Chapter 4

Memory Management

4.1 Basic memory management

4.2 Swapping

4.3 Virtual memory

4.4 Page replacement algorithms

4.5 Modeling page replacement algorithms
4.6 Design issues for paging systems

4.7 Implementation issues

4.8 Segmentation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Memory Management

* |deally programmers want memory that is
— large
— fast
— non volatile

« Memory hierarchy
— small amount of fast, expensive memory — cache
— some medium-speed, medium price main memory
— glgabytes of slow, cheap disk storage

. I\/Iemory manager handles the memory hlerarchy

CuuDuongThanCong.com https://fb.com/tailieudientu

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ...

Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0

(@) (b) (c)

Three simple ways of organizing memory
- an operating system with one user process

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Multiprogramming with Fixed Partitions

Multiple
input queues 800K
[H - Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
Input queue
400K
|:|— Partition 2 Partition 2
200K
[H H H Partition 1 Partition 1
. 100K -
Operating Operating
system 0 system

(@) (b)

 Fixed memory partitions
— separate input queues for each partition
— single input queue

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Modeling Multiprogramming

20% 1/0O wait
= 100 |~ e —
()
O % -
2 g0 |- 50% I/O wait
&
c 60 80% /O wait
©
= 40
5
= 20
O

Degree of multiprogramming

CPU utilization as a function of number of processes in memory

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Analysis of Multiprogramming System
Performance

CPU
Arrival minutes # Processes
Job time needed 1 2 3 4
1 10:00 4 CPU idle 80| .64 | 51| .41
2 10:10 3 CPU busy 20| .36 | 49 | .59
3 10:15 2 CPU/process | .20 | .18 | .16 | .15
4 10:20 2
€Y (b)
2.0 I 9 I 8 | .3 1 Job 1 finishes
1 I 9 | 8 | 1 / 1
| : | : | .3 1 .9 1.7 |
Py Job 2 starts — : i : il :
| | 8 | 3 1 9 [|
3 | I t t { | |
| | | .3 | 9 11 7 |
4 — | I } ! — |
| | | | [|
0]] | | L1]
0 10 15 20 22 276 282 317

Time (relative to job 1's arrival)

(c)
Arrival and work requirements of 4 jobs

CPU utilization for 1 — 4 jobs with 80% 1/O wait

Sequence of events as jobs arrive and finish
—wn@teawmbers show amout of CPU time jobs/getdn-each interval

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Relocation and Protection

 Cannot be sure where program will be loaded in memory
— address locations of variables, code routines cannot be absolute

— must keep a program out of other processes’ partitions

» Use base and limit values
— address locations added to base value to map to physical addr
— address locations larger than limit value is an error

CuuDuongThanCong.com https://fb.com/tailieudientucntt 7

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Swapping (1)

Time —
2. Z R R/ R R/
/ / C i & C C
%
// B B B B 7//
A - ve A
// D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(@)

(b)

(c)

(d)

(e)

(f)

Memory allocation changes as

— Processes come Into memory

— leave memory
-..s21aded regions are unused.memory

(9)

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Swapping (2)

B-Stack
r Room for growth ~ |----- I
t A } Room for growth
B-Data
B > Actually in use
B-Program
% / \ % %
A-Stack
r Room for growth ~ f----- | B
t \ } Room for growth
A-Data
A r Actually in use
A-Program
Operating Operating
system system

(a) (b)

 Allocating space for growing data segment
 Allocating space for growing stack & data segment

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Memory Management with Bit Maps

¢
% 7 4 :
1 IAI 1 //// 11 IBI 1 ICII l/ 11 IDI 1 IEI //%/ (Zj
| Jrs 16 o4 >
/ (@)
11111000 Pl|O]|5 »H|5|3| +—|P|8]6 | P |14] 4 | —
11111111 >
11001111 (
H|18| 2| ——| P |20(6| ——| P |26] 3 | H 29| 3| X
11111000 / ? \ ?
T i3 Hole Starts Length Process
at 18 2

(b)

 Part of memory with 5 processes, 3 holes

— tick marks show allocation units
— shaded regions are free

 Corresponding bit map
e Same information as a list

CuuDuongThanCong.com

https://fb.com/tailieudientucntt 10

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Memory Management with Linked Lists

Before X terminates After X terminates

@| A | x | B becomes A B
Al x V77 becomes W

(©) % X | B becomes /] B

& VN x V) becomes W

Four neighbor combinations for the terminating process X

CuuDuongThanCong .com https://fb.com/tailieudientucntt 11

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Virtual Memory
Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU >
— | Memory G Disk
|~ management emory controller
unit
'\ l l Bus

