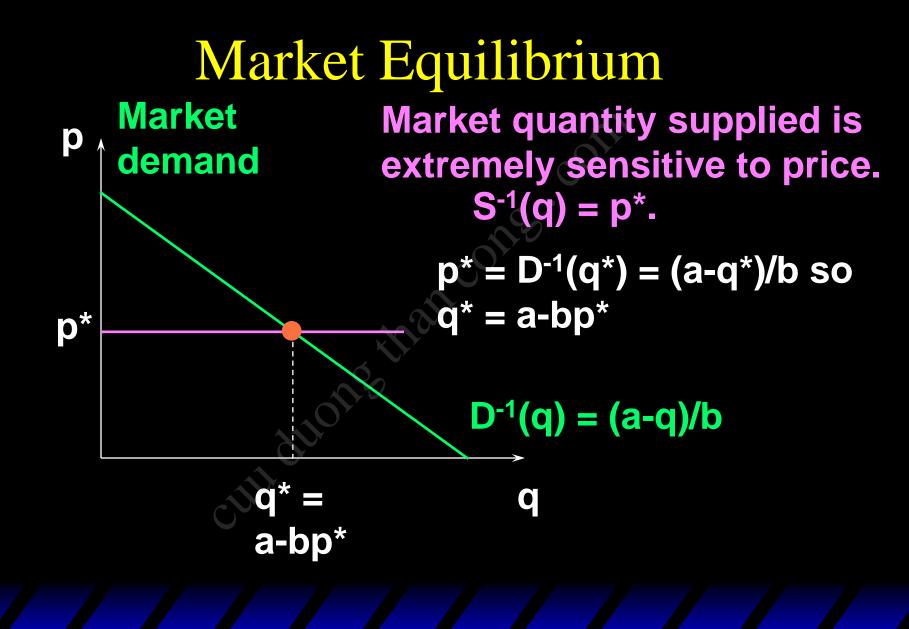
- Two special cases:
 - quantity supplied is fixed, independent of the market price, and
 - quantity supplied is extremely sensitive to the market price.





Market Equilibrium

- Two special cases are
 when quantity supplied is fixed, independent of the market price, and
 - when quantity supplied is extremely sensitive to the market price.



A quantity tax levied at a rate of \$t is a tax of \$t paid on each unit traded.
If the tax is levied on sellers then it is an excise tax.
If the tax is levied on buyers then it is a sales tax.

What is the effect of a quantity tax on a market's equilibrium?
How are prices affected?
How is the quantity traded affected?
Who pays the tax?
How are gains-to-trade altered?

 A tax rate t makes the price paid by buyers, p_b, higher by t from the price received by sellers, p_s.

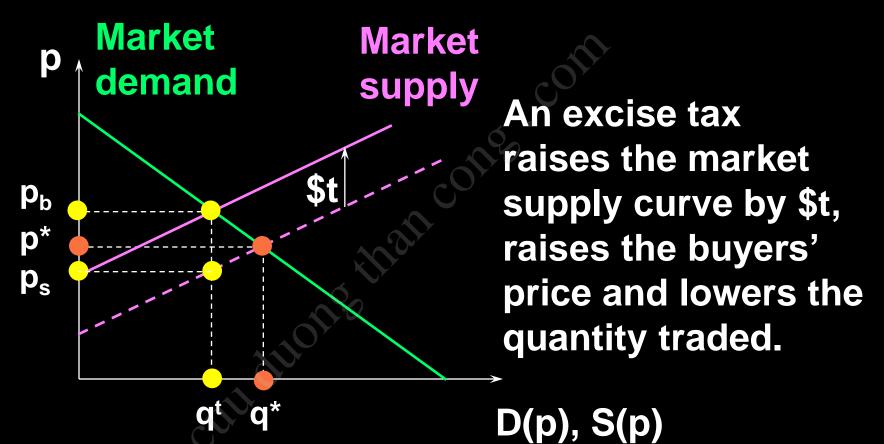
 $\mathbf{p_b} - \mathbf{p_s} = \mathbf{t}$

- Even with a tax the market must clear.
- I.e. quantity demanded by buyers at price p_b must equal quantity supplied by sellers at price p_s.

