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Transmission
Control Protocol

Objectives

Upon completion you will be able to:

 Be able to name and understand the services offered by TCP

» Understand TCP’s flow and error control and congestion control
« Be familiar with the fields in a TCP segment

« Understand the phases in a connection-oriented connection

« Understand the TCP transition state diagram

 Be able to name and understand the timers used in TCP

 Be familiar with the TCP options
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Figure 12.1 TCP/IP protocol suite
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12.1 TCP SERVICES

We explain the services offered by TCP to the processes at the application
layer.

The topics discussed in this section include:

Process-to-Process Communication
Stream Delivery Service
Full-Duplex Communication
Connection-Oriented Service
Reliable Service
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Table 12.1 Well-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that is received
11 | Users Active users
13 | Daytime Returns the date and the time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
20 | FTP, Data File Transfer Protocol (data connection)
21 FTP, Control | File Transfer Protocol (control connection)
23 | TELNET Terminal Network
25 | SMTP Simple Mail Transfer Protocol
53 | DNS Domain Name Server
67 | BOOTP Bootstrap Protocol
79 | Finger Finger
80 | HTTP Hypertext Transfer Protocol
111 | RPC Remote Procedure Call
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IEXA'MPLEI

As we said in Chapter 11, in UNIX, the well-known ports are
stored in a file called /etc/services. Each line in this file gives
the name of the server and the well-known port number. We
can use the grep utility to extract the line corresponding to the
desired application. The following shows the ports for FTP.

$ grep ftp /etc/services

ftp-data 20/tcp
ftp-control  21/tcp
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Figure 12.2 Stream delivery

Sending
process

Iy

Receiving
process

Il

TCP

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

—)-El Stream of bxtes -

TCP

https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.3 Sending and receiving buffers
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Figure 12.4 TCP segments
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12.2 TCP FEATURES

To provide the services mentioned in the previous section, TCP has
several features that are briefly summarized in this section.

The topics discussed in this section include:

Numbering System
Flow Control
Error Control
Congestion Control
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The bytes of data being transferred In
each connection are numbered by TCP.
The numbering starts with a randomly
generated number.
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IEXA'MPLEZ

Suppose a TCP connection is transferring a file of 5000 bytes.
The first byte Is numbered 10001. What are the sequence
numbers for each segment if data is sent in five segments, each
carrying 1000 bytes?

Solution
The following shows the sequence number for each segment:

Segment 1 =» Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2 =» Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 = Sequence Number: 12,001 (range: 12,001 to 13,000)
Segment 4 = Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5 = Sequence Number: 14,001 (range: 14,001 to 15,000)

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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The value In the sequence number
field of a segment defines the number
of the first data byte contained

In that segment.
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The value of the acknowledgment field
In a segment defines the number of the

next byte a party expects to receive.

The acknowledgment number iIs
cumulative.
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12.3 SEGMENT

A packet in TCP is called a segment

The topics discussed in this section include:

Format
Encapsulation
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Figure 12.5 TCP segment format
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Figure 12.6 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers

PSH: Request for push FIN: Terminate the connection

URG PSH RST
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Table 12.2 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid

ACK | The value of the acknowledgment field is valid
PSH | Push the data

RST | The connection must be reset

SYN | Synchronize sequence numbers during connection
FIN Terminate the connection

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt
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Figure 12.7 Pseudoheader added to the TCP datagram
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Theinclusion of the checksum in TCP
IS mandatory.
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Figure 12.8 Encapsulation and decapsulation
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12.4 A TCP CONNECTION

TCP is connection-oriented. A connection-oriented transport protocol
establishes a virtual path between the source and destination. All of the
segments belonging to a message are then sent over this virtual path. A
connection-oriented transmission requires three phases: connection
establishment, data transfer, and connection termination.

