| |
mmmm Chapter 12

Transmission
Control Protocol

Objectives

Upon completion you will be able to:

 Be able to name and understand the services offered by TCP

» Understand TCP’s flow and error control and congestion control
« Be familiar with the fields in a TCP segment

« Understand the phases in a connection-oriented connection

« Understand the TCP transition state diagram

 Be able to name and understand the timers used in TCP

 Be familiar with the TCP options

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.1 TCP/IP protocol suite

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

technology

SCTP TCP
IGMP || ICMP
1P
ARP
| — Underlying LAN or WAN

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.1 TCP SERVICES

We explain the services offered by TCP to the processes at the application
layer.

The topics discussed in this section include:

Process-to-Process Communication
Stream Delivery Service
Full-Duplex Communication
Connection-Oriented Service
Reliable Service

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt 3

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Table 12.1 Well-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that is received
11 | Users Active users
13 | Daytime Returns the date and the time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
20 | FTP, Data File Transfer Protocol (data connection)
21 FTP, Control | File Transfer Protocol (control connection)
23 | TELNET Terminal Network
25 | SMTP Simple Mail Transfer Protocol
53 | DNS Domain Name Server
67 | BOOTP Bootstrap Protocol
79 | Finger Finger
80 | HTTP Hypertext Transfer Protocol
111 | RPC Remote Procedure Call

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEI

As we said in Chapter 11, in UNIX, the well-known ports are
stored in a file called /etc/services. Each line in this file gives
the name of the server and the well-known port number. We
can use the grep utility to extract the line corresponding to the
desired application. The following shows the ports for FTP.

$ grep ftp /etc/services

ftp-data 20/tcp
ftp-control 21/tcp

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.2 Stream delivery

Sending
process

Iy

Receiving
process

Il

TCP

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

—)-El Stream of bxtes -

TCP

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.3 Sending and receiving buffers

Sending Receiving
process process

Il
Iy

TCP TCP

Next byte Next byte
to write to read

sent not sent
Next byte Next byte
to send to receive

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 7

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.4 TCP segments

Sending Receiving
process process

TCP TCP

Next byte Next byte
to accept to deliver

Segment N Segment 1

Next byte HO000E| «-« {000 Next byte

to be send to receive

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 8

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.2 TCP FEATURES

To provide the services mentioned in the previous section, TCP has
several features that are briefly summarized in this section.

The topics discussed in this section include:

Numbering System
Flow Control
Error Control
Congestion Control

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt 9

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& e |

The bytes of data being transferred In
each connection are numbered by TCP.
The numbering starts with a randomly
generated number.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEZ

Suppose a TCP connection is transferring a file of 5000 bytes.
The first byte Is numbered 10001. What are the sequence
numbers for each segment if data is sent in five segments, each
carrying 1000 bytes?

Solution
The following shows the sequence number for each segment:

Segment 1 =» Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2 =» Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 = Sequence Number: 12,001 (range: 12,001 to 13,000)
Segment 4 = Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5 = Sequence Number: 14,001 (range: 14,001 to 15,000)

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& e |

The value In the sequence number
field of a segment defines the number
of the first data byte contained

In that segment.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The value of the acknowledgment field
In a segment defines the number of the

next byte a party expects to receive.

The acknowledgment number iIs
cumulative.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.3 SEGMENT

A packet in TCP is called a segment

The topics discussed in this section include:

Format
Encapsulation

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.5 TCP segment format

<= Header Data
T
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN [Reserved Ula P RESHE Window size
4 bits 6 bits RES> o] 16 bits
GIK|H|T|N|[N
Checksum Urgent pointer
16 bits 16 bits
Options and Padding

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.6 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers

PSH: Request for push FIN: Terminate the connection

URG PSH RST

TCP/ IP Protocol MngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Table 12.2 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid

ACK | The value of the acknowledgment field is valid
PSH | Push the data

RST | The connection must be reset

SYN | Synchronize sequence numbers during connection
FIN Terminate the connection

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

17

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.7 Pseudoheader added to the TCP datagram

32-bit source TP address

32-bit destination 1P address

Pseudoheader

All Os 8-bit protocol (6)| 16-bit TCP total length

Y

Source port number Destination port number

Sequence number

Acknowledgment number

Header

HLEN | Reserved | Control Window size

Checksum Urgent pointer

Data and Option

(Padding must be added to make the data a multiple of 16-bits

TCP/IP Protocol %ngThaﬂCong.com https://fb.com/tailieudientucntt

18

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Theinclusion of the checksum in TCP
IS mandatory.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.8 Encapsulation and decapsulation

Frame
header

i
header

TCP Segment

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

20

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.4 A TCP CONNECTION

TCP is connection-oriented. A connection-oriented transport protocol
establishes a virtual path between the source and destination. All of the
segments belonging to a message are then sent over this virtual path. A
connection-oriented transmission requires three phases: connection
establishment, data transfer, and connection termination.