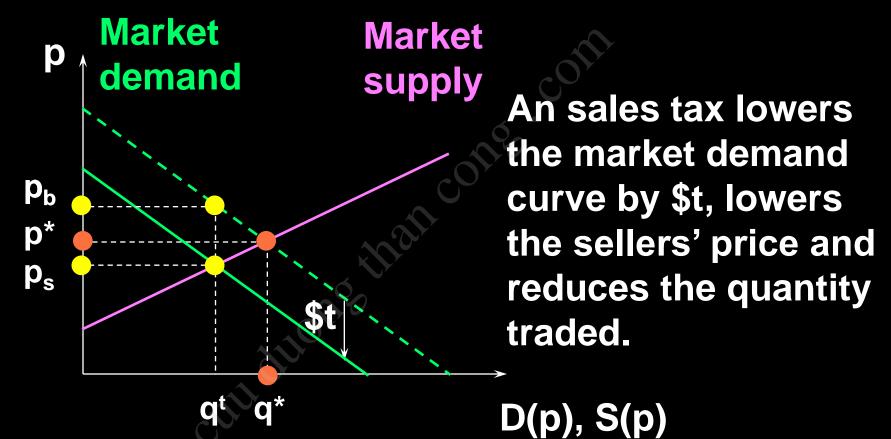
 $D(\mathbf{p}_{\mathbf{b}}) = \mathbf{S}(\mathbf{p}_{\mathbf{s}})$

$p_b - p_s = t$ and $D(p_b) = S(p_s)$ describe the market's equilibrium. Notice that these two conditions apply no matter if the tax is levied on sellers or on buyers.

Hence, a sales tax rate \$t has the same effect as an excise tax rate \$t.



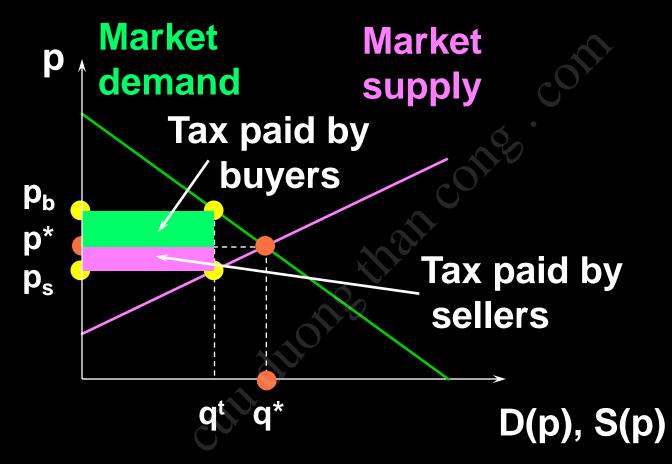
And sellers receive only $p_s = p_b - t$.



And buyers pay $p_b = p_s + t$.

Market Market р demand supply A sales tax levied at rate \$t has the same **S**1 **p**_b effects on the р* market's equilibrium **p**_s as does an excise tax \$t levied at rate \$t. qt D(p), S(p)

- Who pays the tax of \$t per unit traded?
- The division of the \$t between buyers and sellers is the incidence of the tax.



 E.g. suppose the market demand and supply curves are linear.

 $D(p_b) = a - bp_b$ $S(p_s) = c + dp_s$

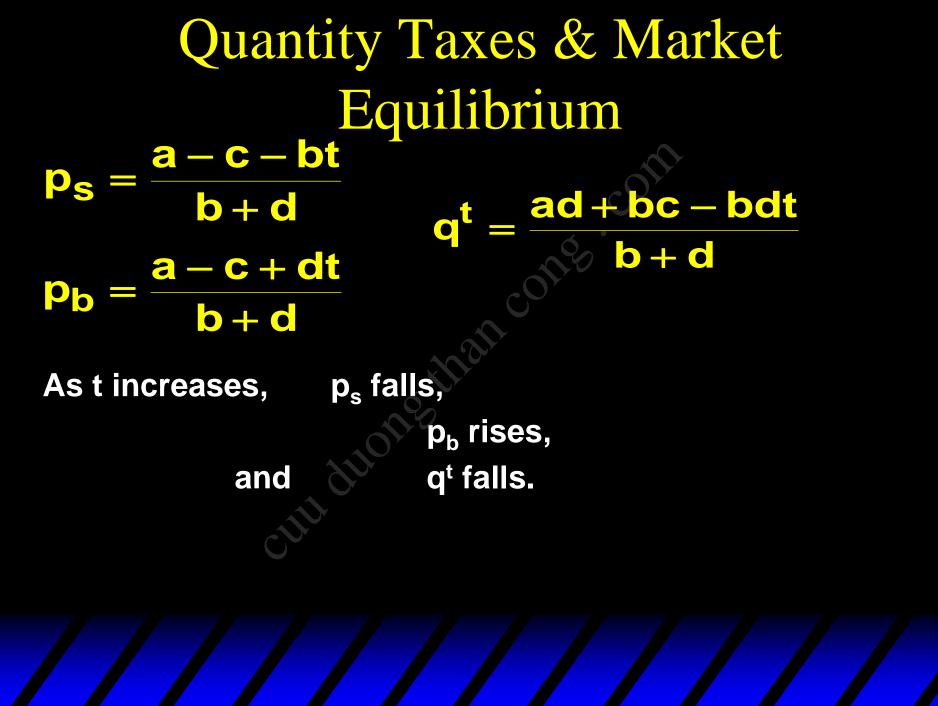
Quantity Taxes & Market Equilibrium $D(p_b) = a - bp_b$ and $S(p_s) = c + dp_s$. With the tax, the market equilibrium satisfies $\mathbf{p_b} = \mathbf{p_s} + \mathbf{t}$ and $\mathbf{D}(\mathbf{p_b}) = \mathbf{S}(\mathbf{p_s})$ so $p_b = p_s + t$ and $a - bp_b = c + dp_s$. Substituting for p_b gives $a-b(p_s+t) = c+dp_s \Rightarrow p_s = \frac{a-c-bt}{b+d}$ Quantity Taxes & Market Equilibrium $p_s = \frac{a - c - bt}{b + d}$ and $p_b = p_s + t$ give $p_b = \frac{a - c + dt}{b + d}$

