
1

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 1
Chương 3 : Tương tranh giữa các process

MÔN HỆ ĐIỀU HÀNH

Chương 3

TƯƠNG TRANH GIỮA CÁC PROCESS
3.1 Giới thiệu về tương tranh
3.2 Loại trừ tương hỗ giữa các đoạn code CS
3.3 Các phương pháp dừng chờ chủ động (busy waiting)
3.4 Đồng bộ các process : Bài toán Sản xuất-Tiêu dùng
3.5 Các phương pháp dừng chờ thụ động (sleep-wakeup)
3.6 Các bài toán IPC kinh điển và giải quyết

Tài liệu tham khảo : chương 2, sách "Modern Operating Systems",
Andrew S. Tanenbaum: , 2nd ed, Prentice Hall

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 2
Chương 3 : Tương tranh giữa các process

3.1 Giới thiệu về tương tranh

Trong hệ đa chương, thường có nhiều process chạy song hành,
nhưng mỗi process cĐ khúng gian lým việc độc lập, không ai có
thể truy xuất trực tiếp không gian làm việc của process khác => rất
tốt cho việc bảo vệ chĤng lẫn nhau nhất lý khi các process này là
những chương trình độc lập.
Nếu 2 hay nhiều process cần giao tiếp nhau để đồng bộ hay để
trao đổi dữ liệu, ta cần cung cấp cơ chế cho chĤng. CĐ 2 cơ chế
giao tiếp chĚnh giữa cüc process : truy xuất bộ nhớ dĥng chung vý
gởi/nhận thúng büo.
Truy xuất bộ nhớ chung là 1 trong nhiều hoạt động tương tranh
giữa các process. Vấn đề tương tranh trên 1 tài nguyên dùng
chung là vấn đề lớn cần phải giải quyết triệt để vì nếu nhiều
process truy xuất đồng thời výo 1 týi nguyøn dĥng chung mà
không có sự kiểm soát thì dễ xảy ra lỗi làm hư hỏng tài nguyên
(điều kiện Race).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 3
Chương 3 : Tương tranh giữa các process

Giới thiệu về tương tranh

Phân tích kỹ code của chương trình, ta nhận thấy chúng là
danh sách liên tiếp của 2 loại đoạn code :
đoạn code truy xuất các biến cục bộ của chương trình. Đoạn
code này thường dài và xuất hiện nhiều. May mắn là chúng ta
không cần quan tâm và kiểm soát đoạn code này.
Đoạn code truy xuất tài nguyên dùng chung và có thể tranh
chấp với process khác. Đây là đoạn code, mặc dù ít xuất hiện
và thường rất ngắn, nhưng dễ gây lỗi trên tài nguyên nên ta
gọi nó là 'critical session‘ (viết tắt là CS), chúng ta cần kiểm
soát cẩn thận đoạn code CS này.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 4
Chương 3 : Tương tranh giữa các process

Giới thiệu về tương tranh

đoạn lệnh truy
xuất cục bộ

đoạn lệnh truy
xuất cục bộ

đoạn lệnh truy
xuất cục bộ

critical session 1

critical session 2 resource 2

resource 1

đoạn lệnh truy
xuất cục bộ

đoạn lệnh truy
xuất cục bộ

đoạn lệnh truy
xuất cục bộ

critical session 2

critical session 1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 5
Chương 3 : Tương tranh giữa các process

Thí dụ 2 ứng dụng truy xuất tài khoản A đồng thời :

1. hiển thị giao diện & chờ
người dùng ra lệnh

2. Người dùng ra lệnh nạp
vào tài khoản A số tiền
700USD → xử lý :

21a Đọc tài khoản A vào
bộ nhớ,

22a Tăng giá trị tài
khoản trong bộ nhớ
lên 700USD.

23a Ghi lại giá trị mới.
3. Quay về bước 1

1. hiển thị giao diện & chờ
người dùng ra lệnh

2. Người dùng ra lệnh rút tiền
từ tài khoản A 500USD →
xử lý :

21b Đọc tài khoản A vào
bộ nhớ,

22b Giảm giá trị tài
khoản trong bộ nhớ
đi 500USD.

23b Ghi lại giá trị mới.
3. Quay về bước 1

Tài khoản
A

Nếu tài khoản A là 1000USD và HĐH điều khiển chạy 2 process P1 và P2
theo thứ tự 21a→22a→21b→22b→23b→23a thì kết quả tài khoản A sẽ là
1700USD (giá trị đúng là 1200USD).