The topics discussed in this section include:

Connection Establishment
Data Transfer

Connection Termination
Connection Reset

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

21

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.9 Connection establishment using three-way handshaking

Server
A: ACK flag
[
S: SYN flag —

_ passive
active seq: 8000 open
open .E\

SYN

seq: 15000
ack: 8001
E rwnd: 5000

. G
1 ACK
o
—
ACK

Time Time

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A SYN segment cannot carry data, but
It consumes one sequence number.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A SYN + ACK segment cannot carry
data, but does consume one
seguence number.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

dow|

An ACK segment, If carrying no data,
consumes no sequence number.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.10 Data transfer

Y
Time

TCP/ IP PI’OtOCOI %ngThanCong.com

A: ACK flag
P: PSH flag

.Eﬁ D

ata
bytes: 8001-900¢

Data
bytes: 9001-1000g

i

'wnd: 10000

https://fb.com/tailieudientucntt

26

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The FIN segment consumes one
sequence number if it does not carry
data.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.11 Connection termination using three-way handshaking

Server

A: ACK flag
F: FIN flag

MR

F)
- ﬂ_ -

passive
M close
A D E—

Time Time

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 28

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The FIN + ACK segment consumes
one sequence number If It does not
carry data.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.12 Half-close

active
close

Y

Time

TCP/ IP PI’OtOCOI %ngThanCong.com

Server
A: ACK flag
F: FIN flag —

o

ACK

er to client
ments from Serv
= Data seg

Acknowled
8ments from clje
N0 server mady

passive
close

Y

Time

https://fb.com/tailieudientucntt

30

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.5 STATE TRANSITION DIAGRA

To keep track of all the different events happening during connection
establishment, connection termination, and data transfer, the TCP
software is implemented as a finite state machine. .

The topics discussed in this section include:

Scenarios

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

31

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Table 12.3 States for TCP

State Description
CLOSED There is no connection
LISTEN Passive open received; waiting for SYN

SYN-SENT

SYN sent; waiting for ACK

SYN-RCVD

SYN+ACK sent; waiting for ACK

ESTABLISHED

Connection established; data transfer in progress

FIN-WAIT-1

First FIN sent; waiting for ACK

FIN-WAIT-2

ACK to first FIN received; waiting for second FIN

CLOSE-WAIT

First FIN received, ACK sent; waiting for application to close

TIME-WAIT

Second FIN received, ACK sent; waiting for 2MSL time-out

LAST-ACK

Second FIN sent; waiting for ACK

CLOSING

Both sides have decided to close simultaneously

TCP/ IP PI‘OtOCOI Sﬂi;tﬁngThanCong.com

https://fb.com/tailieudientucntt

32

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.13 State transition diagram

Y

Close / FIN

Y
FIN-

ACK /-

Y

WAIT-2

TCP/ IP PI’OtOCOI %ngThanCong.com

|
|

|
Acti /SYN |
Passive open / - : T C Ve open :

|
| Close / - :
SYN/SYN 1 ACK :
_______________ !
|
RST/ - Send / SYN :
Y Y |
SYN/SYN 1 ACK /SYN SENT |
Simultaneous open SYN K1] Close or:
time-out
+—C ESTABLISHED) < KY ACK or RST/ - |
I |
Close / FIN ! FIN / ACK |
i !
FIN / ACK !
WAIT-1) >(CLOSING CLOSE- :
- Simultaneous WAIT I
close Close /! :
|
FIN 1 ACK/ACK | ACK /. FIN i
Three-way LAST [
Handshake ACK :
Y |