%

The MMU sends physical
addresses to the memory

The position and function of the MMU

CuuDuongThanCong.com https://fb.com/tailieudientucntt

12

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Paging (2)

The relation between
virtual addresses
and physical
memory addres-
ses given by
page table

CuuDuongThanCong.com

Virtual
address
space

60K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

N|=|O|O|R|W|IX|X|X|O] XN X|X]|X]|X

} Virtual page

https://fb.com/tailieudientucntt

Physical
memory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

Page frame

13

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Tables (1)

* Outgping
[T To[elo[o[e[c[o]oo[o[]o[o] physical
\ Rt (24580)
15| 000 0
14| 000 0
13| 000 0
12| 000 | O
11 111 1
10| 000 | O
o d 1 12-bit offset
Page PN | B carlad directly
table 7000 0 from input
6| 000 0 to output
5] 011 1
4] 100 |1
3] 000 |1
2[110 [1> 110 |
1| 001 1 . "
resen
0] o010 1 A/absent bit
Virtual page = 2 is used
as an index into the
page table Uilr(':tﬁrar?ing
"= N A N dd
[oo[1]o]ofofofo]ofofofo]o[1]o]0] 8196)

Internal .operation of MMU with 16.4. KB pages ..

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Tables (2)

Second-level page tables

/\
T | Page
—— | table for
1> [the top
1, | 4Mof
—1, | memory
——
Top-level .
page table
1023 U /
R = S &
6 1
Bits 10 10 12 5 g
: e
3 1
@) 2 >
1 >
0 N ~
1023
6 e
5 —t
4 —
3 1, To
> —1 , Pages
1 ——
0 ~—

32 bit address with 2 page table fields
Two-level page tables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Caching

Page Tables (3)

disabled Modified

i

/

Present/absent

/

Page frame number

\

Referenced Protection

ooooooooooooooooo

\

Typical page table entry

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

TLBs — Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X o0
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Inverted Page Tables

Traditional page
table with an entry
for each of the 252
pages

252 -1

~

)))
\

256-MB physical
memory has 216

4-KB page frames Hash table
2161 216 4 —] [H I]

— T 1]
0 T 0 OT Aﬁ
Indexed Indexed
by virtual by hash on Virtual Page
page virtual page page frame

Comparison of a traditional page table with an inverted page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 8

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Replacement Algorithms

 Page fault forces choice

— which page must be removed
— make room for incoming page

» Modified page must first be saved
— unmodified just overwritten

 Better not to choose an often used page
— will probably need to be brought back in soon

19

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Optimal Page Replacement Algorithm

» Replace page needed at the farthest point in future
— Optimal but unrealizable

* Estimate by ...
— logging page use on previous runs of process
— although this Is impractical

20

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Not Recently Used Page Replacement Algorithm

« Each page has Reference bit, Modified bit
— Dbits are set when page Is referenced, modified

» Pages are classified

not referenced, not modified
not referenced, modified

3. referenced, not modified

.. referenced, modified

 NRU removes page at random
— from lowest numbered non empty class

=

N

CuuDuongThanCong .com https://fb.com/tailieudientucntt

21

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

FIFO Page Replacement Algorithm

« Maintain a linked list of all pages
— In order they came into memory

 Page at beginning of list replaced

 Disadvantage
— page in memory the longest may be often used

22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Second Chance Page Replacement Algorithm

Page loaded first
\037812141518

A B C D E F G H

Most recently
S loaded page

A is treated like a
0 " newly loaded page

« Operation of a second chance
— pages sorted in FIFO order

— Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 3

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Clock Page Replacement Algorithm

CuuDuongThanCong.com

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

https://fb.com/tailieudientucntt

24

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

|_east Recently Used (LRU)

« Assume pages used recently will used again soon
— throw out page that has been unused for longest time

« Must keep a linked list of pages
— most recently used at front, least at rear
— update this list every memory reference !!

