Chapter 10
Case Study 1: UNIX and LINUX

10.1 History of unix

10.2 Overview of unix

10.3 Processes in unix

10.4 Memory management in unix
10.5 Input/output in unix

10.6 The unix file system

10.7 Security in unix

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX

User
Interface
l Users
Library
interface Standards utility programs T
l (shell, editors, compliers etc)
System User
call mode
interface Standard library
* (open, close, read, write, fork, etc) 1
UNIX operating system ‘f
(process management, memory management, Kernel mode
the file system, 1/O, etc) +
Hardware

(CPU, memory, disks, terminals, etc)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX Utility Programs

Program Typical use

cat Concatenate multiple files to standard output
chmod Change file protection mode

cp Copy one or more files

cut Cut columns of text from a file
grep Search a file for some pattern
head Extract the first lines of a file

Is List directory

make Compile files to build a binary
mkdir Make a directory

od Octal dump a file

paste Paste columns of text into a file
pr Format a file for printing

rm Remove one or more files

rmdir Remove a directory

sort Sort a file of lines alphabetically
tail Extract the last lines of a file

tr Translate between character sets

A few of the more common UNIX utility programs required by POSIX

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX Kernel

System calls

Interrupts and traps

. . File Mapq Page
Terminal handing Sockets naming |ping| faults | gignal Process
hangdling creation and
File Virtual termination
Cooked tty Network protocols systems memory
Raw
tty Line , Buffer 1 Page Process
disciplines Routing cache | cache scheduling
|
Character Network Disk Process
devices device drivers device drivers dispatching

Hardware

Approximate structure of generic UNIX kernel

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Processes in UNIX

pid = fork();
if (pid < 0) {
handle _error();
} else if (pid > 0) {
} else {

}

CuuDuongThanCong.com

/* If the fork succeeds, pid > 0 in the parent */
/* fork failed (e.g., memory or some table is full) */
/* parent code goes here. /*/

/* child code goes here. /*/

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

POSIX

Signal Cause
SIGABRT | Sent to abort a process and force a core dump
SIGALRM | The alarm clock has gone off
SIGFPE A floating-point error has occurred (e.g., division by 0)
SIGHUP The phone line the process was using has been hung up
SIGILL The user has hit the DEL key to interrupt the process
SIGQUIT The user has hit the key requesting a core dump
SIGKILL Sent to kill a process (cannot be caught or ignored)
SIGPIPE The process has written to a pipe which has no readers
SIGSEGV | The process has referenced an invalid memory address
SIGTERM | Used to request that a process terminate gracefully
SIGUSR1 | Available for application-defined purposes
SIGUSR2 | Available for application-defined purposes

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

System Calls for Process Management

System call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts)

Wait for a child to terminate

S = execve(name, argv, envp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

s = sigaction(sig, &act, &oldact)

Define action to take on signals

s = sigreturn(&context)

Return from a signal

s = sigprocmask(how, &set, &old)

Examine or change the signal mask

S = sigpending(set)

Get the set of blocked signals

s = sigsuspend(sigmask)

Replace the signal mask and suspend the process

s = kill(pid, sig) Send a signal to a process
residual = alarm(seconds) Set the alarm clock
S = pause() Suspend the caller until the next signal

S IS an error code
pid Is a process ID

residual is the remaining time from the previous alarm

uuDuongThanCong.com

https://fil.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

POSIX Shell

while (TRUE) { /* repeat forever /*/
type_prompt(); /* display prompt on the screen */
read_command(command, params); /* read input line from keyboard */
pid = fork(); /* fork off a child process */
if (pid < 0) {
printf("Unable to fork0); /* error condition */
continue; /* repeat the loop */
}
if (pid !=0) {
waitpid (-1, &status, 0); /* parent waits for child */
} else {