FIN / ACK

FIN- O\ _ (" TIME- |__ACK/- 1

U WAIT

Time-out
(2MSL)

https://fb.com/tailieudientucntt

33

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.14 Common scenario

TCP/ IP PI’OtOCOI %ngThanCong.com

Client

Process

=N

Server

Process

y

z .
Active open i | Passive
& open
= 1
= =
L2l
‘ SYN +ACK zg %
) M
w [;
ACK -
o
g
a8 <
m =)
jasi g
2] E
F-.‘ =
[~ =) E
= Data = 5
%2} =)
&4 Transfer . g
= e
&
Active close
g I
=
- lﬂ_
2
== Data Transfer o=
|=\.’ o=
=B
mg .
= Acknowledges Passive close
"
2 ‘ %3
g E ACK 5<
Time-out =

Client States

Server States

https://fb.com/tailieudientucntt

34

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

gl

he common value for MSL Is
between 30 seconds and 1 minute.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.15 Three-way handshake

Client Server
Process Process
=N =
* p——
° ° g =
. . v
° ° o =
A~ 'E §
="a1 ESTABLISHED B~ S =
ESTABLISHED)=
> = o
Active close FIN 3 =
— =
Z' - 23 =
o< o=
2MSL timer = ==
FIN + ACK -~
Passive close
L'Iﬂ H]
e [£2
ime-out |= = 5 =

Client States

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

Server States

https://fb.com/tailieudientucntt

36

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.16 Simultaneous open

Process

—h

Active open E E SYN
» 5
SYN
= +
<
8-
IL/J;\/’:I ESTABLISHED

TCP/ IP PI’OtOCOI %ngThanCong.com

Process

—h

SyYN

Active open

SYN
-SENT

SYN + ACK

SYN-
RCVD

ESTABLISHED

K

https://fb.com/tailieudientucntt 3 7

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.17 Simultaneous close

Process
—h
°
°
°
P ESTABLISHED
Active , :
close Z = FIN
3
=
= ACK
2MSL timer §
O—
4 o
| 52
Time-out |5 =

TCP/ IP PI’OtOCOI %ngThanCong.com

Process
—h
® —_—
°
°
ESTABLISHED | A
FIN , ; Active
E — close
D <
=
ACK S
8 2MSL timer
= —O®
o S
Eg Time-out
————————

CLOSED

https://fb.com/tailieudientucntt

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.18

Denying a connection

Client Server
Process Process
= N =N
A -
=
#.p]
o
5
e Passi
Active open E assive
- 2, open
Z Z —
P [
v
' —RSTTACK | .
P 2 S s
a 75!
= o~
)
9
® =
-
L
—_

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.19 Aborting a connection

Client
Process

Abort

a... J

ESTABLISHED

Server
Process

—h

ESTABLISHED

TCP/ IP PI’OtOCOI %ngThanCong.com

—
—

RST + ACK

https://fb.com/tailieudientucntt

Error

40

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.6 FLOW CONTROL

Flow control regulates the amount of data a source can send before
receiving an acknowledgment from the destination. TCP defines a
window that is imposed on the buffer of data delivered from the

application program.

The topics discussed in this section include:

Sliding Window Protocol
Silly Window Syndrome

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt 41

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.20 Sliding window

‘ Window Size = minimum (rwnd , cwnd) I

Shrinking ——

eee 1| n |n+l e o o m—1| m Im+1 °e
I_), Sliding Window
Closing Opening

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

42

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A sliding window Is used to make
transmission more efficient as well as
to control the flow of data so that the

destination does not become
overwhelmed with data.

TCP’s sliding windows are byte
oriented.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA‘MPLE‘?

What is the value of the receiver window (rwnd) for host A if
the receiver, host B, has a buffer size of 5,000 bytes and 1,000
bytes of received and unprocessed data?

Solution
The value of rwnd = 5,000 — 1,000 = 4,000. Host B can receive
only 4,000 bytes of data before overflowing its buffer. Host B
advertises this value in its next segment to A.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

44

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA‘MPLE4

What is the size of the window for host A if the value of rwnd is
3,000 bytes and the value of cwnd is 3,500 bytes?