 Alternatively keep counter in each page table entry
— choose page with lowest value counter
— periodically zero the counter

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 5

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Simulating LRU in Software (1)

Page Page Page Page Page
o 1 2 3 o 1 2 3 o 1 2 3 0 1 2 3 o 1 2 3
ofo1]1[1 ojo|1|1 0Ol0]0]|1 oOofo0o|J0O]O 0l0]0]0
1{0l0]0]|O 110 1]1 10|01 1]0|0]O 10|00
2/0]1]0|0]|O 010]0]0O 111101 1]1110]0 1(1]10]1
3[ojofo0|oO 0l0]0]|O 0O|l0J0]|O 1]11|11]0 111010

(a) (b) () (d) (e)
0|l0]0]|O o111 of1]1]o0 of1]0]0 0Ol1]0]0
110111 oo 1|1 0o(oJ1]o0 oOfO0|J0O]O 0l0]0]0
11001 Ojo0]|O|1 0O|l0J0]O 1111011 111010
110|l0]O 0l0]0}0O i d4 1-|-0 1]1110]0 111110

(f) (9) (h) (i 1),

LRU using a matrix — pages referenced in order
0,1,2,3,2,1,0,3,2,3 https://fb.com/tailieudientucntt

CuuDuongThanCong.com

26

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Simulating LRU In Software (2)

Page

» The aging algorithm simulates LRU in software
» Note 6 pages for 5 clock ticks, (a) — (e)

R bits for R bits for R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
clock tick O clock tick 1 clock tick 2 clock tick 3 clock tick 4
o|1|0]1 10|01 1{0]1|0 o|ofo]1 111]10|0

10000000 11000000 11100000 11110000 01111000
00000000 10000000 11000000 01100000 10110000
10000000 01000000 00100000 00100000 10001000
00000000 00000000 10000000 01000000 00100000
10000000 11000000 01100000 10110000 01011000
10000000 01000000 10100000 01010000 00101000

(@)

CuuDuongThanCong.com

(b)

(c)

(d)

(e)

https://fb.com/tailieudientucntt

27

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Working Set Page Replacement Algorithm (1)

w(k.1)

« The working set Is the set of pages used by the k
most recent memory references

« w(k,t) Is the size of the working set at time, t

CuuDuongThanCong.com https://fb.com/tailieudientucntt 28

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Working Set Page Replacement Algorithm (2)

Information about {
one page

Time of last use —

Page referenced

during this tick

Page not referenced

during this tick

2084
2003 |1
——> 1980 |1
1213 [0
—\

2014 |1
2020 |1
2032 [1
—\

1620 |0

Page table

[2204 | Current virtual time

R (Referenced) bit
Sz gl

Scan all pages examining R bit:
if (R=="T)
set time of last use to current virtual time

if (R == 0 and age > 1)
remove this page

if (R ==0and age <7)
remember the smallest time

The working set algorithm

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

29

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The WSClock Page Replacement Algorithm

srmit lsuhiv fnsmy O | bOCSS
0 ogar| |oiosar
+80S 2808
[|] |

r
[] []

Operation of the WSClock algorithm

30

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Review of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement

WSClock Good efficient algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Modeling Page Replacement Algorithms
Belady's Anomaly

All pages frames initially empty

o1 2 3 01 4 01 2 3 4
Youngest page o[1]|2|3]|0|1|4]|4|4]2]|3]|3
oj1|12(3|0(1|1]1[4]2]|2
Oldest page o|l1|2]|3|o|lo|of1]4]4
PP PP PPRPPF P P 9 Page faults
(@)
o1 2 3 01 4 01 2 3 4
Youngest page 011]2|3|3|3|[4|0]|]1|2]|3]|4
o|1]12(2]|2|3|4]10(1]2]3
Oldest page o|111111213|4|0]1]|2
ojo|jo0|1]2|3[4]|0]1
P P P P P P P P P P 10Page faults

* FIFO with 3 page frames
* FIFO with 4 page frames
 P'ssshowewhich page references show page-faults.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stack Algorithms

Referencestring 0 2 1 3 5 4 6 3 7 4 7 3 355 311171341
0[{2]|1]13|5|4|6(3]|7]14]17|3|3|5([5[3|1]|1|1]7]|1]|3]|4]1
012|1]3|5[4|6[3]7[4]7|7]3]|3[5]|3[3]|3[1]7]1]3]4
Of2|1]|3]|5]|4]|6|3|3|4[4[7|7]7]|5]|5]|5]|3]|3|7|1]3
0{2]|1]|3|5|4|6[(6|6|6]14|4|14|7|7|7|5]|5|5]|7]|7
0l2|1]1[5]|5[5]|5|5|6]|6[6]4[4]4]4]4]4]5]5
of212)1|1)1|1|1[1]1]1]6]|]6]|6|6|6|6|6]|6
ofol2]|2|2|2|2|2|2|2]|2]|2|2|2|2|2|2]2
0/]0|O0f(0Of[O0|O0|0]0O|0O|]0O|JO|0O|0O]0O]|O]|O
Page faults PPPPPPP P P P P
Distance string ® ®© o ®© © o © 4 o 4 2 3 1 5§ 1 2 6 1 1 4 7 4 6 5

