Chapter 2

Processes and Threads

2.1 Processes

2.2 Threads

2.3 Interprocess communication
2.4 Classical IPC problems

2.5 Scheduling

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Processes
The Process Model

One program counter

— Four program counters
A Process
E switch a D —_ —_
Y B 2
o C - -
o
E gl —
\Y D Time —=

(a) (b) (c)

Multiprogramming of four programs
Conceptual model of 4 independent, sequential processes
Only one program active at any Instant

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process Creation

Principal events that cause process creation
1. System initialization

» EXecution of a process creation system
1. User request to create a new process

2. Initiation of a batch job

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4, Killed by another process (involuntary)

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process Hierarchies

 Parent creates a child process, child processes
can create Its own process

* Forms a hierarchy
— UNIX calls this a "process group"

» \Windows has no concept of process hierarchy
— all processes are created equal

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process States (1)

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

 Possible process states
— running
— blocked
— ready
* Transitions between states shown

ongThanCong.com https://fb.com/tailieudientu

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process States (2)

Processes

Scheduler

 Lowest layer of process-structured OS
— handles interrupts, scheduling

« Above that layer are sequential processes

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementation of Processes (1)

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Fields of a process table entry

https://fb.com/tailieudientucntt

CuuDuongThanCong.com

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementation of Processes (2)

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. G procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
Interrupt occurs

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Threads
The Thread Model (1)

Process 1 Process 1 Process 1 Process

l I I

|

\
User
= (D gy

Thread Thread

Kernel K |
space Kernel erne

(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

CuuDuongThanCong.com https://fb.com/tailieudientucntt

10

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Thread Model (2)

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

» Items shared by all threads in a process

* Items private to each thread

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

11

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Thread Model (3)

Thread 2
Thread | i read 3
XK // Process
Thread 1's H< Thread 3's stack
stack
Kernel

Each thread has 1ts own stack

CuuDuongThanCong .com https://fb.com/tailieudientucntt

12

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Usage (1)

Four score and seven || nation, or any nation || lives that this nation|| who struggled here [here to the unfinished | |they gave the last full
years ago, our fathers ||so conceived and so[f might live. 1t is|| have consecrated it, far| | work which they who ||measure of devotion,
brought forth upon this | | dedicated, can long || altogether fitting and| | above our poor power| |fought here have thus | |that we here highly
continent a new nation: || endure. We are met on || proper that we should [| to add or detract. The| | far so nobly advanced. | [resolve that these dead

conceived in liberty, |[[a great battlefield of || do this. world will little note, | |1t is mther for vs to be | |shall not have died in
and dedicated to the || that war. But, ina largersense, | | nor long remember, | | here dedicated to the | |vain that this nation,
proposition that all || We have come to || we cannot dedicate, we || what we say here, tut| | great task remaining | [onder God, shall have
men are created equal. || dedicate a portion of || cannot consecrate wef|it can never forget||before ws, that from||a new birth of freedom

Now we are engaged || that field as a final || cannot hallow this|| what they did here. these honored dead we | |and that government of

in a great civil war || resting place for those || gound. The brave[| 1tis for us the living, | | take increased devotion | [the people by the
testing whether that || who here gave their|| men, living and dead,|| mther, to be dedicated | | to that cause for which | |people, for the people

L J
~N"

Kernel
Keyboard Dis

A word processor with three threads

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Usage (2)

Web server process

+)
Dispatcher thread
>§ Worker thread
(~ Y ;l > User
2 2 2 space
Web page cache
-
Kernel
Kernel space
Network
connection

A multithreaded Web server

CuuDuongThanCong.com https://fb.com/tailieudientucntt

14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);

return_page(&page);
}

» Rough outline of code for previous slide

(a) Dispatcher thread
(b) Worker thread

CuuDuongThanCong.com https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Usage (4)

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementing Threads In User Space

Process Thread
r \\ /
User
space<
=
s
Kernel
space Kernel
X
/ !
Run-time Thread Process
system table table

A user-level threads package

CuuDuongThanCong .com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel

ooooooooooooooooo

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hybrid Implementations

Multiple user threads
on a kernel thread

\ !