Solution
The size of the window is the smaller of rwnd and cwnd, which
1S 3,000 bytes.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

45

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 5

Figure 12.21 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assume that
cwnd is 20 (in reality this value is thousands of bytes). The
receiver has sent an acknowledgment number of 200 with an
rwnd of 9 bytes (in reality this value iIs thousands of bytes). The
size of the sender window is the minimum of rwnd and cwnd or
9 bytes. Bytes 200 to 202 are sent, but not acknowledged. Bytes
203 to 208 can Dbe sent without worrying about
acknowledgment. Bytes 209 and above cannot be sent.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

46

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.21 Example 5

Window size = minimum (20,9) =9

Sent, not
acknowledged Can be sent immediately
- -l

-

-

eee |199|200| 201|202] 203|204 |205|206 |207 [208 [209| e ee
Sent and Next byte to be sent Can’t be
acknowledged sent until window
opens

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

47

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLE6

In Figure 12.21 the server receives a packet with an
acknowledgment value of 202 and an rwnd of 9. The host has
already sent bytes 203, 204, and 205. The value of cwnd is still
20. Show the new window.

Solution
Figure 12.22 shows the new window. Note that this is a case In
which the window closes from the left and opens from the right
by an equal number of bytes; the size of the window has not
been changed. The acknowledgment value, 202, declares that
bytes 200 and 201 have been received and the sender needs not
worry about them; the window can slide over them.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

48

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.22 Example 6

eee (201]202(203|204 [205 206|207 [208 [209 210 |21]1 | e e e
Sentand f Can’t be
acknowledged Next byte to be sent sent until window

TCP/ IP PI’OtOCOI S,Hj;tﬁngThanCong.com

https://fb.com/tailieudientucntt

opens more

49

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLE7

In Figure 12.22 the sender receives a packet with an
acknowledgment value of 206 and an rwnd of 12. The host has
not sent any new bytes. The value of cwnd is still 20. Show the
new window.

Solution
The value of rwnd is less than cwnd, so the size of the window
Is 12. Figure 12.23 shows the new window. Note that the
window has been opened from the right by 7 and closed from
the left by 4; the size of the window has increased.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

50

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.23 Example 7

Y

Window size = minimum (20, 12) =12

216|217 218 e e e

206 1207 (1208 | 2091210 | 211|212 {213 | 214 |215

eee 205
> -
Sent and Can’t be
acknowledged sent until window
opens
51

https://fb.com/tailieudientucntt

TCP/ IP PI‘OtOCOI SHEEngThanCong.com

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 8

In Figure 12.23 the host receives a packet with an
acknowledgment value of 210 and an rwnd of 5. The host has
sent bytes 206, 207, 208, and 209. The value of cwnd is still 20.
Show the new window.

Solution
The value of rwnd is less than cwnd, so the size of the window
Is 5. Figure 12.24 shows the situation. Note that this iIs a case
not allowed by most implementations. Although the sender has
not sent bytes 215 to 217, the receiver does not know this.

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

52

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.24 Example 8

This situation is not
allowed in most implementations

Window size = 5 Previous right wall
location

eee (209|210 |211 (212|213 | 214|215 | 216|217 |218| e

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

TCP/ IP PI’OtOCOI %ngThanCong.com

IEXA‘MPLE9

How can the receiver avoid shrinking the window In the
previous example?

Solution
The receiver needs to keep track of the last acknowledgment
number and the last rwnd. If we add the acknowledgment
number to rwnd we get the byte number following the right
wall. If we want to prevent the right wall from moving to the

left (shrinking), we must always have the following
relationship.

new ack + new rwnd > last ack + last rwnd
or
new rwnd > (last ack + last rwnd) — new ack

https://fb.com/tailieudientucntt

54

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& oo |

To avoid shrinking the sender window,
the receiver must wait until more
space Is available In its buffer.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Some points about TCP’s sliding windows:

LJ The size of the window Is the lesser of rwnd and cwnd.

L] The source does not have to send a full window’s
worth of data.

J The window can be opened or closed by the receiver,
but should not be shrunk.

[J The destination can send an acknowledgment at any
time as long as it does not result in a shrinking window.

LJ The receiver can temporarily shut down the window;
the sender, however, can always send a segment of one
byte after the window is shut down.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.7 ERROR CONTROL

TCP provides reliability using error control, which detects corrupted,
lost, out-of-order, and duplicated segments. Error control in TCP is
achieved through the use of the checksum, acknowledgment, and time-
out.