State of memory array, M, after each item In
reference string Is processed

CuuDuongThanCong.com https://fb.com/tailieudientucntt 33

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Distance String

Probability density functions for two
hypothetical distance strings

CuuDuongThanCong .com https://fb.com/tailieudientucntt 34

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Distance String

times
1 occurs in
distance strin
C,= 4 / g
02 = 2
C3= 1
C4 = 4
times
05 = 2 6 occurs in
distance string
C,= 2 r’d
C7= 1
C_=8

z

Fi=19 [«—C,+C,+C,+...+C_

Fo= 17 |[«—C,+C,+C +... +C_
Fy=16 |«<—C,+C,+Cy+...+C_

F,= 12

F.= 10 |<«— # of page faults with 5 frames
F = 10

F,= 8

F =8

« Computation of page fault rate from distance string

— the C vector
— the F vector

CuuDuongThanCong.com

https://fb.com/tailieudientucntt 3 5

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Design Issues for Paging Systems
Local versus Global Allocation Policies (1)

Age
A0 10 A0 A0
A1 7 A1 A1
A2 5 A2 A2
A3 4 A3 A3
A4 6 Ad A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
C2 5 C2 C2
C3 6 C3 C3

(@) (b) ()

 Original configuration
 Local page replacement
» Global page replacement

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 6

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Page fault rate as a function of the number of
page frames assigned

eudientucntt 3 7

ooooooooooooooooo

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

_oad Control

» Despite good designs, system may still thrash

* When PFF algorithm indicates
— some processes need more memory
— but no processes need less

e Solution:

— swap one or more to disk, divide up pages they held
— reconsider degree of multiprogramming

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Size (1)

Small page size

» Advantages
— less internal fragmentation
— better fit for various data structures, code sections
— less unused program in memory

 Disadvantages
— programs need many pages, larger page tables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Size (2)

» Overhead due to page table and internal

fragmentation

page table space

internal

overhead

 \Where

— § = average process size in bytes
— P =page size in bytes
— e = page entry

CuuDuongThanCong.com

| fragmentation

Optimized when

D~ \2se

https://fb.com/tailieudientucntt

40

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Separate Instruction and Data Spaces

Data <

Program <

032

Single address

space

vvvvvvvv

444444444

IRRLKLRKKS

XX XARRRRXA

032

Program {
ol

| space

D space

* One address space
« Separate | and D spaces

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

} Unused page

> Data

41

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shared Pages

[111

\
Process
table
Program Data 1 Data 2
L J
~¥1
Page tables

Two processes sharing same program sharing its page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt 42

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Cleaning Policy

* Need for a background process, paging daemon
— periodically inspects state of memory

* \When too few frames are free
— selects pages to evict using a replacement algorithm

* |t can use same circular list (clock)
— as regular page replacement algorithmbut with diff ptr

CuuDuongThanCong.com https://fb.com/tailieudientucntt

43

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementation Issues

Operating System Involvement with Paging

Four times when OS involved with paging

1. Process creation
- determine program size
~ create page table
2. Process execution
- MMU reset for new process
- TLB flushed
3. Page fault time
- determine virtual address causing fault
~ swap target page out, needed page Iin
4. Process termination time
- release page table, pages

CuuDuongThanCong.com https://fb.com/tailieudientucntt

44

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Fault Handling (1)

Hardware traps to kernel

General registers saved

OS determines which virtual page needed

OS checks validity of address, seeks page frame
If selected frame Is dirty, write It to disk

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Page Fault Handling (2)

OS brings schedules new page in from disk
Page tables updated

~aulting instruction backed up to when it began
~aulting process scheduled

Registers restored

Program continues

46

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1000
1002

1004

Instruction Backup

-

MOVE.L #6(A1), 2(A0)

16 Bits

-

MOVE

6

2

} Opcode
} First operand
}

Second operand

An instruction causing a page fault

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

47

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Locking Pages in Memory

 Virtual memory and 1/O occasionally interact

 Proc issues call for read from device into buffer

— while waiting for 1/O, another processes starts up

— has a page fault

— buffer for the first proc may be chosen to be paged out
* Need to specify some pages locked

— exempted from being target pages

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Backing Store

Main memory Disk

Pages

0

Swap area

7

4

5

2
7

a)

Main memory

Disk

Pages
0 3
4 6
Page
table
6 %
Disk

N
N

Swap area

N

(a) Paging to static swap area
(b) Backing up pages dynamlcally

https://fb.com/tailieudientu

ongThanCong.com

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Separation of Policy and Mechanism