Ry

Kernel S S<— Kernel thread

Multiplexing user-level threads onto kernel-

level threads

> User
space

"

Kernel
space

CuuDuongThanCong.com https://fb.com/tailieudientucntt

19

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduler Activations

Goal — mimic functionality of kernel threads
— gain performance of user space threads

Avoids unnecessary user/kernel transitions

Kernel assigns virtual processors to each process
— lets runtime system allocate threads to processors

Problem:
Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

20

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Pop-Up Threads

Pop-up thread
P ted to hand|
o ming messag
Existing thread

4

A

nnnnnn g message)

Network

 Creation of a new thread when message arrives
(a) before message arrives

21

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Making Single-Threaded Code Multithreaded (1)

Thread 1 Thread 2

%

Access (ermo set)

§

—~— [Ime

|

Open {(errno overwritten)

§

%

Errno inspected

Conflicts between threads over the use of a global variable

CuuDuongThanCong.com https://fb.com/tailieudientucntt 22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Making Single-Threaded Code Multithreaded (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack Y

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Interprocess Communication
Race Conditions

Spooler

directory
4 abc out=4
6 prog.n
7 in=7

Two processes want to access shared memory at same time

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Critical Regions (1)

Four conditions to provide mutual exclusion

1.

2.

3.

No two processes simultaneously in critical region
No assumptions made about speeds or numbers of CPUs

No process running outside its critical region may block
another process

No process must wait forever to enter its critical region

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 5

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Critical Regions (2)

A enters critical region

/ A leaves critical region

Process A | I
I I I I
| I I |
| | Battemptsto B enters : B leaves
| : enter critical | critical region : critical region
region
| I I |
| I
Process B | |
. /
! ! i ! !
I [B blocked l I
T4 Ts T, T,

Time ——

Mutual exclusion using critical regions

CuuDuongThanCong.com https://fb.com/tailieudientucntt 26

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Mutual Exclusion with Busy Waiting (1)

while (TRUE) { while (TRUE) {
while (turn !=0) /* loop */ ; while (turn 1= 1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical_region(); noncritical_region();
| |
(a) ()

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

uuuuuuuuuuuu .com https://fb.com/tailieudientucntt 2 7

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Mutual Exclusion with Busy Waiting (2)

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave _region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Peterson:s.solution for achieving mutual.exclusion

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Mutual Exclusion with Busy Waiting (3)

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave _region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL Instruction

CuuDuongThanCong.com https://fb.com/tailieudientucntt 29

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sleep and Wakeup

#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_ item();
count = count — 1;

/* number of slots in the buffer */
/* number of items in the buffer */

/* repeat forever */

/* generate next item */

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer */

/* decrement count of items in buffer */

if (count == N — 1) wakeup(producer); /* was buffer full? */

consume_item(item);

}

/* print item */

Producer-consumer problem with fatal race condition,

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);
up(&full);

void consumer(void)

{

int item;

while (TRUE) {
down(&full);
down(&mutex);
item = remove_item();
up(&mutex);
up(&empty);
consume_item(item);

}

}
The producer-consumer problem using.semaphores

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

/* TRUE is the constant 1 */

[* generate something to put in buffer */
/* decrement empty count */

[* enter critical region */

/* put new item in buffer */

/* leave critical region */

/* increment count of full slots */

/* infinite loop */

/* decrement full count */

/* enter critical region */

/* take item from buffer */

/* leave critical region */

/* increment count of empty slots */
/* do something with the item */

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Mutexes

mutex __lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex__lock | try again later

ok: RET| return to caller; critical region entered

mutex__unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Implementation of mutex_lock and mutex_unlock

CuuDuongThanCong.com https://fb.com/tailieudientucntt 32

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Monitors (1)

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:

Example of a monitor

https://fb.com/tailieudientucntt

33

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Monitors (2)

monitor ProducerConsumer

cnudition fil, anmpry: procedure producer,
. > €MLY begin

IESER GOMIG while true do
procedure insert(item: integer); begin

begin
if count = N then wait(full);
insert_item(item);

item = produce_item;
ProducerConsumer.insert(item)

. . end

.cff)um ; colufl: + : : e
1L count = en signal(empty) procedure consumer;

end; .

functi . _ begin

l)un? 10N remove: integer; while: segedo

egm'f t=0th it : begin
1L count = en an (empty); item = ProducerConsumer.remove,
remove = remove _item, . .
consume _item(item)

count = count — 1, e
if count = N — 1 then signal(full) il

end; |

count :=0;

end monitor;

