
1

Deadlocks

Chapter 3

3.1. Resource

3.2. Introduction to deadlocks

3.3. The ostrich algorithm

3.4. Deadlock detection and recovery

3.5. Deadlock avoidance

3.6. Deadlock prevention

3.7. Other issues

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2

Resources

• Examples of computer resources

– printers

– tape drives

– tables

• Processes need access to resources in reasonable order

• Suppose a process holds resource A and requests

resource B

– at same time another process holds B and requests A

– both are blocked and remain so

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3

Resources (1)

• Deadlocks occur when …

– processes are granted exclusive access to devices

– we refer to these devices generally as resources

• Preemptable resources

– can be taken away from a process with no ill effects

• Nonpreemptable resources

– will cause the process to fail if taken away

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4

Resources (2)

• Sequence of events required to use a resource

1. request the resource

2. use the resource

3. release the resource

• Must wait if request is denied

– requesting process may be blocked

– may fail with error code

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5

Introduction to Deadlocks

• Formal definition :
A set of processes is deadlocked if each process in the set is waiting

for an event that only another process in the set can cause

• Usually the event is release of a currently held resource

• None of the processes can …

– run

– release resources

– be awakened

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

6

Four Conditions for Deadlock

1. Mutual exclusion condition

• each resource assigned to 1 process or is available

2. Hold and wait condition

• process holding resources can request additional

3. No preemption condition

• previously granted resources cannot forcibly taken away

4. Circular wait condition

• must be a circular chain of 2 or more processes

• each is waiting for resource held by next member of the
chain

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

7

Deadlock Modeling (2)

• Modeled with directed graphs

– resource R assigned to process A

– process B is requesting/waiting for resource S

– process C and D are in deadlock over resources T and U

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

8

Deadlock Modeling (3)

Strategies for dealing with Deadlocks

1. just ignore the problem altogether

2. detection and recovery

3. dynamic avoidance

• careful resource allocation

4. prevention

• negating one of the four necessary conditions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

9How deadlock occurs

A B C

Deadlock Modeling (4)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

10

Deadlock Modeling (5)

How deadlock can be avoided

(o) (p) (q)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

11

The Ostrich Algorithm

• Pretend there is no problem

• Reasonable if

– deadlocks occur very rarely

– cost of prevention is high

• UNIX and Windows takes this approach

• It is a trade off between

– convenience

– correctness

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12

Detection with One Resource of Each Type (1)

• Note the resource ownership and requests

• A cycle can be found within the graph, denoting deadlock

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

13

Detection with One Resource of Each Type (2)

Data structures needed by deadlock detection algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

14

Detection with One Resource of Each Type (3)

An example for the deadlock detection algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

15

Recovery from Deadlock (1)

• Recovery through preemption

– take a resource from some other process

– depends on nature of the resource

• Recovery through rollback

– checkpoint a process periodically

– use this saved state

– restart the process if it is found deadlocked

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

16

Recovery from Deadlock (2)

• Recovery through killing processes

– crudest but simplest way to break a deadlock

– kill one of the processes in the deadlock cycle

– the other processes get its resources

– choose process that can be rerun from the beginning

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

17

Deadlock Avoidance
Resource Trajectories

Two process resource trajectories
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

18

Safe and Unsafe States (1)

Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

19

Safe and Unsafe States (2)

Demonstration that the sate in b is not safe

(a) (b) (c) (d)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

20

The Banker's Algorithm for a Single Resource

• Three resource allocation states

– safe

– safe

– unsafe

(a) (b) (c)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

21

Banker's Algorithm for Multiple Resources

Example of banker's algorithm with multiple resources

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

22

Deadlock Prevention
Attacking the Mutual Exclusion Condition

• Some devices (such as printer) can be spooled

– only the printer daemon uses printer resource

– thus deadlock for printer eliminated

• Not all devices can be spooled

• Principle:

– avoid assigning resource when not absolutely
necessary

– as few processes as possible actually claim the
resource

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

23

Attacking the Hold and Wait Condition

• Require processes to request resources before starting

– a process never has to wait for what it needs

• Problems

– may not know required resources at start of run

– also ties up resources other processes could be using

• Variation:

– process must give up all resources

– then request all immediately needed

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

24

Attacking the No Preemption Condition

• This is not a viable option

• Consider a process given the printer

– halfway through its job

– now forcibly take away printer

– !!??

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

25

Attacking the Circular Wait Condition (1)

• Normally ordered resources

• A resource graph

(a) (b)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

26

Attacking the Circular Wait Condition (1)

Summary of approaches to deadlock prevention

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

27

Other Issues
Two-Phase Locking

• Phase One

– process tries to lock all records it needs, one at a time

– if needed record found locked, start over

– (no real work done in phase one)

• If phase one succeeds, it starts second phase,

– performing updates

– releasing locks

• Note similarity to requesting all resources at once

• Algorithm works where programmer can arrange

– program can be stopped, restarted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

28

Nonresource Deadlocks

• Possible for two processes to deadlock

– each is waiting for the other to do some task

• Can happen with semaphores

– each process required to do a down() on two

semaphores (mutex and another)

– if done in wrong order, deadlock results

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

29

Starvation

• Algorithm to allocate a resource

– may be to give to shortest job first

• Works great for multiple short jobs in a system

• May cause long job to be postponed indefinitely

– even though not blocked

• Solution:

– First-come, first-serve policy

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