The topics discussed in this section include:

Connection Establishment
Data Transfer

Connection Termination
Connection Reset
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Figure 12.9 Connection establishment using three-way handshaking
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A SYN segment cannot carry data, but
It consumes one sequence number.
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A SYN + ACK segment cannot carry
data, but does consume one
seguence number.
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An ACK segment, If carrying no data,
consumes no sequence number.
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Figure 12.10 Data transfer
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The FIN segment consumes one
sequence number if it does not carry
data.
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Figure 12.11 Connection termination using three-way handshaking
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The FIN + ACK segment consumes
one sequence number If It does not
carry data.
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Figure 12.12 Half-close
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12.5 STATE TRANSITION DIAGRA

To keep track of all the different events happening during connection
establishment, connection termination, and data transfer, the TCP
software is implemented as a finite state machine. .

The topics discussed in this section include:

Scenarios

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt
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Table 12.3 States for TCP

State Description
CLOSED There is no connection
LISTEN Passive open received; waiting for SYN

SYN-SENT

SYN sent; waiting for ACK

SYN-RCVD

SYN+ACK sent; waiting for ACK

ESTABLISHED

Connection established; data transfer in progress

FIN-WAIT-1

First FIN sent; waiting for ACK

FIN-WAIT-2

ACK to first FIN received; waiting for second FIN

CLOSE-WAIT

First FIN received, ACK sent; waiting for application to close

TIME-WAIT

Second FIN received, ACK sent; waiting for 2MSL time-out

LAST-ACK

Second FIN sent; waiting for ACK

CLOSING

Both sides have decided to close simultaneously

TCP/ IP PI‘OtOCOI Sﬂi;tﬁngThanCong.com
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Figure 12.13 State transition diagram
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Figure 12.14 Common scenario
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gl

he common value for MSL Is
between 30 seconds and 1 minute.
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Figure 12.15 Three-way handshake
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Figure 12.16 Simultaneous open
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Figure 12.17 Simultaneous close
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Figure 12.18
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Figure 12.19 Aborting a connection
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12.6 FLOW CONTROL

Flow control regulates the amount of data a source can send before
receiving an acknowledgment from the destination. TCP defines a
window that is imposed on the buffer of data delivered from the

application program.

The topics discussed in this section include:

Sliding Window Protocol
Silly Window Syndrome
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Figure 12.20 Sliding window
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A sliding window Is used to make
transmission more efficient as well as
to control the flow of data so that the

destination does not become
overwhelmed with data.

TCP’s sliding windows are byte
oriented.
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IEXA‘MPLE‘?

What is the value of the receiver window (rwnd) for host A if
the receiver, host B, has a buffer size of 5,000 bytes and 1,000
bytes of received and unprocessed data?

Solution
The value of rwnd = 5,000 — 1,000 = 4,000. Host B can receive
only 4,000 bytes of data before overflowing its buffer. Host B
advertises this value in its next segment to A.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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IEXA‘MPLE4

What is the size of the window for host A if the value of rwnd is
3,000 bytes and the value of cwnd is 3,500 bytes?

Solution
The size of the window is the smaller of rwnd and cwnd, which
1S 3,000 bytes.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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I EXAMPLE 5

Figure 12.21 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assume that
cwnd is 20 (in reality this value is thousands of bytes). The
receiver has sent an acknowledgment number of 200 with an
rwnd of 9 bytes (in reality this value iIs thousands of bytes). The
size of the sender window is the minimum of rwnd and cwnd or
9 bytes. Bytes 200 to 202 are sent, but not acknowledged. Bytes
203 to 208 can Dbe sent without worrying about
acknowledgment. Bytes 209 and above cannot be sent.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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Figure 12.21 Example 5
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IEXA'MPLE6

In Figure 12.21 the server receives a packet with an
acknowledgment value of 202 and an rwnd of 9. The host has
already sent bytes 203, 204, and 205. The value of cwnd is still
20. Show the new window.