Vùng CS

Giới thiệu về tương tranh

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 6
Chương 3 : Tương tranh giữa các process

Để kiểm soát việc truy xuất tài nguyên đồng thời giữa nhiều process, ta
không cho phép hơn 1 vùng CS của các process đó cùng truy xuất tài
nguyên xác định tại từng thời điểm. Phương pháp này được gọi là loại
trừ tương hỗ giữa các đoạn CS (Mutual Exclusion).
Có nhiều phương pháp loại trừ tương hỗ cụ thể khác nhau và được chia
làm 2 nhóm chính : nhóm các phương pháp dừng chờ chủ động (busy
waiting) và nhóm các phương pháp dừng chờ thụ động (sleep/wakeup).
Tinh thần của nhóm phương pháp dừng chờ chủ động là khi 1 process
cần thực hiện đoạn code CS tương tranh với process khác thì nó phải
dừng chờ đến khi process khác chạy xong đoạn code CS này, trong
quá trình dừng chờ, nó vẫn chiếm CPU liên tục để dò điều kiện chạy
tiếp liên tục (nhưng không thành công).
Tinh thần của nhóm phương pháp sleep/wakeup là khi phải dừng chờ
process khác, nó xin ngủ (trả CPU) và nằm bất động. Khi process khác
thực hiện xong vùng CS, hệ thống sẽ đánh thức process ngủ để bắt đầu
thực hiện đoạn lệnh CS…

3.2 Loại trừ tương hỗ giữa các đoạn CS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 7
Chương 3 : Tương tranh giữa các process

Loại trừ tương hỗ giữa các đoạn CS

In_Control();

Out_Control();

Mỗi lần muốn vào vùng
CS, ta phải gọi hàm
In_Control() để kiếm soát
việc thi hành vùng CS, khi
hoàn thành vùng CS, ta
phải gọi hàm
Out_Control() để thông
báo cho các process khác
đang chờ để chúng kiểm
tra lại việc đi vào.

Vùng CS truy xuất tài
nguyên dùng chung

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 8
Chương 3 : Tương tranh giữa các process

1. Phương pháp dựa trên Interrupt
Tính chất cơ bản của CPU là sau khi thi hành 1 lệnh máy, nó sẽ
tự động thi hành lệnh máy kế tiếp,… mà không để ý bất kỳ thứ gì
bên ngoài.
Tuy nhiên, nếu chỉ vậy, CPU sẽ không bao giờ đáp ứng kịp thời
1 sự kiện nào đó xảy ra trong quá trình thi hành chương trình của
CPU. Do đó, người ta phải tạo thêm 1 chân nhập có tên là IRQ.
Một thiết bị nào đó nếu muốn yêu cầu CPU xử lý dùm công việc
nào thì hãy tạo tín hiệu (ngắt) gởi về CPU trên chân IRQ. Bình
thường, mỗi khi CPU thấy có tín hiệu trên chân IRQ, nó sẽ dừng
tạm thời chương trình đang chạy hiện hành, chạy đoạn lệnh qui
định trước (trình phục vụ ngắt) để xử lý công việc dùm cho thiết
bị yêu cầu. Sau khi hoàn thành trình phục vụ ngắt, CPU sẽ quay
về tiếp tục thi hành chương trình từ vị trí ngừng trước đây.

3.3 Các phương pháp chờ chủ động

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 9
Chương 3 : Tương tranh giữa các process

1. Phương pháp dựa trên Interrupt
Tuy nhiên, nếu CPU đang thi hành chương trình real-time hay nhạy
cảm với thời gian, nó cần có khả năng phớt lờ yêu cầu ngắt. Để giúp
chương trình quyết định lúc nào cho phép CPU đáp ứng ngắt, lúc
nào phớt lờ, người ta cung cấp 2 lệnh máy sau :

Cli : clear Interrupt : cấm CPU được phục vụ ngắt

Sti : set interrupt : cho phép CPU được đáp ứng ngắt.

Như vậy, nếu ta viết :

In_Control() ≡ cli
Out_Control() ≡ sti

thì tại từng thời điểm chỉ có tối đa 1 process chạy được vùng CS, vì
không có process nào khác (kể cả trình lập lịch) có thể ngắt nó tạm
thời.

3.3 Các phương pháp chờ chủ động

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 10
Chương 3 : Tương tranh giữa các process

Phương pháp dựa trên ngắt quảng rất đơn giản, hiệu quả nhưng nếu
lập trình sai thì nguy hiểm khôn lường. Thí dụ nếu ta quên viết lệnh
sti sau khi hoàn thành vùng CS thì process tương ứng sẽ tiếp tục
chạy đến hết chương trình rồi treo máy vì không process nào khác,
kể cả trình lập lịch, có thể chiếm được CPU để chạy.

Hiện nay, chỉ có HĐH mới được phép dùng phương pháp này,
chương trình ứng dụng không được phép dùng.
Hơn nữa, phương pháp dựa trên ngắt chỉ tác động trên 1 CPU, nếu
máy có nhiều CPU thì các CPU khác không bị ảnh hưởng bởi lệnh
cấm ngắt trên 1 CPU nào đó.

3.3 Các phương pháp chờ chủ động

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

6

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 11
Chương 3 : Tương tranh giữa các process

2. Phương pháp dùng biến khóa
Mỗi vùng CS được bảo vệ bởi 1 biến khóa, biến này lúc đầu = 0 để
xác định rằng chưa process nào thi hành vùng CS.

