
1

Memory Management

Chapter 4

4.1 Basic memory management

4.2 Swapping

4.3 Virtual memory

4.4 Page replacement algorithms

4.5 Modeling page replacement algorithms

4.6 Design issues for paging systems

4.7 Implementation issues

4.8 Segmentation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2

Memory Management

• Ideally programmers want memory that is
– large

– fast

– non volatile

• Memory hierarchy
– small amount of fast, expensive memory – cache

– some medium-speed, medium price main memory

– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory

- an operating system with one user process
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4

Multiprogramming with Fixed Partitions

• Fixed memory partitions

– separate input queues for each partition

– single input queue
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5

Modeling Multiprogramming

CPU utilization as a function of number of processes in memory

Degree of multiprogramming

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

6

Analysis of Multiprogramming System

Performance

• Arrival and work requirements of 4 jobs

• CPU utilization for 1 – 4 jobs with 80% I/O wait

• Sequence of events as jobs arrive and finish

– note numbers show amout of CPU time jobs get in each intervalCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

7

Relocation and Protection

• Cannot be sure where program will be loaded in memory

– address locations of variables, code routines cannot be absolute

– must keep a program out of other processes’ partitions

• Use base and limit values

– address locations added to base value to map to physical addr

– address locations larger than limit value is an error

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

8

Swapping (1)

Memory allocation changes as
– processes come into memory

– leave memory

Shaded regions are unused memory
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

9

Swapping (2)

• Allocating space for growing data segment

• Allocating space for growing stack & data segment
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

10

Memory Management with Bit Maps

• Part of memory with 5 processes, 3 holes
– tick marks show allocation units

– shaded regions are free

• Corresponding bit map

• Same information as a list
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

11

Memory Management with Linked Lists

Four neighbor combinations for the terminating process X

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12

Virtual Memory
Paging (1)

The position and function of the MMU

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

13

Paging (2)

The relation between

virtual addresses

and physical

memory addres-

ses given by

page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

14

Page Tables (1)

Internal operation of MMU with 16 4 KB pagesCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

15

Page Tables (2)

• 32 bit address with 2 page table fields

• Two-level page tables

Second-level page tables

Top-level
page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

16

Page Tables (3)

Typical page table entry

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

17

TLBs – Translation Lookaside Buffers

A TLB to speed up paging

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

18

Inverted Page Tables

Comparison of a traditional page table with an inverted page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

19

Page Replacement Algorithms

• Page fault forces choice

– which page must be removed

– make room for incoming page

• Modified page must first be saved

– unmodified just overwritten

• Better not to choose an often used page

– will probably need to be brought back in soon

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

20

Optimal Page Replacement Algorithm

• Replace page needed at the farthest point in future

– Optimal but unrealizable

• Estimate by …

– logging page use on previous runs of process

– although this is impractical

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

21

Not Recently Used Page Replacement Algorithm

• Each page has Reference bit, Modified bit

– bits are set when page is referenced, modified

• Pages are classified

1. not referenced, not modified

2. not referenced, modified

3. referenced, not modified

4. referenced, modified

• NRU removes page at random

– from lowest numbered non empty class

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

22

FIFO Page Replacement Algorithm

• Maintain a linked list of all pages

– in order they came into memory

• Page at beginning of list replaced

• Disadvantage

– page in memory the longest may be often used

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

23

Second Chance Page Replacement Algorithm

• Operation of a second chance
– pages sorted in FIFO order

– Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

24

The Clock Page Replacement Algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

25

Least Recently Used (LRU)

• Assume pages used recently will used again soon

– throw out page that has been unused for longest time

• Must keep a linked list of pages

– most recently used at front, least at rear

– update this list every memory reference !!

• Alternatively keep counter in each page table entry

– choose page with lowest value counter

– periodically zero the counter

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

26

Simulating LRU in Software (1)

LRU using a matrix – pages referenced in order
0,1,2,3,2,1,0,3,2,3CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

27

Simulating LRU in Software (2)

• The aging algorithm simulates LRU in software

• Note 6 pages for 5 clock ticks, (a) – (e)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

28

The Working Set Page Replacement Algorithm (1)

• The working set is the set of pages used by the k
most recent memory references

• w(k,t) is the size of the working set at time, t
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

29

The Working Set Page Replacement Algorithm (2)