execve(command, params, 0); /* child does the work */

}

A highly simplified shell

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Threads in POSIX

Thread call

Description

pthread_create

Create a new thread in the caller's address space

pthread_exit

Terminate the calling thread

pthread_join

Wait for a thread to terminate

pthread_mutex_init

Create a new mutex

pthread_mutex _destroy

Destroy a mutex

pthread_mutex _lock

Lock a mutex

pthread _mutex _unlock

Unlock a mutex

pthread_cond_init

Create a condition variable

pthread_cond_ destroy

Destroy a condition variable

pthread cond_wait

Wait on a condition variable

pthread_cond_signal

Release one thread waiting on a condition variable

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Is Command

PID = 501 PID = 748 PID = 748
New process —> Same process —>
1. Fork call 3. exec call
/2. new sh /4' witilvlirlald
Fork code gregisd Exec code
A A
Allocate child's process table entry Find the executable program
Fill child's entry from parent Verify the execute permission
Allocate child's stack and user area Read and verify the header
Fill child's user area from parent Copy arguments, environ to kernel
Allocate PID for child Free the old address space
Set up child to share parent's text Allocate new address.space
Copy page tables for data and stack Copy arguments, environ to stack
Set up sharing of open files Reset signals

Copy parent's registers to child Initialize registers

Steps In executing the command Is type to the shell

CuuDuongThanCong.com https://fb.com/tailieudientucntt

10

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Flags for LinuX clone

Flag Meaning when set Meaning when cleared
CLONE_VM Create a new thread Create a new process
CLONE_FS Share umask, root, and working dirs | Do not share them
CLONE_FILES Share the file descriptors Copy the file descriptors
CLONE _SIGHAND | Share the signal handler table Copy the table
CLONE_PID New thread gets old PID New thread gets own PID

Bits in the sharing_flags

CuuDuongThanCong.com

bitmap

https://fb.com/tailieudientucntt

11

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX Scheduler

Highest
priority
A : A T
-4 Waiting for disk 1/O —C Process waiting
-3 Waiting for disk buffer in kernel mode
-2 Waiting for terminal input
-1 Waiting for terminal output —C O
0 Waiting for child to exist Y
0 User priority O 1
1 User priority 1 —CO—
o Process waiting
2 User priority 2 in user mode
3 User priority 3 —o

A~ : ~7
Lowest T /

priority

Process queued
on priority level 3

The UNIX scheduler is based on a multilevel queue structure

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 2

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Booting UNIX

Process 0

Process 1 Process 2

Terminal O Terminal 1

Password:

Login:

uuuuuuuuuuuuuu

Terminal 2

% cp f1 12

https://fb.com/tailieudientucntt

13

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Handling Memory

Stack pointer- Process A ‘

Y
4
20K TBsS
8K Data
Text
0

CuuDuongThanCong.com

Physical memory

-~ R
-~
-~

-

AN,

v/

;///////// Z

Unused
memory\ I

]

NP 77777777770

~
~o N
SN
~o ~
~
~
-~
-~
OS ~ia

~

-~

address sp

\

Process A's virtual address space
Physical memory
Process B's virtual

acCe

https://fb.com/tailieudientucntt

24K

ack pointer

14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process A

Sharing Files

Physical memory Process B

Stack pointer—>- i /,—:*4— Stack pointer
, //l'. :
Pt _f\ Mapped file
Mapped fil { \ ez T
apped file N !
Unused thﬂ%’}
memory [0
222
\ 7
_ A [24K
2KIBsS .o
Data g‘;:’ - -~ ey
8K wEE 2 8K
Text). g
0K # oK

A new file mapped simultaneously into two processes

CuuDuongThanCong.com https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

System Calls for Memory Management

System call Description

s = brk(addr)

Change data segment size

a = mmap(addr, len, prot, flags, fd, offset) | Map a file in

s = unmap(addr, len) Unmap a file

SIS an error code

b and addr are memory addresses
len is a length

prot controls protection

flags are miscellaneous bits

fd Is a file descriptor

offset is a file offset

CuuDuongThanCong.com https://fb.com/tailieudientucntt

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Paging In UNIX

Main memory Core map entry
~A ,L Index of next entry Used when
~ : ~N page frame is
Index of previous entry on the free list
Page;rame Disk block number
Disk device number
Page frame
2 Block hash code
Page frame Index into proc table
1
Two-handed Text/data/stack
Page frame
clock scans J 0 Offset within segment
core map

b))
«

&

\ s

4.3 BSD .
Locked in

kernel Core map , | memory bit

entries, one / T \

per page frame Free Intransit Wanted

The core map has an entry for each page

CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 7

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Paging In Linux (1)

Word selected

Page
Page
Global middle Page »
directory directory table

—

X —
™, \

Directory Middle Page Offset

Virtual address

Linux uses three-level page tables

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Paging In Linux (2)

32 32 32 32 32 32 32 32
b4 8 8 8 8
16 16 16 _ 7 i
8 7 :]

e 8 8 | | 8| | 8 8
| | L8 .