The quantity traded at equilibrium is

 $q^{t} = D(p_{b}) = S(p_{s})$ $= a + bp_{b} = \frac{ad + bc - bdt}{b + d}.$

Quantity Taxes & Market Equilibrium $\frac{a-c-bt}{b+d}$ P_S $q^{t} = \frac{ad + bc - bdt}{b + d}$ $p_b = \frac{a - c + dt}{b + d}$ $\frac{a_{\text{The}}}{b+d} = p^*,$ As t \rightarrow 0, p_s and p_b \rightarrow equilibrium price if

there is no tax (t = 0) and q^t the quantity traded at equilibrium when there is no tax. $\rightarrow \frac{ad+bc}{b+d},$



Quantity Taxes & Market Equilibrium $p_s = \frac{a - c - bt}{b + d}$ $q^t = \frac{ad + bc - bdt}{b + d}$ $p_b = \frac{a - c + dt}{b + d}$

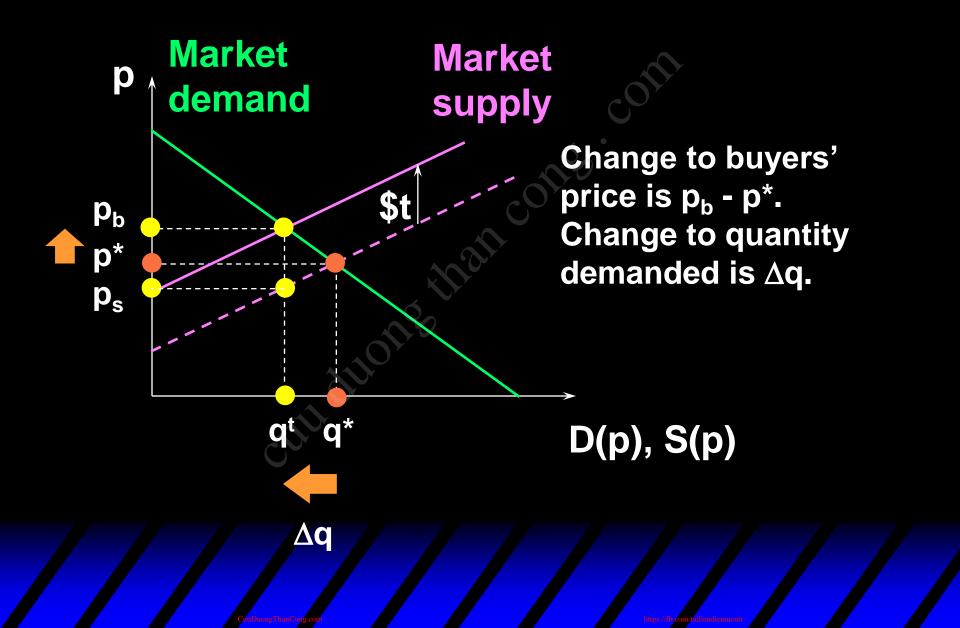
The tax paid per unit by the buyer is $p_b - p^* = \frac{a - c + dt}{b + d} - \frac{a - c}{b + d} = \frac{dt}{b + d}.$ Quantity Taxes & Market Equilibrium $p_s = \frac{a - c - bt}{b + d}$ $q^t = \frac{ad + bc - bdt}{b + d}$ $p_b = \frac{a - c + dt}{b + d}$

The tax paid per unit by the buyer is $p_{b} - p^{*} = \frac{a - c + dt}{b + d} - \frac{a - c}{b + d} = \frac{dt}{b + d}.$ The tax paid per unit by the seller is $p^{*} - p_{s} = \frac{a - c}{b + d} - \frac{a - c - bt}{b + d} = \frac{bt}{b + d}.$ Quantity Taxes & Market Equilibrium $p_{s} = \frac{a - c - bt}{b + d}$ $q^{t} = \frac{ad + bc - bdt}{b + d}$ $p_{b} = \frac{a - c + dt}{b + d}$