The working set algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

30

The WSClock Page Replacement Algorithm

Operation of the WSClock algorithmCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

31

Review of Page Replacement Algorithms

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

32

Modeling Page Replacement Algorithms

Belady's Anomaly

• FIFO with 3 page frames

• FIFO with 4 page frames

• P's show which page references show page faultsCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

33

Stack Algorithms

State of memory array, M, after each item in
reference string is processed

7 4 6 5

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

34

The Distance String

Probability density functions for two
hypothetical distance strings

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

35

The Distance String

• Computation of page fault rate from distance string

– the C vector

– the F vector

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

36

Design Issues for Paging Systems
Local versus Global Allocation Policies (1)

• Original configuration
• Local page replacement
• Global page replacement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

37

Local versus Global Allocation Policies (2)

Page fault rate as a function of the number of
page frames assigned

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

38

Load Control

• Despite good designs, system may still thrash

• When PFF algorithm indicates

– some processes need more memory

– but no processes need less

• Solution :
Reduce number of processes competing for memory

– swap one or more to disk, divide up pages they held

– reconsider degree of multiprogramming

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

39

Page Size (1)

Small page size

• Advantages

– less internal fragmentation

– better fit for various data structures, code sections

– less unused program in memory

• Disadvantages

– programs need many pages, larger page tables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

40

Page Size (2)

• Overhead due to page table and internal

fragmentation

• Where
– s = average process size in bytes

– p = page size in bytes

– e = page entry

2

s e p
o v e r h e a d

p

page table space

internal
fragmentation

Optimized when

2p s e

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

41

Separate Instruction and Data Spaces

• One address space

• Separate I and D spaces
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

42

Shared Pages

Two processes sharing same program sharing its page table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

43

Cleaning Policy

• Need for a background process, paging daemon

– periodically inspects state of memory

• When too few frames are free

– selects pages to evict using a replacement algorithm

• It can use same circular list (clock)

– as regular page replacement algorithmbut with diff ptr

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

44

Implementation Issues
Operating System Involvement with Paging

Four times when OS involved with paging

1. Process creation

determine program size

create page table

2. Process execution

MMU reset for new process

TLB flushed

3. Page fault time

determine virtual address causing fault

swap target page out, needed page in

4. Process termination time

release page table, pages
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

45

Page Fault Handling (1)

1. Hardware traps to kernel

2. General registers saved

3. OS determines which virtual page needed

4. OS checks validity of address, seeks page frame

5. If selected frame is dirty, write it to disk

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

46

Page Fault Handling (2)

6. OS brings schedules new page in from disk

7. Page tables updated

 Faulting instruction backed up to when it began

6. Faulting process scheduled

7. Registers restored

 Program continues

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

47

Instruction Backup

An instruction causing a page fault

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

48

Locking Pages in Memory

• Virtual memory and I/O occasionally interact

• Proc issues call for read from device into buffer

– while waiting for I/O, another processes starts up

– has a page fault

– buffer for the first proc may be chosen to be paged out

• Need to specify some pages locked

– exempted from being target pages

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

49

Backing Store

(a) Paging to static swap area

(b) Backing up pages dynamically
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

50

Separation of Policy and Mechanism

Page fault handling with an external pager

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

51

Segmentation (1)

• One-dimensional address space with growing tables

• One table may bump into anotherCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

52

Segmentation (2)

Allows each table to grow or shrink, independently
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

53

Segmentation (3)

Comparison of paging and segmentation
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

54

Implementation of Pure Segmentation

(a)-(d) Development of checkerboarding

(e) Removal of the checkerboarding by compaction
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

55

Segmentation with Paging: MULTICS (1)

• Descriptor segment points to page tables

• Segment descriptor – numbers are field lengths
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

56

Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

57

Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory address
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

58

Segmentation with Paging: MULTICS (4)

• Simplified version of the MULTICS TLB

• Existence of 2 page sizes makes actual TLB more complicated
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

59

Segmentation with Paging: Pentium (1)

A Pentium selector

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

60

Segmentation with Paging: Pentium (2)

• Pentium code segment descriptor

• Data segments differ slightly
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

61

Segmentation with Paging: Pentium (3)

Conversion of a (selector, offset) pair to a linear address

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

62

Segmentation with Paging: Pentium (4)

Mapping of a linear address onto a physical address

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

63

Segmentation with Paging: Pentium (5)

Protection on the Pentium

Level

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