Solution
Figure 12.22 shows the new window. Note that this is a case In
which the window closes from the left and opens from the right
by an equal number of bytes; the size of the window has not
been changed. The acknowledgment value, 202, declares that
bytes 200 and 201 have been received and the sender needs not
worry about them; the window can slide over them.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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Figure 12.22 Example 6
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IEXA'MPLE7

In Figure 12.22 the sender receives a packet with an
acknowledgment value of 206 and an rwnd of 12. The host has
not sent any new bytes. The value of cwnd is still 20. Show the
new window.

Solution
The value of rwnd is less than cwnd, so the size of the window
Is 12. Figure 12.23 shows the new window. Note that the
window has been opened from the right by 7 and closed from
the left by 4; the size of the window has increased.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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Figure 12.23 Example 7
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I EXAMPLE 8

In Figure 12.23 the host receives a packet with an
acknowledgment value of 210 and an rwnd of 5. The host has
sent bytes 206, 207, 208, and 209. The value of cwnd is still 20.
Show the new window.

Solution
The value of rwnd is less than cwnd, so the size of the window
Is 5. Figure 12.24 shows the situation. Note that this iIs a case
not allowed by most implementations. Although the sender has
not sent bytes 215 to 217, the receiver does not know this.
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Figure 12.24 Example 8
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How can the receiver avoid shrinking the window In the
previous example?

Solution
The receiver needs to keep track of the last acknowledgment
number and the last rwnd. If we add the acknowledgment
number to rwnd we get the byte number following the right
wall. If we want to prevent the right wall from moving to the

left (shrinking), we must always have the following
relationship.

new ack + new rwnd > last ack + last rwnd
or
new rwnd > (last ack + last rwnd) — new ack

https://fb.com/tailieudientucntt
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To avoid shrinking the sender window,
the receiver must wait until more
space Is available In its buffer.
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Some points about TCP’s sliding windows:

LJ The size of the window Is the lesser of rwnd and cwnd.

L] The source does not have to send a full window’s
worth of data.

J The window can be opened or closed by the receiver,
but should not be shrunk.

[J The destination can send an acknowledgment at any
time as long as it does not result in a shrinking window.

LJ The receiver can temporarily shut down the window;
the sender, however, can always send a segment of one
byte after the window is shut down.
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12.7 ERROR CONTROL

TCP provides reliability using error control, which detects corrupted,
lost, out-of-order, and duplicated segments. Error control in TCP is
achieved through the use of the checksum, acknowledgment, and time-
out.

The topics discussed in this section include:

Checksum
Acknowledgment
Acknowledgment Type
Retransmission
Out-of-Order Segments
Some Scenarios
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ACK segments do not consume
seguence numbers and are not
acknowledged.
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In modern implementations, a
retransmission occurs If the
retransmission timer expires or three

duplicate ACK segments have arrived.
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No retransmission timer is set for an

ACK segment.
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Data may arrive out of order and be
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order
segment Is delivered to the process.
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Figure 12.25 Normal operation
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Figure 12.26 Lost segment
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he receiver TCP delivers only
ordered data to the process.
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Figure 12.27 Fast retransmission
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Figure 12.28 Lost acknowledgment
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Figure 12.29 Lost acknowledgment corrected by resending a segment

Receiver

Seq: 501-600
Ack: x -
Seq: 601-700
E Ack: x »‘
g 4 Ack: 701
E lost
=
P Seq: 501-600
Ack: x -*
resent Ack: 701 <«—Rule 6
v Y
Time Time

TCP/IP Protocol SﬂﬁﬁngThanCong.com https://fb.com/tailieudientucntt 67


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Lost acknowledgments may create
deadlock if they are not properly
handled.
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12.8 CONGESTION CONTROL

Congestion control refers to the mechanisms and technigues to keep the
load below the capacity.