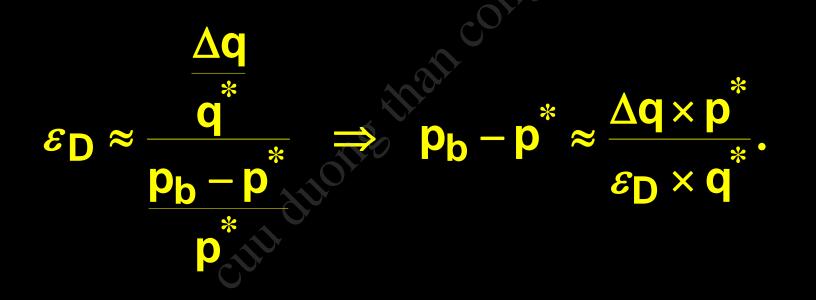
The total tax paid (by buyers and sellers combined) is

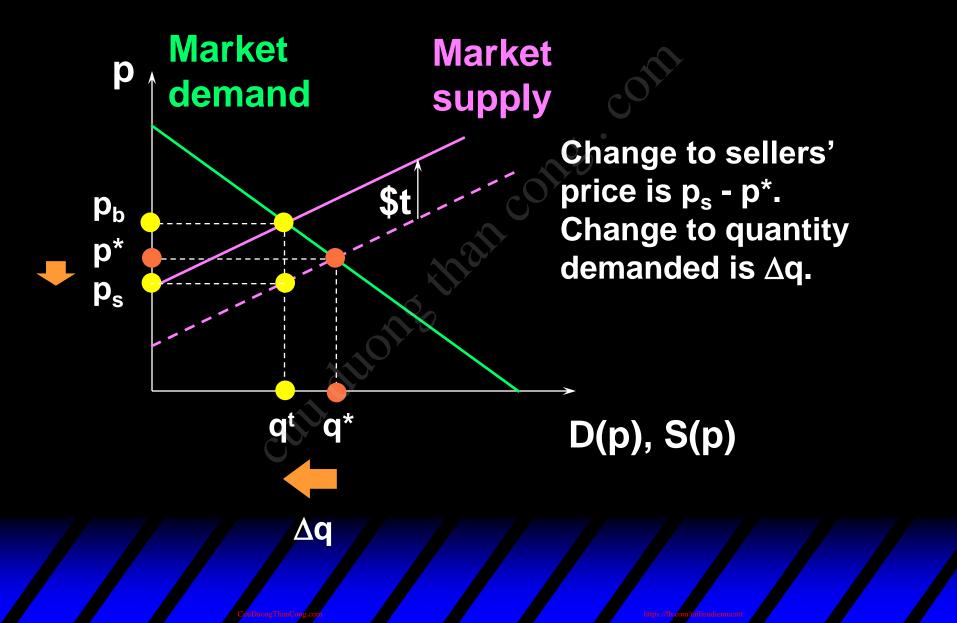
 $T = tq^{t} = t \frac{ad + bc - bdt}{b + d}$

 The incidence of a quantity tax depends upon the own-price elasticities of demand and supply.

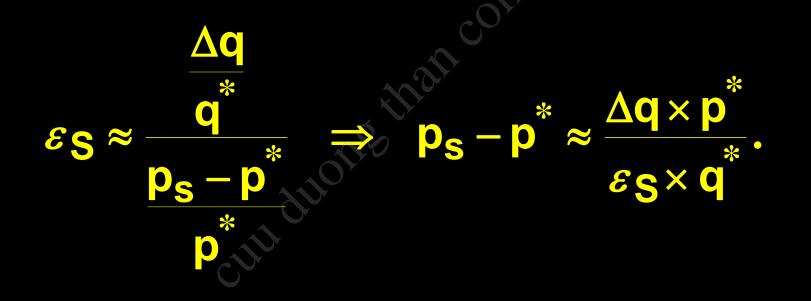


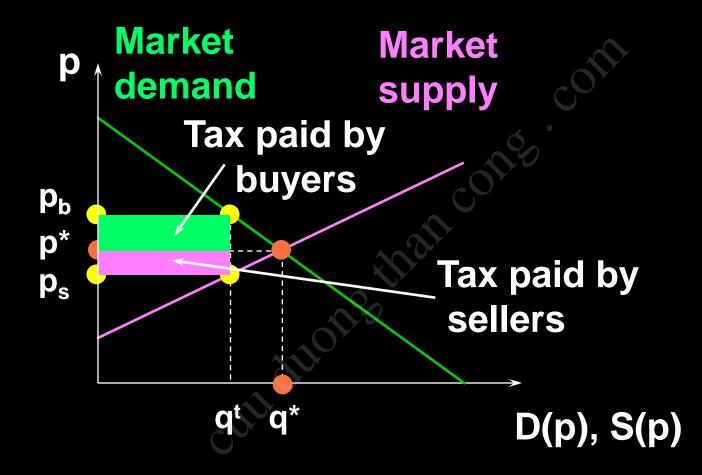
Around p = p* the own-price elasticity of demand is approximately