The topics discussed in this section include:

Checksum
Acknowledgment
Acknowledgment Type
Retransmission
Out-of-Order Segments
Some Scenarios

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt 57

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ACK segments do not consume
seguence numbers and are not
acknowledged.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& e |

In modern implementations, a
retransmission occurs If the
retransmission timer expires or three

duplicate ACK segments have arrived.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

No retransmission timer is set for an

ACK segment.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& e |

Data may arrive out of order and be
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order
segment Is delivered to the process.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.25 Normal operation

Server
Client ==
']
—
I
Seq: 1201-1400
=
Rule 1 Ack: 4001
Seq: 4001-5000 -
Ack: 1401 Rule 1
500 ms
Rule 2 > Ack: 5001
Seq: 5001-6000 -
Ack: 1401 Rule 1
< 500 ms |: Seq: 6001-7000 <— Rule 1
Ack: 1401
Rule 3 —>» Ack: 7001 [-m>—
Y Y
Time Time

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

62

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.26 Lost segment

Sender

Seq: 501-600

Receiver

Receiver

Buffer

Ack: x
Seq: 601-700

Ack: x

@ L Seq: 701-800
Ack: x

Seq: 801-900

i”

lost

Ack: 701

l

Ack: x

resent

> Seq: 701-800

Ack: x

Time

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

= Il

Ack: 901 <

Y

Time

https://fb.com/tailieudientucntt

out of order

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

fwl

he receiver TCP delivers only
ordered data to the process.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.27 Fast retransmission

Sender Receiver

Receiver
Seq: 101-200 buffer
Ack: x "
Seq: 201-300
Ack: x I Ack: 301
Seq: 301-400
Ack: x H [Lost
Seq: 401-500
Ack: x I I Ack: 301 []
Seq: 501-600
fAcex I [Ack: 301 LT
Seq: 601-700 |
Ack: x = — [TTT
3 ACKS - = - = jues= Seq: 301-400
Ack: x ‘ Ack: 701
resent .
All in order
Y Y
Time Time

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.28 Lost acknowledgment

Sender Receiver

Ack: 701__

Ack: Qﬂlj"_

Time Time

TCP/ IP Protocol SHEEngThanCong.com https://fb.com/tailieudientucntt

66

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.29 Lost acknowledgment corrected by resending a segment

Receiver

Seq: 501-600
Ack: x -
Seq: 601-700
E Ack: x »‘
g 4 Ack: 701
E lost
=
P Seq: 501-600
Ack: x -*
resent Ack: 701 <«—Rule 6
v Y
Time Time

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt 67

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Lost acknowledgments may create
deadlock if they are not properly
handled.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.8 CONGESTION CONTROL

Congestion control refers to the mechanisms and technigues to keep the
load below the capacity.

The topics discussed in this section include:

Network Performance
Congestion Control Mechanisms
Congestion Control in TCP

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

69

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.30 Router queues

@)

= 5
Tz o
c c
— —

Queues

o

s

g ©

= B
—|Interfacel—Interface

Queues

Queues

—{Interface

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

O —
= 2
S £
=4

70

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.31 Packet delay and network load

Delay
A

No congestion area| Congestion area

Capacity [.oad

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

/1

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.32 Throughput versus network load

Throughput
A

No-congestion Congestion area
area

Capacity

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

-
[.oad

72

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.33

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

Sender

------ _
—— Segment 4 =
E —{ Segment 5 =
— Segment 6 H==>
—1_Segment 7 Hz=D>—
______ |
Y Y
Time

Slow start, exponential increase

Receiver

—_Segment 2 ==

1_Segment 3 Hmm>»—

Time

https://fb.com/tailieudientucntt

73

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& roe |

In the slow start algorithm, the size of
the congestion window Increases
exponentially until it reaches a
threshold.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.34 Congestion avoidance, additive increase

Sender Receiver

/] ------ — Segment [=
cwnd ﬁ
r
_— -
cwnd | [Se2mentZ T
E —— Segment 3 oy
:I:D ______
cwnd —_Segment 4 |-mm>
ﬁ —— Segment 5 -
rr,
—_Segment6_|-m=>
T]------
cwnd
Y
. Y
Time Time

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

75

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& e |

In the congestion avoidance algorithm
the size of the congestion window
Increases additively until
congestion Is detected.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Most implementations react differently to
congestion detection:

LJ If detection Is by time-out, a new slow start phase
starts.