Main memory

3. Request page

User User
space) process
2. Needed

page

External
pager

4r”—_“~\§\\ Disk

4. Page
arrives

i 1. Page
fault Y

Kernel
space

is pag

6. Map
page in

5. Here

>
>

Page fault handling with an external pager

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

50

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation (1)

Virtual address space

Call stack f

} Free

Space currently being

dlocaled 1o he Parse tree } used by the parse tree

Address space
parse tree

Constant table *

Source text *

bumped into the
source text table

Symbol table has
Symbol table

* One-dimensional address space with growing tables
* One. tahlemay bump into another ...

o1

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

20K

16K

12K

8K

4K

oK

Allows each table to grow or shrink, independently

Symbol
table

Segment
0

Segmentation (2)

12K

8K

4K

oK

CuuDuongThanCong.com

Source
text

Segment
1

oK

Constants

Segment
2

16K

12K

8K

4K

oK

— Parse
tree

Segment
3

12K

8K

4K

oK

https://fb.com/tailieudientucntt

Call
stack

Segment
4

52

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation (3)

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Comparison of paging and segmentation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

ISHY

Segment 1
(8K)

Segment 2

Segment 3
(8K)

Segment 5
(4K)

LLL

.

(5K)

Segment 2
5K)

Segment 6
(4K)

Segment 5
(4K)

Segment O
(4K)

Segment 7
(5K)

(

Segment 2
5K)

Segment 6
(4K)

Segment O

(@)

(a)-(d) Development of checkerboarding

Segment 7
(5K)

(

(4K)

Segment O

(b)

Segment 7
(5K)

Segment 2
(5K)

(4K)

Segment O

(c)

Segment 7
(5K)

(4K)

Segment 0

(d)

(4K)

(e)

(e) Removal of the checkerboarding by compaction,

CuuDuongThanCong.com

om/taffleudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: MULTICS (1)

« 36 bits - T T
i | Page 2 entry
i i Page 1 entry 18 9 1113 3
Segment 6 descriptor Page 0 entry Main memory address Segment length
of the page table (in pages)
Segment 5 descriptor Page table for segment 3
; Page size:
Segment 4 descriptor 0 = 1024 words
Segment 3 descriptor | | 1= 64 words
Segment 2 descriptor i I ? = Segment ks paged
= segment is not paged
Segment 1 descriptor Page 2 entr
J i g 1 Miscellaneous bits
Segment 0 descriptor Page 1 entry
Protection bits
Descriptor segment Page 0 entry

Page table for segment 1

 Descriptor segment points to page tables
» Segment descriptor — numbers are field lengths

uuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: MULTICS (2)

Address within
the segment

Segment number

18

Page Offset within
humber the page
6 10

A 34-bit MULTICS virtual address

ooooooooooooooooo

56

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: MULTICS (3)

MULTICS virtual address

Segment number

Segment
number

Descriptor

Descriptor
segment

Page
number

Page
number

Offset

Page frame

Page
table

Word

Page

Offset

Conversion of a 2-part MULTICS address into a main memory address

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

57

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: MULTICS (4)

Comparison Is this
field enty
. N . used?
Segment Virtual Page
number page frame Protection Age i
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
e

« Simplified version of the muLTICS TLB
» Existence of 2 page sizes makes actual TLB more complicated

CuuDuongThanCong.c b.com/talli entucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: Pentium (1)

Bits 13 1 2

/X

0=GDT/1=LDT Privilege level (0-3)

Index

A Pentium selector

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: Pentium (2)

0: 16-Bit segment J’ 0: Segment is absent from memory
1+ 32-Rit segmentJ L 1. Segment is present in memory
Privilege level (0-3)
0: Liis in bytes | 0: System
1: Liis in pages | | 1: Application
Segment type and protection
1 =nan = g ypP P
7 e
Base 24-31 G|D o% 1%?'1“; P(DPL|S| Type Base 16-23 4
.
Base 0-15 Limit 0-15 0
i - . Relative
i 32 Bits " address

 Pentium code segment descriptor
« Data segments differ slightly

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: Pentium (3)

Selector

Offset
Descriptor
Base address o
Limit
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

CuuDuongThanCong.com

https://fb.com/tailieudientucntt 6 1

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: Pentium (4)

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
A
I 1 [1 wew 4 1
selected
1024 T
Entries T
. T Offset
Dir
Page
b A |
Directory entry Page table
points to entry points
page table to word

(b)

Mapping of a linear address onto a physical address

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Segmentation with Paging: Pentium (5)

er progra
U g Typical uses of

N
Z the levels

Protection on the Pentium

CuuDuongThanCong .com https://fb.com/tailieudientucntt

63

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