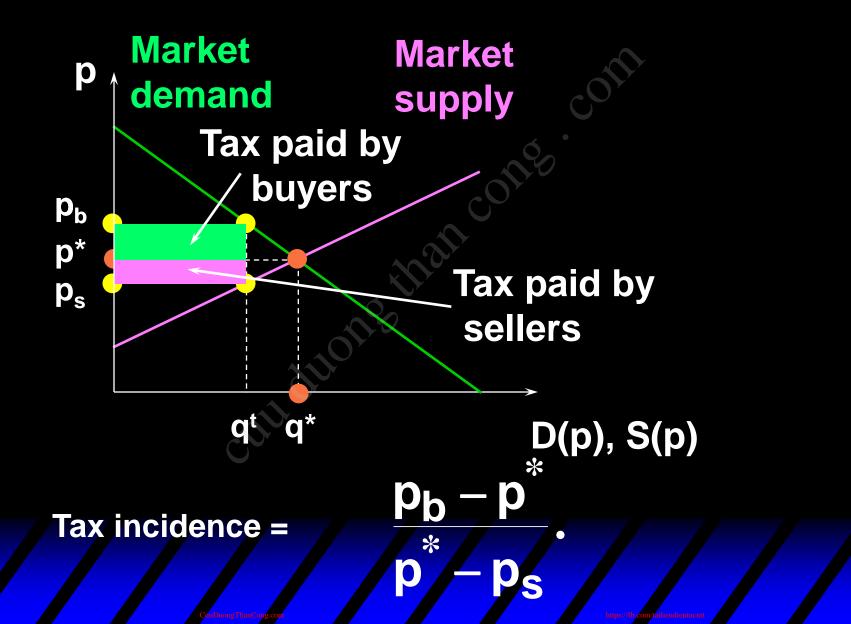


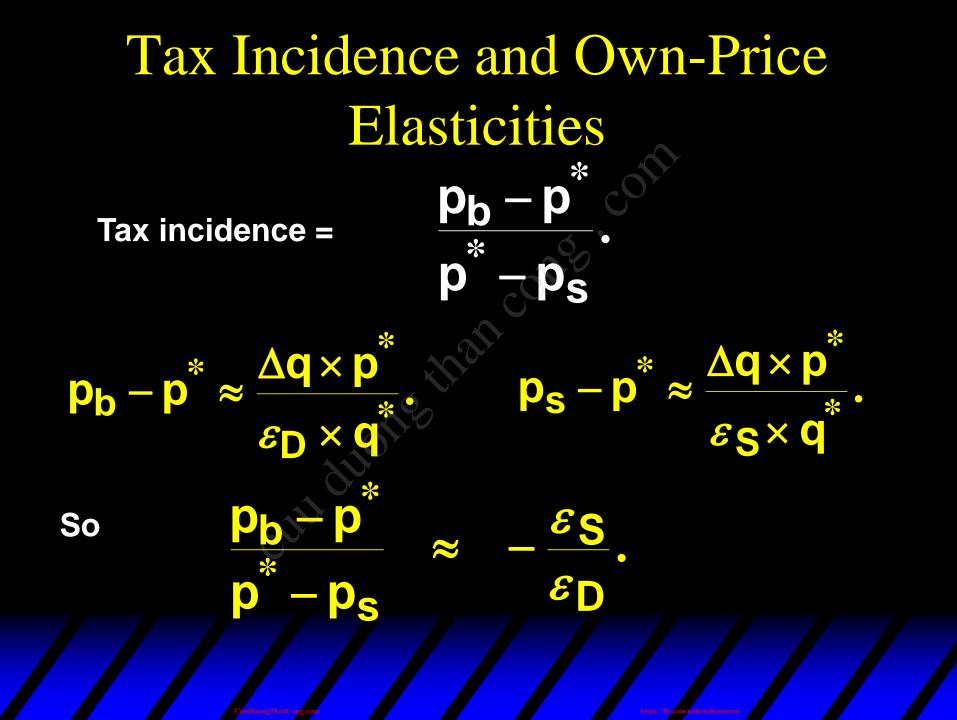


Around p = p* the own-price elasticity of supply is approximately



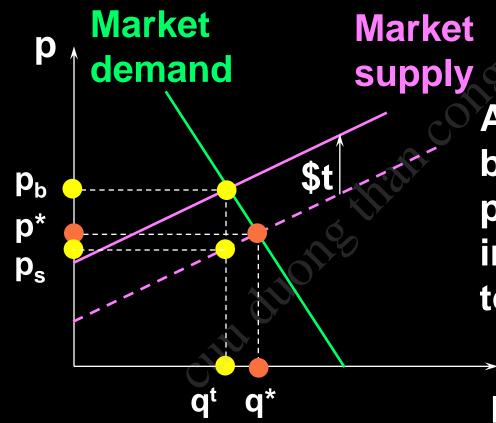






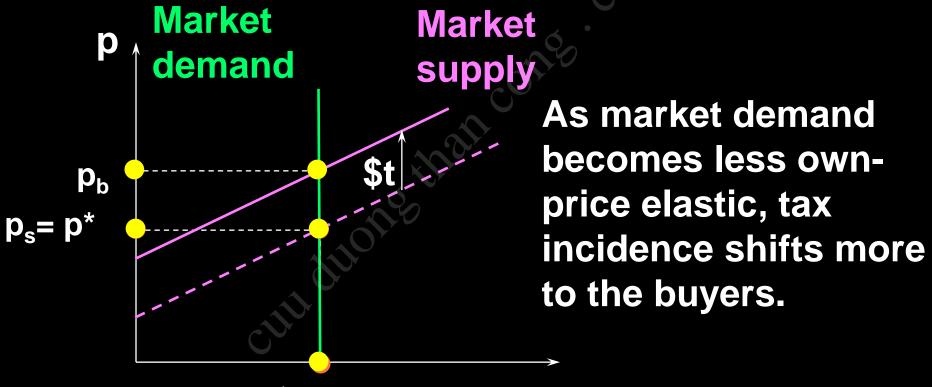
Tax Incidence and Own-Price
ElasticitiesTax incidence is $p_b - p^* \approx -\frac{\varepsilon_s}{\varepsilon_D}$