 Qutline of producer-consumer problem with monitors

— only one monitor procedure active at one time
— buffetr"'Has N"<tbts https://fb.com/taili eudientucntt 34

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Monitors (3)

public class ProducerConsumer {

static final int N = 100; // constant giving the buffer size
static producer p = new producer(); //instantiate a new producer thread
static consumer ¢ = new consumer();// instantiate a new consumer thread
static our_monitor mon = new our_monitor(); // instantiate a new monitor
public static void main(String args[]) {

p.start(); /[start the producer thread

c.start(); /[start the consumer thread

}

static class producer extends Thread {

public void run() { /I run method contains the thread code
int item;
while (true) { // producer loop

item = produce__item();
mon.insert(item);
}
}

private int produce_item(){...} // actually produce

}

static class consumer extends Thread {

public void run() { run method contains the thread code
int item;
while (true) { /I consumer loop

item = mon.remove();
consume _item (item);

}
}

private void consume_item(int item) { ...} // actually consume

}
Solution to producer-consumer problem in Java (part 1)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

35

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Monitors (4)

}
}

buagge noiq Ao~ fo~ 2iesb() { pA{maif()} corcp(jurernbiegqexcsbyiou exc) {}:}

}
LS[NLU AZ:
IL (conuf == | —]) WOLIA(): \\ Il brogncel mge 2jesbiud’ mgake If nb
conuf = conuf — |: \\ OUG |6M If6lU2 IU [U6 pNEL
10=(j0+ 1) &° U \\ 2]0f {0 {6{CY UEX] {61 oW
AS| = pnysl [[o]: \\ {6{C SU If61U LLOW [U6 PrIYsL
Il (conug == () 0™ [0 2jeeb(): \\ I [pve pnuset 12 ewbiA’ Qo [0 2jeeb
IUf AS|:

bnpjic 2hucprouiseq g kewoAs() {

}
IL (conuf == |) UOLIA(): \\ Il couenuwel mge 2jeebiud’ make If nb
conuf = conuf + |: \\ OU6 WJOLG 161 1U [U6 PNLLEL UOM
pE=(U1+ 1) o° U \\ 2[0f {0 bjgce uext iew 1
pnyel [p1] = Ag|: \\ IU26L{ U If61U 1UfO U6 prIy6k
Il (conuf == |4) Qo [0 2eeb(): \\ 1L [ue pnyel 12 1nj* Ao fo 2|eeb

bnpjic 2A\ucpLouiseq AoIq Iu2eLf(1uf AS)) {
buagge wf conug =’ 10 =0 Y1 = 0! \\ conufele Juq Iugicea
buasie f paysi[] = uem]

2[9fIC C|g22 ONL™ WoUIfOL { \\ {MI2 12 9 WOUIfOL

Solution to producer-consumer problem in Java (part 2)

CuuDuongThanCong.com https://fb.com/tailieudientucntt 36

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Message Passing

#define N 100

void producer(void)
{
int item;
message m;

while (TRUE) {
item = produce_item();
receive(consumer, &m);
build_message(&m, item);
send(consumer, &m);

}

}

void consumer(void)
int item, I;
message m;

/* number of slots in the buffer */

/* message buffer */

/* generate something to put in buffer */
/* wait for an empty to arrive */

/* construct a message to send */

/* send item to consumer */

for (i= 0; i < N; i++) send(producer, &m); /* send N empties */

while (TRUE) {
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);
consume_ item(item);

The producer-consumer problem with N messages

CuuDuongThanCong.com

/* get message containing item */
/* extract item from message */
/* send back empty reply */

/* do something with the item */

https://fb.com/tailieudientucntt

37

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Barriers

Process

Barrier
Barrier

« Use of a barrier
— processes approaching a barrier
— all processes but one blocked at barrier
— Jast-process arrives, all are let through-«-

Barrier

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dining Philosophers (1)

Philosophers eat/think
Eating needs 2 forks
Pick one fork at a time
How to prevent deadlock

CuuDuongThanCong.com https://fb.com/tailieudientucntt

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dining Philosophers (2)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i. philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

A nonsolution to the dining philosophers problem

CuuDuongThanCong.com https://fb.com/tailieudientucntt 40

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dining Philosophers (3)

#define N 5 /* number of philosophers */
#define LEFT (i+N—-1)%N /* number of i's left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]J; /* one semaphore per philosopher */
void philosopher(int i) /* I. philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */

think(); /* philosopher is thinking */

take forks(i); /* acquire two forks or block */

eat(); /* yum-yum, spaghetti */

put_forks(i); /* put both forks back on table */

}

Solution.to.dining philosophers problem (part 1) .