[J If detection is by three ACKSs, a new congestion
avoidance phase starts.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.35 TCP congestion policy summary

Connection
establishment

Slﬂw Start ClDSE CDI’]I’:IECt?Dn
termination

cwnd > ssthresh

| Y wl'

ssthresh = 1/2 window ssthresh = 1/2 window
cwnd = 1 MSS . Congestion cwnd = ssthresh
Hime-out Avoidance 3 ACKs
Congestion \ Congestion
Close

TCP/ IP PI’OtOCOI %ngThanCong.com

Connection
termination

https://fb.com/tailieudientucntt

78

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.36 Congestion example

cwnd
A
26 -
24
22
20+
18
16
14
12
10
08
06
04
02

SS: Slow Start
Al: Additive Increase
MD: Multiplicative Decrease

Threshold = 16

Al

Time-out

Threshold = 10

MD

TCP/ IP PI‘OtOCOl SHEﬁngThanCong.com

|
8§ 9 10 11 12 13 14 15 16

79

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.9 TCP TIMERS

To perform its operation smoothly, most TCP implementations use at
least four timers.

The topics discussed in this section include:

Retransmission Timer
Persistence Timer
Keepalive Timer
TIME-WAIT Timer

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

80

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.37 TCP timers

‘ Timers |

‘Retransmissiunl ‘ Persistence | ‘ Keepalive | ‘ TIME-WAIT I

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

81

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

fow|

In TCP, there can be only be one RTT
measurement In progress at any time.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEIO

et us give a hypothetical example. Figure 12.38 shows part of
a connection. The figure shows the connection establishment

and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for RTT,,, RTTg, or
RTT,. The value of RTO is set to 6.00 seconds. The following shows the
value of these variables at this moment:

RTT,,=1.5 RTTs=15
RTT,=15/2=0.75 RTO=15+4.0.75=45

2. When the SYN+ACK segment arrives, RTT,, is measured and is equal to
1.5 seconds. The next slide shows the values of these variables:

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

83

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 10 (conrmvven)

RTT,, =15 RTTs=15
RTT;=15/2=0.75 RTO=15+4.0.75=4.5

3.When the first data segment is sent, a new RTT measurement
starts. Note that the sender does not start an RTT measurement
when it sends the ACK segment, because it does not consume a
sequence number and there is no time-out. No RTT
measurement starts for the second data segment because a
measurement is already in progress.

RTT,, = 2.5
RTT, = 7/8 (1.5) + 1/8 (2.5) = 1.625
RTT,=3/4 (7.5 +1/4 |1.625 - 2.5| =0.78
RTO = 1.625 + 4 (0.78) = 4.74

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

84

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.38 Example 10

RT Ty = RTTg =
RTTp = RTO = 6.00

RTTy =15 RTTg= 150
RTT,=0.75 RTO = 4.50

RTTy = 2.50 RTTg = 1.625
RTTp = 0.78 RTO = 4.74

TCP/ IP PI’OtOCOI %ngThanCong.com

2.50 s

B _] Seq: 1400 Ack:

SYN

Receiver

SYN 1 ACK
- Seq: 4000 Ack: 1401
ACK
Seq: 1400 Ack: 4001 Hems>—
Data

| Seq: 1401 Ack: 4001

Data: 1401-1500

Data
Seq: 1501 Ack: 4001

Data: 1501-1600

ACK
Seq: 4000 Ack: 1601
Y - Y
Time ® Time

https://fb.com/tailieudientucntt

85

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

gl

TCP does not consider the RTT of a
retransmitted segment in Iits
calculation of a new RTO.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEII

Figure 12.39 iIs a continuation of the previous example. There
IS retransmission and Karn’s algorithm is applied. The first
segment in the figure is sent, but lost. The RTO timer expires
after 4.74 seconds. The segment is retransmitted and the timer
IS set to 9.48, twice the previous value of RTO. This time an
ACK is received before the time-out. We wait until we send a
new segment and receive the ACK for it before recalculating

the RTO (Karn’s algorithm).

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt

87

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.39 Example 11

RTTy; =250 RTTg = 1.625
RTTh=0.78 RTO = 4.74
Values from previous example

RTO =2 x4.74 = 9.48
Exponential Backoff of RTO

RTO =2 x4.74 = 9.48
No change, Karn's algorithm

RTT,; = 4.00 RTTg = 1.92
RTTp = 1.105 RTO = 6.34

New values based on new RTTpg

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

.
Data e

Seq: 1601 Ack: 4001

| Data: 1601-1700 |

Data
Seq: 1601 Ack: 4001 |

v o

time-out

.4.74 .

o0
-
=3

cancelled

Data: 1601-1700
resent

[.ost

ACK

== Seq: 4000 Ack: 1701

Data
Seq: 1701 Ack: 4001

4.00

| Data: 1701-1800

ACK

Time

@B Seq: 4000 Ack: 1801

https://fb.com/tailieudientucntt

Time

88

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.10 OPTIONS

The TCP header can have up to 40 bytes of optional information.
Options convey additional information to the destination or align other
options.