16 8 8 8 8 8

Buddy algorithm

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

19

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Networking

Sending process Receiving process

/ \

O\\ /(O > User space

\/ 7
—_cuy

——— Socket > Kernel space

\ Connection /

Network

Use of sockets for networking

CuuDuongThanCong.com https://fb.com/tailieudientucntt 2 0

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Terminal Management

Function call Description
s = cfsetospeed(&termios, speed) | Set the output speed
s = cfsetispeed(&termios, speed) | Set the input speed
s = cfgetospeed(&termios, speed) | Get the output speed
s = cfgtetispeed(&termios, speed) | Get the input speed
s = tcsetattr(fd, opt, &termios) Set the attributes
s = tcgetattr(fd, &termios) Get the attributes

The main POSIX calls for managing the terminal

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX 1/0 (1)

Device Open Close Read Write loctl | Other
Null null null null null null

Memory null null mem_read | mem_write null

Keyboard | k open | Kk close k_read error k_ioctl

Tty fty _open | tty close | fty read fty write | tty ioctl

Printer Ip_open | Ip_close error lp_write lp_ioctl

Some of the fields of a typical cdevsw table

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX 1/0 (2)

User Cooked Raw interface
space Reading/writing files interface to to/dev/tty
A A /devitty | A
(£ 7
File system
A
Y Line disciplines
Kernel < Buffer cache
A
Y Y Y
Disk drivers Terminal drivers
A A
.
Y
e

The UNIX 1/O system in BSD

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Streams

Computer
—
Process
User mode < @4—-——' °
L A /!
Stream head Stream head
Y A Y A
TCP TCP

Kernel mode < + ‘f + *

IP
Ethernet driver Token ring driver
_ A A
\4 Y
Ethernet controller Token ring controller

Ethernet

Token Ring

An example of streams In System V

CuuDuongThanCong.com https://fb.com/tailieudientucntt

24

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The UNIX File System (1)

Directory Contents

bin Binary (executable) programs
dev Special files for I/O devices
etc Miscellaneous system files

lib Libraries

usr User directories

Some important directories found in most UNIX systems

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

fred /

The UNIX File System (2)

/

bin
dev
etc

lib
tmp
usr

N

a
b
c

(a) Before linking. (b) After linking

ooooooooooooooooo

(@)

N

X

y
z

fred /

/

bin
dev
etc
lib
tmp
usr

N\

X O T0

=y
Z

tps.//fb.com/tailieudi

(b)

N e

X

entucntt

26

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The UNIX File System (3)

Hard disk Diskette Hard disk
/ / A
GQD% b

/\ TANE/AS
B B

(a) Before mounting. (b) After mounting

uuuuuuuuuuuuuu https://fb.com/tailieudientucntt 27

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Locking Files

Process A's
shared
lock

A

(@) 0 1 2 3 4 5 6 v4 8 9 10| 11|12 | 13| 14 | 15
A's shared lock
(b) 0 1 2 3 4745 6 8 8 9 10|11 |12 | 13 | 14 | 15
'
B's shared lock
A B
r "I) B
Da0L0.0.92%
© | o | 1 Ezas e sEesk 7 areNoy 10411 12 | 13 | 14 | 15
T

C's shared lock

(a) File with one lock

(b) Addition of a second lock

(c) A third lock

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

System Calls for File Management

System call Description
fd = creat(name, mode) One way to create a new file
fd = open(file, how, ...) Open a file for reading, writing or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) | Move the file pointer
s = stat(name, &buf) Get a file’s status information
s = fstat(fd, &buf) Get a file’s status information
s = pipe(&fd[0]) Create a pipe
s = fentl(fd, cmd, ...) File locking and other operations

SIS an error code
» fd is a file descriptor
 position is a file offset

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The istat System Call

Device the file is on

I-node number (which file on the device)
File mode (includes protection information)
Number of links to the file

Identity of the file’s owner

Group the file belongs to

File size (in bytes)

Creation time

Time of last access

Time of last modification

Fields returned by the istat system call.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