The topics discussed in this section include:

Network Performance
Congestion Control Mechanisms
Congestion Control in TCP

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

https://fb.com/tailieudientucntt

69


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.30 Router queues
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Figure 12.31 Packet delay and network load
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Figure 12.32 Throughput versus network load
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Figure 12.33

TCP/ IP PI’OtOCOI SﬂﬁﬁngThanCong.com

Sender

------ _
—— Segment 4 =
E —{ Segment 5 =
— Segment 6 H==>
—1_Segment 7 Hz=D>—
______ |
Y Y
Time

Slow start, exponential increase

Receiver

—_Segment 2 ==

1_Segment 3 Hmm>»—

Time

https://fb.com/tailieudientucntt

73


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& roe |

In the slow start algorithm, the size of
the congestion window Increases
exponentially until it reaches a
threshold.
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Figure 12.34 Congestion avoidance, additive increase
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In the congestion avoidance algorithm
the size of the congestion window
Increases additively until
congestion Is detected.
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Most implementations react differently to
congestion detection:

LJ If detection Is by time-out, a new slow start phase
starts.

[J If detection is by three ACKSs, a new congestion
avoidance phase starts.
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Figure 12.35 TCP congestion policy summary
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Figure 12.36 Congestion example
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12.9 TCP TIMERS

To perform its operation smoothly, most TCP implementations use at
least four timers.

The topics discussed in this section include:

Retransmission Timer
Persistence Timer
Keepalive Timer
TIME-WAIT Timer
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Figure 12.37 TCP timers
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In TCP, there can be only be one RTT
measurement In progress at any time.
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IEXA'MPLEIO

et us give a hypothetical example. Figure 12.38 shows part of
a connection. The figure shows the connection establishment

and part of the data transfer phases.

1. When the SYN segment is sent, there is no value for RTT,,, RTTg, or
RTT,. The value of RTO is set to 6.00 seconds. The following shows the
value of these variables at this moment:

RTT,,=1.5 RTTs=15
RTT,=15/2=0.75 RTO=15+4.0.75=45

2. When the SYN+ACK segment arrives, RTT,, is measured and is equal to
1.5 seconds. The next slide shows the values of these variables:

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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I EXAMPLE 10 (conrmvven)

RTT,, =15 RTTs=15
RTT;=15/2=0.75 RTO=15+4.0.75=4.5

3.When the first data segment is sent, a new RTT measurement
starts. Note that the sender does not start an RTT measurement
when it sends the ACK segment, because it does not consume a
sequence number and there is no time-out. No RTT
measurement starts for the second data segment because a
measurement is already in progress.

RTT,, = 2.5
RTT, = 7/8 (1.5) + 1/8 (2.5) = 1.625
RTT,=3/4 (7.5 +1/4 |1.625 - 2.5| =0.78
RTO = 1.625 + 4 (0.78) = 4.74

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt
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Figure 12.38 Example 10
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TCP does not consider the RTT of a
retransmitted segment in Iits
calculation of a new RTO.
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IEXA'MPLEII

Figure 12.39 iIs a continuation of the previous example. There
IS retransmission and Karn’s algorithm is applied. The first
segment in the figure is sent, but lost. The RTO timer expires
after 4.74 seconds. The segment is retransmitted and the timer
IS set to 9.48, twice the previous value of RTO. This time an
ACK is received before the time-out. We wait until we send a
new segment and receive the ACK for it before recalculating

the RTO (Karn’s algorithm).
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Figure 12.39 Example 11
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12.10 OPTIONS

The TCP header can have up to 40 bytes of optional information.
Options convey additional information to the destination or align other
options.
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Figure 12.40 Options
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Figure 12.41 End-of-option option
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h EOP can be used only once.
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Figure 12.42 No-operation option
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NOP can be used more than once.
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Figure 12.43 Maximum-segment-size option
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The value of MSS Is determined

during connection establishment and

does not change during the
connection.
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Figure 12.44 Window-scale-factor option
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The value of the window scale factor
can be determined only during
connection establishment; it does not

change during the connection.
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Figure 12.45 Timestamp option
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One application of the timestamp
option is the calculation of round trip

time (RTT).
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IEXA'MPLEIZ

Figure 12.46 shows an example that calculates the round-trip
time for one end. Everything must be flipped if we want to
calculate the RTT for the other end.