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

89

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.40 Options

| Options i‘

Single-byte

‘

TCP/ IP PI’OtOCOI %ngThanCong.com

End of option list I

No operation I

Maximum segment sizel

Window scale factor I

Multiple-byte |

Timestamp I

SACK-permitted I

SACK I

https://fb.com/tailieudientucntt

90

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.41 End-of-option option

Kind: O

00000000

11

4!

a. End of option list

TCP/ IP PI’OtOCOI %ngThanCong.com

https://fb.com/tailieudientucntt

3-byte option EOP
s Data -~
b. Used for padding
91

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

h EOP can be used only once.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.42 No-operation option

Kind: 1
00000001

a. No operation option

TCP/ IP PI’OtOCOI %ngThanCong.com

NOP

3-byte option

NOP

NOP

10-byte option

)1

4

Data

)1

[

b. Used to align beginning of an option

https://fb.com/tailieudientucntt

93

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

NOP can be used more than once.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.43 Maximum-segment-size option

Kind: 2 Length: 4
00000010 00000100
1 byte 1 byte

TCP/ IP PI’OtOCOI %ngThanCong.com

Maximum segment size

2 bytes

https://fb.com/tailieudientucntt

95

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& o= |

The value of MSS Is determined

during connection establishment and

does not change during the
connection.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.44 Window-scale-factor option

Kind: 3 Length: 3
00000011 00000011
1 byte 1 byte

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

Scale factor

1 byte

https://fb.com/tailieudientucntt

97

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& o= |

The value of the window scale factor
can be determined only during
connection establishment; it does not

change during the connection.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.45 Timestamp option

Kind: 8 Length: 10
00001000 00001010

Timestamp value

TCP/ IP PI’OtOCOI %ngThanCong.com

Timestamp echo reply

https://fb.com/tailieudientucntt

99

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

One application of the timestamp
option is the calculation of round trip

time (RTT).

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEIZ

Figure 12.46 shows an example that calculates the round-trip
time for one end. Everything must be flipped if we want to
calculate the RTT for the other end.

The sender simply inserts the value of the clock (for example,
the number of seconds past from midnight) in the timestamp
field for the first and second segment. When an
acknowledgment comes (the third segment), the value of the
clock is checked and the value of the echo reply field is
subtracted from the current time. RTT is 12 s in this scenario.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 101

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 12 (covrmwuen)

The receiver’s function is more involved. It keeps track of the
last acknowledgment sent (12000). When the first segment
arrives, it contains the bytes 12000 to 12099. The first byte is
the same as the value of lastack. It then copies the timestamp
value (4720) into the tsrecent variable. The value of lastack is
still 12000 (no new acknowledgment has been sent). When the
second segment arrives, since none of the byte numbers in this
segment include the value of lastack, the value of the
timestamp field is ignored. When the receiver decides to send
an accumulative acknowledgment with acknowledgment
12200, it changes the value of lastack to 12200 and inserts the
value of tsrecent in the echo reply field. The value of tsrecent
will not change until it isreplaced by a new segment that
carries byte 12200 (next segment).

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 102

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 12 (covrmwuen)

Note that as the example shows, the RTT calculated is the time
difference between sending the first segment and receiving the
third segment. This is actually the meaning of RTT: the time
difference between a packet sent and the acknowledgment
received. The third segment carries the acknowledgment for
the first and second segments.

TCP/IP Protocol Suj;ﬁngThanCong.com https://fb.com/tailieudientucntt 103

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.46 Example 12

sender

12000:12099 ACK:

Time: 4720 ® Timestamp: 4720
Timestamp echo reply:

12100:12199 ACK:
Time: 4725 @ Timestamp: 4725
Timestamp echo reply:

SN: ACK: 12200

receiver

12000

4720

12000

4720

Timestamp:

' Timestamp echo reply: 4720
[

RTT =4732 - 4720=12

12200

4720

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt

lastack
tsrecent

lastack
tsrecent

lastack
tsrecent

lastack
tsrecent

104

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

fo|

Thetimestamp option can also be used
for PAWS.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.47 SACK

‘ Kind: 4 ‘ Length: 2 I

SACK-permitted option

Kind: 5

Length

Left edge of 1st Block

Right edge of 1st Block

Left edge of nth Block

TCP/ IP PI’OtOCOI %ngThanCong.com

Right edge of nth Block

SACK option

https://fb.com/tailieudientucntt

106

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLEI«?