30

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

System Calls for Directory Management

System call Description
s = mkdir(path, mode) Create a new directory
s = rmdir(path) Remove a directory
s = link(oldpath, newpath) | Create a link to an existing file
s = unlink(path) Unlink a file
s = chdir(path) Change the working directory
dir = opendir(path) Open a directory for reading
s = closedir(dir) Close a directory
dirent = readdir(dir) Read one directory entry
rewinddir(dir) Rewind a directory so it can be reread

* SIS an error code
o dir identifies a directory stream
o dirent is a directory entry

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX File System (1)

Boot Super
block block
/ / | nodes Data blocks 9
SN
))
«

Disk layout in classical UNIX systems

ooooooooooooooooo

32

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX File System (2)

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 39 Address of first 10 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

CuubDuongThanCong.com

Structure of the 1-node

https://fb.com/tailieudientucntt

33

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX File System (3)

Open file
description i-node
Parent's File position
file) e AW / Moce
descriptor Pointer to i-node Link count
table . — .
File position Uid
- R/W .
oy Gid
Ch.”d S Pointer to i-node
file File size
descriptor
table ot L Times
Unrelated Ad(;iirre?i%s of Pointers to
process'’ e disk blocks
i disk blocks
file 4
descriptor Single indirect
table L
Double indirect
Triple indirect
= -
/ —
Triple =P
indirect / —T~

block Double
indirect /
Single
block 7.
indirect

block

The relation between the file descriptor table, the
open file description

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

UNIX File System (4)

I-node number
Entry size

File name length

@19}

I 1

I I 1

'F 18 ' colossal
I I

19

A\

E F 51 OE voluminous

B 7
‘D6 bigdir

88!

/ Unused

Yugng thand

b)|19: 1Fi8: colossal Unused88 D 6 blgdlr /@@ﬁ/
T

« A BSD directory with three files

* The same directory after the file voluminous
has.been removed

https://fb.com/tailieudientucntt

35

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Linux File System

Boot| Block group 0 | Block group 1 | Block group 2 | Block group 3 | Block group 4

_ E:--.
uper—| Group Block [l-node —nod Data
block | descriptor | bitmap | bitmap —nodes blocks

2

Layout of the Linux Ex2 file system.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 3 6

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Network File System (1)

Client 1 Client 2
/
/bin Jusr /bin /mnt
/usr/ast C{(Bb

<1 Nount
C{é /usr/ast/work
= I
— _._-“-" I'

-
-—___‘-
-

\
\
\
\
\
\
\
A
\\ =~
¥ 555‘555 ;
/bin /projects
% /proj1 /proj2
cat cp Is mv sh)/(tg\(éé

Server 1 Server 2

« Examples of remote mounted file systems
» Directories are shown as squares,.files.as circles .

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Network File System (2)

Client kernel Server kernel
System call layer
Y
Virtual file system layer B0 o< V- neds Virtual file system layer BB 0O
E : A
Y Y Y 7
Local Local NFS NFS vee Local Local
FS 1 FS 2 client server FS 1 FS 2
1 I A 1
Y Y Y Y
Buffer cache Buffer cache
Y Y Y
Driver Driver Driver Driver
Y Message
Message from client
to server A
Local disks Local disks
1\ J
CuuDuongThanCong.com https://fb.com/tailieudientucntt

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Security in UNIX

Binary Symbolic Allowed file accesses
111000000 | rwx—————— Owner can read, write, and execute
111111000 | rwxrwx——— Owner and group can read, write, and execute
110100000 | rw—r————— Owner can read and write; group can read
110100100 | rw—r——r—— Owner can read and write; all others can read
111101101 | rwxr—xr—x Owner can do everything, rest can read and execute
000000000 | ————————— Nobody has any access
000000111 | —————— rWX Only outsiders have access (strange, but legal)

Some examples of file protection modes

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

System Calls for File Protection

System call

Description

s = chmod(path, mode)

Change a file’s protection mode

s = access(path, mode)

Check access using the real UID and GID

uid = getuid() Get the real UID
uid = geteuid() Get the effective UID
gid = getqgid() Get the real GID

gid = geteqid()

Get the effective GID

s = chown(path, owner, group)

Change owner and group

s = setuid(uid)

Set the UID

s = setgid(gid)

Set the GID

e SIS an error code

 uid and gid are the UID and GID, respectively

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

40

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

