
1

Processes and Threads
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CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


2

Processes
The Process Model

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential processes

• Only one program active at any instant
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Process Creation

Principal events that cause process creation

1. System initialization

• Execution of a process creation system 

1. User request to create a new process

2. Initiation of a batch job
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Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)
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Process Hierarchies

• Parent creates a child process, child processes 

can create its own process

• Forms a hierarchy

– UNIX calls this a "process group"

• Windows has no concept of process hierarchy

– all processes are created equal
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Process States (1)

• Possible process states

– running

– blocked

– ready

• Transitions between states shown
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


7

Process States (2)

• Lowest layer of process-structured OS

– handles interrupts, scheduling

• Above that layer are sequential processes
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Implementation of Processes (1)

Fields of a process table entry
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Implementation of Processes (2)

Skeleton of what lowest level of OS does when an 
interrupt occurs
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Threads
The Thread Model (1)

(a) Three processes each with one thread

(b) One process with three threads
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The Thread Model (2)

• Items shared by all threads in a process

• Items private to each thread
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The Thread Model (3)

Each thread has its own stack
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Thread Usage (1)

A word processor with three threads

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


14

Thread Usage (2)

A multithreaded Web server
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Thread Usage (3)

• Rough outline of code for previous slide

(a) Dispatcher thread

(b) Worker thread
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Thread Usage (4)

Three ways to construct a server
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Implementing Threads in User Space

A user-level threads package
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Implementing Threads in the Kernel

A threads package managed by the kernel
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Hybrid Implementations

Multiplexing user-level threads onto kernel-

level threads
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Scheduler Activations

• Goal – mimic functionality of kernel threads

– gain performance of user space threads

• Avoids unnecessary user/kernel transitions

• Kernel assigns virtual processors to each process

– lets runtime system allocate threads to processors

• Problem:
Fundamental reliance on kernel (lower layer)     

calling procedures in user space (higher layer)
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Pop-Up Threads

• Creation of a new thread when message arrives

(a) before message arrives

(b) after message arrives
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Making Single-Threaded Code Multithreaded (1)

Conflicts between threads over the use of a global variable
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Making Single-Threaded Code Multithreaded (2)

Threads can have private global variables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


24

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time
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Critical Regions (1)

Four conditions to provide mutual exclusion

1. No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of CPUs

3. No process running outside its critical region may block 

another process

4. No process must wait forever to enter its critical region
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Critical Regions (2)

Mutual exclusion using critical regions
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Mutual Exclusion with Busy Waiting (1)

Proposed solution to critical region problem

(a) Process 0.        (b) Process 1.
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Mutual Exclusion with Busy Waiting (2)

Peterson's solution for achieving mutual exclusionCuuDuongThanCong.com https://fb.com/tailieudientucntt
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Mutual Exclusion with Busy Waiting (3)

Entering and leaving a critical region using the 

TSL instruction
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Sleep and Wakeup

Producer-consumer problem with fatal race condition
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Semaphores

The producer-consumer problem using semaphoresCuuDuongThanCong.com https://fb.com/tailieudientucntt
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Mutexes

Implementation of mutex_lock and mutex_unlock
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Monitors (1)

Example of a monitor
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Monitors (2)

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time

– buffer has N slots
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Monitors (3)

Solution to producer-consumer problem in Java (part 1)
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Monitors (4)

Solution to producer-consumer problem in Java (part 2)
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Message Passing

The producer-consumer problem with N messages
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Barriers

• Use of a barrier

– processes approaching a barrier

– all processes but one blocked at barrier

– last process arrives, all are let throughCuuDuongThanCong.com https://fb.com/tailieudientucntt
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Dining Philosophers (1)

• Philosophers eat/think

• Eating needs 2 forks

• Pick one fork at a time 

• How to prevent deadlock 
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Dining Philosophers (2)

A nonsolution to the dining philosophers problem
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Dining Philosophers (3)

Solution to dining philosophers problem (part 1)CuuDuongThanCong.com https://fb.com/tailieudientucntt
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Dining Philosophers (4)

Solution to dining philosophers problem (part 2)CuuDuongThanCong.com https://fb.com/tailieudientucntt
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The Readers and Writers Problem

A solution to the readers and writers problem
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The Sleeping Barber Problem (1)
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The Sleeping Barber Problem (2)

Solution to sleeping barber problem.
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Scheduling
Introduction to Scheduling (1)

• Bursts of CPU usage alternate with periods of I/O wait

– a CPU-bound process

– an I/O bound process
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Introduction to Scheduling (2)

Scheduling Algorithm Goals
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Scheduling in Batch Systems (1)

An example of shortest job first scheduling
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Scheduling in Batch Systems (2)

Three level scheduling
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Scheduling in Interactive Systems (1)

• Round Robin Scheduling

– list of runnable processes

– list of runnable processes after B uses up its quantum
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Scheduling in Interactive Systems (2)

A scheduling algorithm with four priority classes
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Scheduling in Real-Time Systems

Schedulable real-time system

• Given

– m periodic events

– event i occurs within period Pi and requires Ci

seconds

• Then the load can only be handled if

1

1

m

i

i i

C

P
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Policy versus Mechanism

• Separate what is allowed to be done with 
how it is done

– a process knows which of its children threads 
are important and need priority

• Scheduling algorithm parameterized

– mechanism in the kernel

• Parameters filled in by user processes

– policy set by user process
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Thread Scheduling (1)

Possible scheduling of user-level threads

• 50-msec process quantum

• threads run 5 msec/CPU burst
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Thread Scheduling (2)

Possible scheduling of kernel-level threads

• 50-msec process quantum

• threads run 5 msec/CPU burst
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