Let us see how the SACK option is used to list out-of-order blocks. In
Figure 12.48 an end has received five segments of data.

The first and second segments are in consecutive order. An accumulative
acknowledgment can be sent to report the reception of these two segments.
Segments 3, 4, and 5, however, are out of order with a gap between the
second and third and a gap between the fourth and the fifth. An ACK and a
SACK together can easily clear the situation for the sender. The value of
ACK 152001, which means that the sender need not worry about bytes 1 to
2000. The SACK has two blocks. The first block announces that bytes 4001
to 6000 have arrived out of order. The second block shows that bytes 8001 to
9000 have also arrived out of order. This means that bytes 2001 to 4000 and
bytes 6001 to 8000 are lost or discarded. The sender can resend only these
bytes.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 107

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.48 Example 13

Consecutive segments Out of order segments
—~€ > —~€ >
0001:1000 1001:2000 |eee | 4001:5000 5001:6000 oo 8001:9000
0 = > - >
Accumulative Block 1 Block 2
ACK
4001
. 2000] 6000
ACK
SACK
TCP/IP Protocol SYRE. r1acong com

https://fb.com/tailieudientucntt

108

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

IEXA'MPLE14

The example in Figure 12.49 shows how a duplicate segment
can be detected with a combination of ACK and SACK. In this
case, we have some out-of-order segments (in one block) and
one duplicate segment. To show both out-of-order and
duplicate data, SACK uses the first block, in this case, to show
the duplicate data and other blocks to show out-of-order data.
Note that only the first block can be used for duplicate data.
The natural question is how the sender, when it receives these
ACK and SACK values knows that the first block is for
duplicate data (compare this example with the previous
example). The answer is that the bytes in the first block are
already acknowledged in the ACK field; therefore, this block
must be a duplicate.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 109

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.49 Example 14

out-of-order segments

€ >

0001:1000 | eee | 4001:5000 5001:6000 |eee | 0001:1000
- — € : >

Accumulative Block 1 Duplicate
ACK
0001 Duplicate
S () B T block

ACK

TCP/ IP PI‘OtOCOI %{EﬁngThanCong.com

SACK

https://fb.com/tailieudientucntt

110

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 15

The example in Figure 12.50 shows what happens if one of the
segments in the out-of-order section is also duplicated. In this
example, one of the segments (4001:5000) is duplicated. The
SACK option announces this duplicate data first and then the
out-of-order block. This time, however, the duplicated block is
not yet acknowledged by ACK, but because it is part of the out-
of-order block (4001:5000 1is part of 4001:6000), it is
understood by the sender that it defines the duplicate data.

TCP/IP Protocol SYIe, iuconcon 111

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.50 Example 15

0001:1000 | eee

out-of-order segments

- >

4001:5000 5001:6000

eee | 4001:5000

< > < —" >
Accumulative Block 1 uplicate
ACK
4001 Duplicate
. feot]

TCP/ IP PI‘OtOCOI %{EﬁngThanCong.com

ACK

>000 block

SACK

https://fb.com/tailieudientucntt

112

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12.11 TCP PACKAGE

We present a simplified, bare-bones TCP package to simulate the heart of
TCP. The package involves tables called transmission control blocks, a
set of timers, and three software modules.

The topics discussed in this section include:

Transmission Control Blocks (TCBs)
Timers

Main Module

Input Processing Module

Output Processing Module

TCP/IP Protocol SUIte,uconcon 113

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.51 TCP package

Application layer

Messages to and from

application
™ = E k
C I
P Timers |
TCBs :
OO .
|
OO .
|
|
|
module :
|
|
|
|
|
|
|
|

I
I
I
I
I
I
I
I
I
I
I
: Main
I
I
I
I
I
I
I
I
I
I

TCP segment TCP segment
IP layer

TCP/ IP Protocol SHEEngThanCong.com https://fb.com/tailieudientucntt 1 14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.52 TCBs

State

Process

Pointer

Buffers

TCP/ IP PI‘OtOCOI %{EﬁngThanCong.com

https://fb.com/tailieudientucntt

115

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