The fraction of a \$t quantity tax paid by buyers rises as supply becomes more own-price elastic or as demand becomes less own-price elastic.



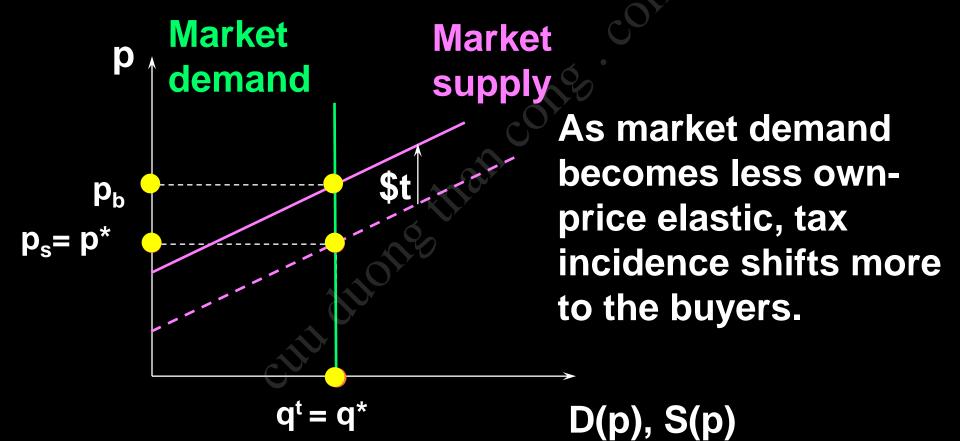
As market demand becomes less ownprice elastic, tax incidence shifts more to the buyers.

D(p), S(p)



 $\mathbf{q}^{t} = \mathbf{q}^{*}$

D(p), S(p)