The sender simply inserts the value of the clock (for example,
the number of seconds past from midnight) in the timestamp
field for the first and second segment. When an
acknowledgment comes (the third segment), the value of the
clock is checked and the value of the echo reply field is
subtracted from the current time. RTT is 12 s in this scenario.
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I EXAMPLE 12 (covrmwuen)

The receiver’s function is more involved. It keeps track of the
last acknowledgment sent (12000). When the first segment
arrives, it contains the bytes 12000 to 12099. The first byte is
the same as the value of lastack. It then copies the timestamp
value (4720) into the tsrecent variable. The value of lastack is
still 12000 (no new acknowledgment has been sent). When the
second segment arrives, since none of the byte numbers in this
segment include the value of lastack, the value of the
timestamp field is ignored. When the receiver decides to send
an accumulative acknowledgment with acknowledgment
12200, it changes the value of lastack to 12200 and inserts the
value of tsrecent in the echo reply field. The value of tsrecent
will not change until it isreplaced by a new segment that
carries byte 12200 (next segment).

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 102


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

I EXAMPLE 12 (covrmwuen)

Note that as the example shows, the RTT calculated is the time
difference between sending the first segment and receiving the
third segment. This is actually the meaning of RTT: the time
difference between a packet sent and the acknowledgment
received. The third segment carries the acknowledgment for
the first and second segments.
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Figure 12.46 Example 12
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Thetimestamp option can also be used
for PAWS.
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Figure 12.47 SACK
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IEXA'MPLEI«?

Let us see how the SACK option is used to list out-of-order blocks. In
Figure 12.48 an end has received five segments of data.

The first and second segments are in consecutive order. An accumulative
acknowledgment can be sent to report the reception of these two segments.
Segments 3, 4, and 5, however, are out of order with a gap between the
second and third and a gap between the fourth and the fifth. An ACK and a
SACK together can easily clear the situation for the sender. The value of
ACK 152001, which means that the sender need not worry about bytes 1 to
2000. The SACK has two blocks. The first block announces that bytes 4001
to 6000 have arrived out of order. The second block shows that bytes 8001 to
9000 have also arrived out of order. This means that bytes 2001 to 4000 and
bytes 6001 to 8000 are lost or discarded. The sender can resend only these
bytes.

TCP/IP Protocol %ngThanCong.com https://fb.com/tailieudientucntt 107


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Figure 12.48 Example 13
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IEXA'MPLE14

The example in Figure 12.49 shows how a duplicate segment
can be detected with a combination of ACK and SACK. In this
case, we have some out-of-order segments (in one block) and
one duplicate segment. To show both out-of-order and
duplicate data, SACK uses the first block, in this case, to show
the duplicate data and other blocks to show out-of-order data.
Note that only the first block can be used for duplicate data.
The natural question is how the sender, when it receives these
ACK and SACK values knows that the first block is for
duplicate data (compare this example with the previous
example). The answer is that the bytes in the first block are
already acknowledged in the ACK field; therefore, this block
must be a duplicate.
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Figure 12.49 Example 14
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I EXAMPLE 15

The example in Figure 12.50 shows what happens if one of the
segments in the out-of-order section is also duplicated. In this
example, one of the segments (4001:5000) is duplicated. The
SACK option announces this duplicate data first and then the
out-of-order block. This time, however, the duplicated block is
not yet acknowledged by ACK, but because it is part of the out-
of-order block (4001:5000 1is part of 4001:6000), it is
understood by the sender that it defines the duplicate data.
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Figure 12.50 Example 15
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12.11 TCP PACKAGE

We present a simplified, bare-bones TCP package to simulate the heart of
TCP. The package involves tables called transmission control blocks, a
set of timers, and three software modules.

The topics discussed in this section include:

Transmission Control Blocks (TCBs)
Timers

Main Module

Input Processing Module

Output Processing Module
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Figure 12.51 TCP package
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Figure 12.52 TCBs
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