Hardware Description Language

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

Outline

- Overview on hardware description language
- 2. Basic VHDL Concept via an example
- 3. VHDL in development flow

cuu duong than cong . com

1. Overview on hardware description language

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

Programming language

- Can we use C or Java as HDL?
- A computer programming language
 - Semantics ("meaning")
 - Syntax ("grammar")
- Develop of a language
 - Study the characteristics of the underlying processes
 - Develop syntactic constructs and their associated semantics to model and express these characteristics.

RTL Hardware Design by P. Chu

Traditional PL

- Modeled after a sequential process
 - Operations performed in a sequential order
 - Help human's thinking process to develop an algorithm step by step
 - Resemble the operation of a basic computer model

cuu duong than cong . com

CuuDuongThanCong.com

HDL

- Characteristics of digital hardware
 - Connections of parts
 - Concurrent operations
 - Concept of propagation delay and timing
- Characteristics cannot be captured by traditional PLs
- Require new languages: HDL

RTL Hardware Design by P. Chu

Use of an HDL program

- Formal documentation
- Input to a simulator
- Input to a synthesizer

cuu duong than cong . com

Modern HDL

- Capture characteristics of a digital circuit:
 - entity
 - connectivity
 - concurrency
 - timing
- Cover description
 - in Gate level and RT level
 - In structural view and behavioral view

RTL Hardware Design by P. Chu

Highlights of modern HDL:

- Encapsulate the concepts of entity, connectivity, concurrency, and timing
- Incorporate propagation delay and timing information
- Consist of constructs for structural implementation
- Incorporate constructs for behavioral description (sequential execution of traditional PL)
- Describe the operations and structures in gate level and RT level.
- Consist of constructs to support hierarchical design process

RTL Hardware Design by P. Chu

CuuDuongThanCong.com

Two HDLs used today

VHDL and Verilog

CuuDuongThanCong.com

- Syntax and ``appearance'' of the two languages are very different
- Capabilities and scopes are quite similar
- Both are industrial standards and are supported by most software tools

RTL Hardware Design by P. Chu

VHDL

- VHDL: VHSIC (Very High Speed Integrated Circuit) HDL
- Initially sponsored by DoD as a hardware documentation standard in early 80s
- Transferred to IEEE and ratified it as IEEE standard 1176 in 1987 (known as VHDL-87)
- Major modification in '93 (known as VHDL-93)
- Revised continuously

RTL Hardware Design by P. Chu

IEEE Extensions

- IEEE standard 1076.1 Analog and Mixed Signal Extensions (VHDL-AMS)
- IEEE standard 1076.2 VHDL Mathematical Packages
- IEEE standard 1076.3 Synthesis Packages
- IEEE standard 1076.4 VHDL Initiative Towards ASIC Libraries (VITAL)
- IEEE standard 1076.6 VHDL Register Transfer Level (RTL) Synthesis
- IEEE standard 1164 Multivalue Logic System for VHDL Model Interoperability
- IEEE standard 1029 VHDL Waveform and Vector Exchange to Support Design and Test Verification (WAVES)

RTL Hardware Design by P. Chu

2. Basic VHDL Concept via an example

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

Even parity detection circuit

Input: a(2), a(1), a(0)

output: even

a(2)	a(1)	a(0)	even
0	0	0	1
0	0	1	0
0	com1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$even = a(2)' \cdot a(1)' \cdot a(0)' + a(2)' \cdot a(1) \cdot a(0) + a(2) \cdot a(1)' \cdot a(0) + a(2) \cdot a(1) \cdot a(0)'$$

RTL Hardware Design by P. Chu

Chapter 2

VHDL Listing 2.1

```
library ieee;
use ieee.std_logic_1164.all;
entity even_detector is
   port (
      a: in std_logic_vector(2 downto 0);
      even: out std_logic);
end even_detector; UU duong than cong . com
architecture sop_arch of even_detector is
   signal p1, p2, p3, p4 : std_logic;
begin
   even \leftarrow (p1 or p2) or (p3 or p4) after 20 ns;
   p1 \le (not a(2)) and (not a(1)) and (not a(0)) after 15 ns;
   p2 \le (not \ a(2)) \ and \ a(1) \ and \ a(0) \ after \ 12 \ ns;
   p3 \le a(2) and (not a(1)) and a(0) after 12 ns;
   p4 \le a(2) and a(1) and (not a(0)) after 12 ns;
end sop_arch;
```