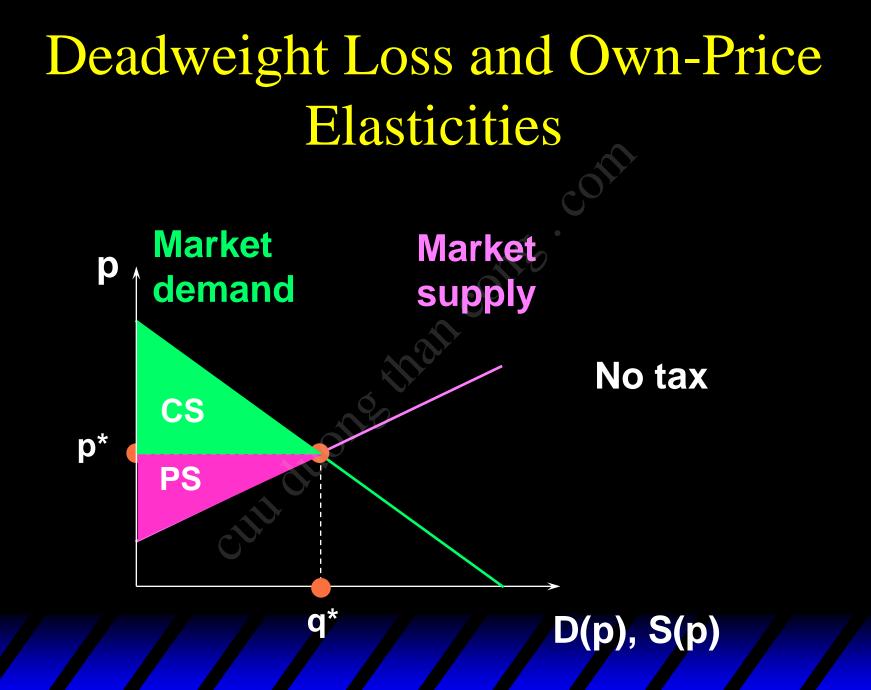


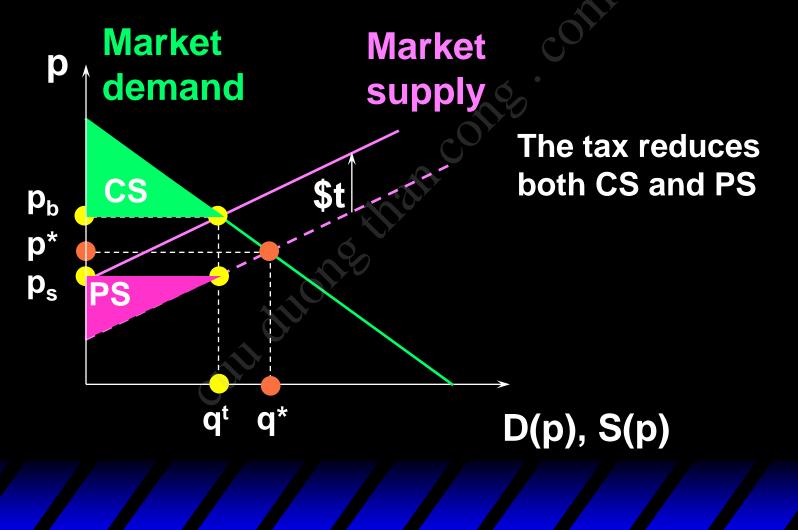
When $\varepsilon_D = 0$, buyers pay the entire tax, even though it is levied on the sellers.

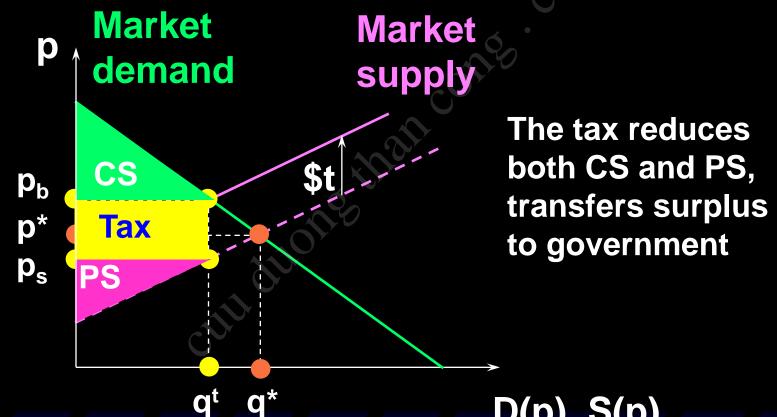
Similarly, the fraction of a \$t quantity tax paid by sellers rises as supply becomes less own-price elastic or as demand becomes more own-price elastic.

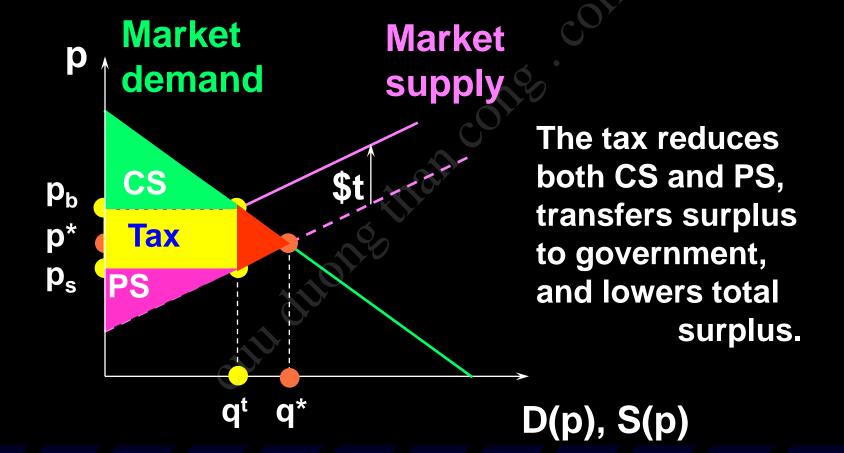
A quantity tax imposed on a competitive market reduces the quantity traded and so reduces gains-to-trade (*i.e.* the sum of Consumers' and Producers' Surpluses).