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dining Philosophers (4)

void take_ forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sJi]); /* block if forks were not acquired */
}
void put_ forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see If left neighbor can now eat */
test(RIGHT); /* see If right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */
{

if (state[i] == HUNGRY && state[LEFT] = EATING && state[RIGHT] |= EATING) {
state[i] = EATING:

up(&sfi]);

}

Solutien-te-dining philosophers preblem (part 2) «

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Readers and Writers Problem

typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1;

int rc = 0;

void reader(void)

while (TRUE) {
down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc—1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write _data_ base();
up(&db);

/* use your imagination */

/* controls access to 'rc’ */

/* controls access to the database */

/* # of processes reading or wanting to */

/* repeat forever */

/* get exclusive access to 'rc’ */

/* one reader more now */

/* if this is the first reader ... */

/* release exclusive access to 'r¢’ */
/* access the data */

/* get exclusive access to 'rc’ */

/* one reader fewer now */

/* if this is the last reader ... */

/* release exclusive access to 'rc’ */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */

A solution to the readers and writers problem

CuuDuongThanCong.com

https://fb.com/tailieudidntucntt

43

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Sleeping Barber Problem (1)

44

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Sleeping Barber Problem

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
} else {
up(&mutex);
}

CuuDuongThanCong.com

/* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/* if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Solution to sleeping

barber

https://fb.com/taili

roblem.

dientucntt

45

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling
Introduction to Scheduling (1)

@ | ——] — — |

Long CPU burst \

Waiting for 1/O

Short CPU burst \
/ N I

— M n M M — n —
by [LI L L LI LI LI LI LI LI LI

Time
_>

 Bursts of CPU usage alternate with periods of 1/0 walt
— a CPU-bound process
— an 1/O bound process

CuuDuongThanCong.com https://fb.com/tailieudientucntt

46

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Introduction to Scheduling (2)

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Scheduling Algorithm Goals

CuuDuongThanCong.com https://fb.com/tailieudientucntt 47

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling In Batch Systems (1)

8 4 4 4 4 4 4 8
A B C D B C D A
(a) (b)

An example of shortest job first scheduling

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling In Batch Systems (2)

cPu O
ﬁ« CPU scheduler
Arriving
job O000O0

Input
queue

| >
O [IIolll m——> "l < >
T D

Admission Memory Disk
scheduler scheduler
Three level scheduling
uuuuuuuuuuuuuuuu m https://fb.com/tailieudientucntt

49

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling In Interactive Systems (1)

Current Next Current
process process process

N S h

B F D G A F D G A B

(a) (b)

« Round Robin Scheduling
— list of runnable processes
— list of runnable processes after B uses up Its quantum

CuuDuongThanCong.com https://fb.com/tailieudientucntt 50

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling In Interactive Systems (2)

Queue Runable processes
headers , A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

A scheduling algorithm with four priority classes

CuuDuongThanCong.com https://fb.com/tailieudientucntt 51

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Scheduling Iin Real-Time Systems

Schedulable real-time system

* Glven
— m periodic events

— event I occurs within period P; and requires C.
seconds

* Then the load can only be handled if

Z&£1

52

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Policy versus Mechanism

 Separate what Is allowed to be done with
how It is done

— a process knows which of its children threads
are important and need priority

 Scheduling algorithm parameterized
— mechanism in the kernel

« Parameters filled in by user processes
— policy set by user process

53

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Scheduling (1)

Process A Process B
Order in which l

threads run \

2. Runtime 12 8
system
picks a

thread i = B
“\/ S

L1. Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

Possible scheduling of user-level threads
» 50-msec process guantum
» threads run 5 msec/CPU burst

ongThanCong.com https://fb.com/tailieudientu

54

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Thread Scheduling (2)

Process A Process B

1 Kernel picks a thread g

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

Possible scheduling of kernel-level threads

» 50-msec process quantum
e threads run 5 msec/CPU burst

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