RTL Hardware Design by P. Chu

Chapter 2

- Entity declaration
 - i/o ports ("outline" of the circuit)
- Architecture body
 - Signal declaration
 - Each concurrent statement
 - Can be thought s a circuit part
 - Contains timing information
 - Arch body can be thought as a "collection of parts"
- What's the difference between this and a C program

RTL Hardware Design by P. Chu

Conceptual interpretation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

by P. Chu

VHDL Listing 2.2

```
architecture xor_arch of even_detector is

signal odd: std_logic;

begin

even <= not odd;
odd <= a(2) xor a(1) xor a(0);

end xor_arch;

a(2) a(1) a(2) xor a(1) xor a(0)

a(2) xor a(1) xor a(0)

odd not odd

even
```

- Same entity declaration
- Implicit δ-delay (delta delay)

RTL Hardware Design by P. Chu

Chapter 2

Structural description

- In structural view, a circuit is constructed by smaller parts.
- Structural description specifies the types of parts and connections.
- Essentially a textual description of a schematic
- Done by using "component" in VHDL
 - First declared (make known)
 - Then instantiated (used)

RTL Hardware Design by P. Chu

Example

 Even detector using previously designed components (xor2 and not1)

RTL Hardware Design by P. Chu

CuuDuongThanCong.com

Chapter 2

VHDL Listing 2.3

```
architecture str_arch of even_detector is
   component xor2
      port (
         i1, i2: in std_logic;
         o1: out std_logic);
   end component;
   component not1
      port (
         i1: in std_logic;
         o1: out std_logic); COME COM
   end component;
   signal sig1, sig2: std_logic;
begin
  unit1: xor2
      port map (i1 => a(0), i2 => a(1), o1 => sig(1);
  unit2: xor2
      port map (i1 => a(2), i2 => sig1, o1 => sig2);
  unit3: not1
      port map (i1 => sig2, o1 => even);
end str_arch;
```

RTL Hardware Design by P. Chu

Chapter 2

Somewhere in library

```
library ieee;
use ieee.std_logic_1164.all;
entity xor2 is
   port (
      i1, i2: in std_logic;
      o1: out std_logic);
end xor2;
architecture beh_arch of xor2 is
begin
   o1 <= i1 xor i2; uong than cong . com
end beh_arch;
library ieee;
use ieee.std_logic_1164.all;
entity not1 is
   port (
      i1: in std_logic;
      o1: out std_logic);
end not1;
architecture beh_arch of not1 is
begin
   \circ 1 \leq not i1;
end beh_arch;
```

RTL Hardware Design by P. Chu

Chapter 2

"Behavioral" description

- No formal definition on "behavioral" in VHDL
- VHDL "process": a language construct to encapsulate "sequential semantics"
 - The entire process is a concurrent statement
 - Syntax:

```
process (sensitivity_list)
    variable declaration;
begin
    sequential statements;
end process;
```

RTL Hardware Design by P. Chu

Chapter 2

Listing 2.5

```
architecture beh1_arch of even_detector is
signal odd: std_logic;
begin
   even \leq not \text{ odd};
   process (a)
       variable tmp: std_logic;
   begin
       tmp := '0';
       for i in 2 downto 0 loop
          tmp := tmp xor a(i);
       end loop;
       odd <= tmp; g than cong . com
   end process;
end beh1_arch;
RTL Hardware Design
                      Chapter 2
                                               24
```

CuuDuongThanCong.com https://fb.com/tailieudientucntt

by P. Chu

Conceptual interpretation

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

Listing 2.6

```
architecture beh2_arch of even_detector is
begin
   process (a)
        variable sum, r: integer;
   begin
        sum := 0;
        for i in 2 downto 0 loop
             if a(i)='1' then
                 sum := sum +1;
             end if;
                                            process (a)
       end loop;
                                             variable sum, r: integer;
       r := sum \mod 2;
                                            begin
                                             sum := 0:
                                a(2)
        if (r=0) then
                                             for i in 2 downto 0 loop
            even <= '1';
                                a(1) ·
                                              if a(i)='1' then
                                                                          even
                                               sum := sum +1;
        else
                                a(0) -
                                              end if:
             even <= '0':
                                             end loop;
        end if;
                                            end process;
   end process;
```