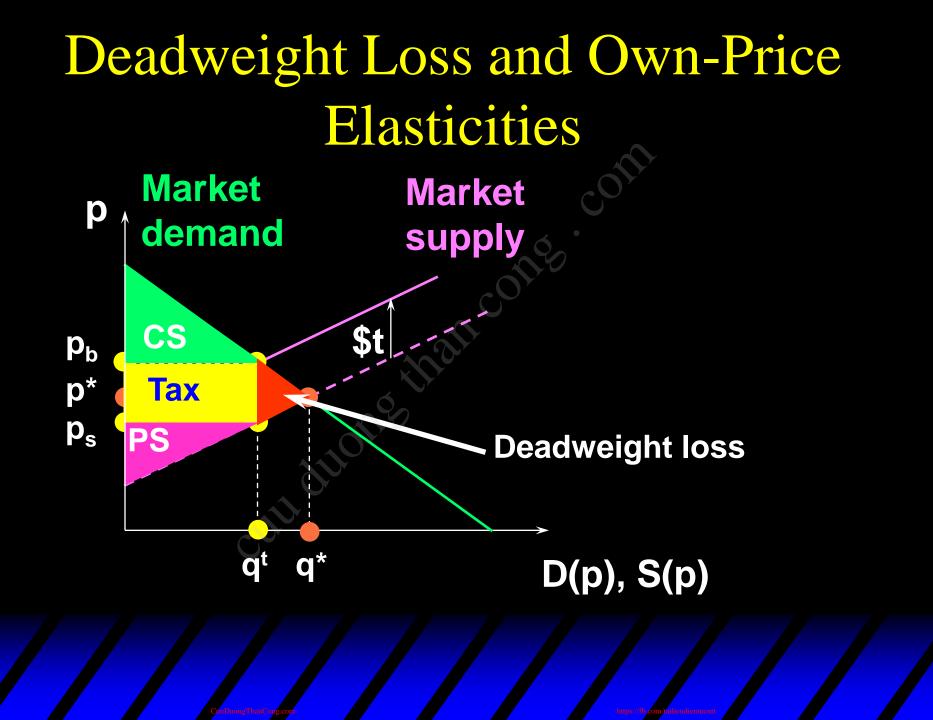
 The lost total surplus is the tax's deadweight loss, or excess burden.

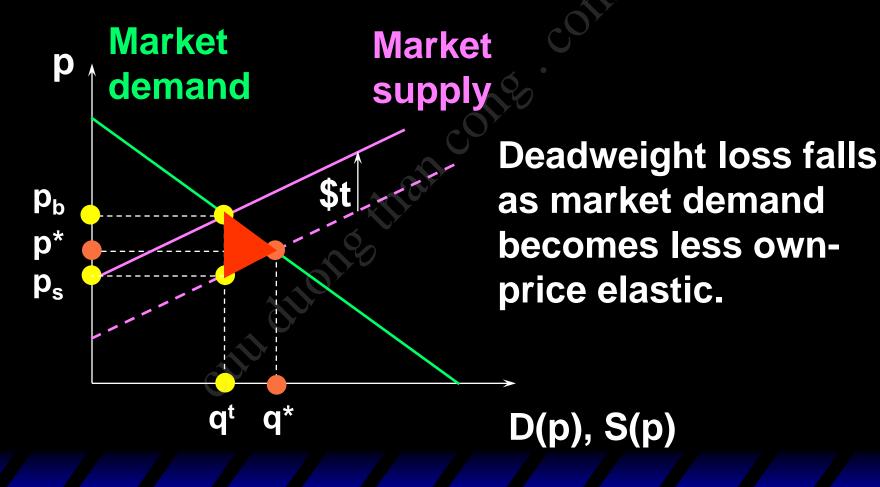


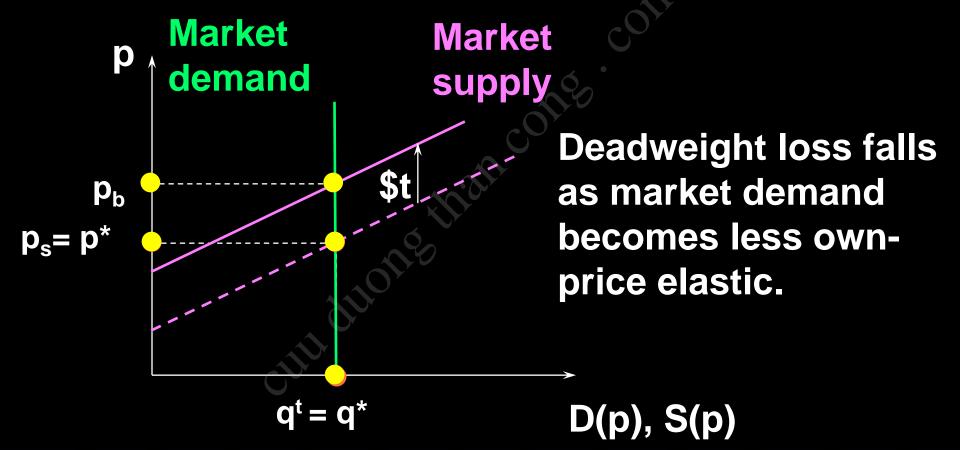












When $\varepsilon_{\rm D} = 0$, the tax causes no deadweight loss.

 Deadweight loss due to a quantity tax rises as either market demand or market supply becomes more ownprice elastic.

• If either $\varepsilon_D = 0$ or $\varepsilon_S = 0$ then the deadweight loss is zero.