RTL Hardware Design by P. Chu

Chapter 2

Testbench

- a "virtual" experiment table
 - Circuit to be tested
 - Input stimuli (e.g., function generator)
 - Output monitor (e.g., logic analyzer)
- e.g.,

RTL Hardware Design by P. Chu

Chapter 2

VHDL Listing 2.7

```
library ieee;
use ieee.std_logic_1164.all;
entity even_detector_testbench is
end even_detector_testbench;
architecture tb_arch of even_detector_testbench is
   component even_detector
      port (
         a: in std_logic_vector(2 downto 0);
         even: out std_logic);
   end component;
   signal test_in: std_logic_vector(2 downto 0);
   signal test_out: std_logic;
begin
  -- instantiate the circuit under test
   uut: even_detector
      port map( a=>test_in, even=>test_out);
RTL Hardware Design
                        Chapter 2
                                                    28
```

CuuDuongThanCong.com https://fb.com/tailieudientucntt

by P. Chu

```
-- test vector gen\\rator
process
begin
   test_in <= "000";
   wait for 200 ns;
   test_in <= "001";
   wait for 200 ns;
   test_in <= "010";
   wait for 200 ns;
   test_in <= "011";
   wait for 200 ns;
   test_in <= "100";
   wait for 200 ns;
   test_in <= "101";
   wait for 200 ns;
   test_in <= "110";
   wait for 200 ns;
   test_in <= "111";
   wait for 200 ns;
end process;
```

RTL Hardware Design by P. Chu

Chapter 2

```
√7 verifier
   process
       variable error_status: boolean;
   begin
       wait on test_in;
       wait for 100 ns;
       if ((test_in="000" and test_out = '1') or
            (test_in="001" and test_out = '0') or
            (\text{test\_in="010"} \text{ and } \text{test\_out = '0'}) \text{ or}
            (\text{test\_in="011"} \text{ and } \text{test\_out = '1'}) \text{ or }
            (test_in="100" and test_out = ,0,0) or
            (\text{test\_in="101"} \text{ and } \text{test\_out = '1'}) \text{ or}
            (test_in="110" and test_out = '1') or
            (test_in="111" and test_out = '0'))
       then
           error_status := false;
       else
           error_status := true;
       end if;
       -- error reporting
       assert not error_status
           report "test failed."
           severity note;
end tb_arch;
```

RTL Hardware Design by P. Chu

Chapter 2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Configuration

- Multiple architecture bodies can be associated with an entity declaration
 - Like IC chips and sockets
- VHDL configuration specifies the binding
- E.g.,

```
configuration demo_config of even_detector_testbench is
  for tb_arch
    for uut: even_detector
        use entity work.even_detector(sop_arch);
    end for;
  end for;
  end demo_config;
```

RTL Hardware Design by P. Chu

Chapter 2

3. VHDL in development flow

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

Scope of VHDL

RTL Hardware Design by P. Chu

Chapter 2

Coding for synthesis

- "Execution" of VHDL codes
 - Simulation:
 - Design "realized" in a virtual environment (simulation software)
 - All language constructs can be "realized"
 - "realized" by a single CPU

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2

- "Synthesis

- Design realized by hardware components
- Many VHDL constructs can be synthesized (e,g, file operation, floating-point data type, division)
- Only small subset can be used
- E.g., 10 additions
- Syntactically correct code ≠ Synthesizable code
- Synthesizable code ≠ Efficient code
- Synthesis software only performs transformation and local search

RTL Hardware Design by P. Chu

Chapter 2

- The course focuses on hardware, not VHDL (i.e., the "H", not "L" of HDL)
- Emphasis on coding for synthesis:
 - Code accurately describing the underlying hardware structure
 - Code providing adequate info to guide synthesis software to generate efficient implementation

cuu duong than cong . com

RTL Hardware Design by P. Chu

Chapter 2