Mỗi lần muốn thi hành vùng CS, process sẽ kiểm tra biến khóa, nếu
nó = 0 thì set lên 1 và tiếp tục thi hành vùng CS đến khi hoàn thành
sẽ set lại biến khóa = 0. Trường hợp biến khóa = 1 thì phải chờ
process khác thi hành xong vùng CS.

3.3 Các phương pháp chờ chủ động

Bool process_in_CS = 0;

In_Control() {
for (;;) if (process_in_CS ==0) break;

process_in_CS = 1;
}

Out_Control() {
process_in_CS = 0;

}

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 12
Chương 3 : Tương tranh giữa các process

2. Phương pháp dùng biến khóa
Về ý tưởng thì phương pháp dùng biến khóa giải quyết tốt vấn đề
tranh chấp tài nguyên dùng chung, nhưng nếu hiện thực bằng đoạn
lệnh C như slide trước thì có thể thất bại trong 1 số tình huống.
Giả sử process P1 muốn thi hành vùng CS, nó kiểm tra biến
process_in_CS và thấy đang mở (=0). Ngay lúc này, process hết
khe thời gian, trình lập lịch dừng nó và chọn process P2 chạy tiếp,
nếu P2 cũng muốn thi hành vùng CS, nó kiểm tra biến khóa, lúc này
biến khóa vẫn = 0 nên P2 sẽ set lên 1 rồi thi hành vùng CS. Trong
lúc thi hành CS, P2 hết khe thời gian và CPU được giao lại P1. P1
chạy tiếp và cũng set biến khóa lên 1 rồi vào vùng CS. Như vậy lúc
này 2 process P1 và P2 đang tranh chấp tài nguyên dùng chung!

3.3 Các phương pháp chờ chủ động

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

7

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 13
Chương 3 : Tương tranh giữa các process

3. Phương pháp dùng lệnh TSL
Phân tích lỗi của phương pháp dùng biến khóa, ta nhận thấy nếu 2
lệnh kiểm tra biến khóa và set nó lên 1 được đảm bảo thi hành theo
cơ chế nguyên tử, không chia cắt (hoặc thực hiện cả hai, hoặc
không thi hành lệnh nào) thì lỗi của slide trước không thể xảy ra,
nghĩa là phương pháp dùng biến khóa sẽ chạy đúng.

Để đảm bảo được ý tưởng trên, về mặt phần cứng, hãng chế tạo
CPU sẽ cung cấp thêm 1 lệnh máy đặc biệt có tên là TSL (Test-and-
Set) có dạng sau :

TSL al, process_in_CS

≡
al ← process_in_CS

process_in_CS ← 1

3.3 Các phương pháp chờ chủ động

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 14
Chương 3 : Tương tranh giữa các process

3.3 Các phương pháp chờ chủ động
3. Phương pháp dùng lệnh TSL
Nhờ đặc tính của lệnh máy TSL, ta viết lại 2 hàm In_Control() và
Out_Control() của phương pháp dùng biến khóa như sau :

In_Control() {

for (;;) {
TSL al, process_in_CS;

if (al ==0) break;

}
}

Bool process_in_CS = 0;
Out_Control() {

process_in_CS = 0;

}

Phân tích đoạn code trên, ta thấy process nào thực hiện được lệnh
TSL đầu tiên thì nó đã set biến khóa lên 1 nên nếu ngay sau đó có
process khác chạy In_Control() thì phải chờ process ban đầu, chứ
không thể vào vùng CS trước được.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

8

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 15
Chương 3 : Tương tranh giữa các process

4. Phương pháp luân phiên
Ý tưởng của phương pháp này là cho các process luân phiên thi
hành vùng CS, từng thời điểm chỉ 1 process được thi hành CS.

Giả sử có N process cần thi hành CS được đánh số từ 0 đến N-1.

Tạo 1 biến "turn" chứa chỉ số process được phép thi hành CS tại
từng thời điểm. Lúc đầu turn được set = 0.

In_control (int idproc) {

while (turn != idproc) ; // chờ đến lượt mình

}
Out_control (int idproc) {

turn = (turn +1)%N; // cho process đi ngay sau mình vào
}

3.3 Các phương pháp chờ chủ động

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 16
Chương 3 : Tương tranh giữa các process

3.3 Các phương pháp chờ chủ động

4. Phương pháp luân phiên
Về lý thuyết, phương pháp luân phiên tạo được sự bình đẳng tuyệt
đối giữa các process về việc thi hành vùng CS, process nào cũng
được thi hành CS với cơ hội ngang nhau, không process nào có thể
thi hành CS nhiều lần hơn các process khác.
Tuy nhiên trong thực tế, các process thường có độ phức tạp khác
nhau, có nhu cầu chạy vùng CS rất khác nhau, process này cần
chạy CS nhiều lần, process khác chỉ cần chạy CS ít lần. Như vậy,
process cần chạy CS ít lần hơn sẽ ngăn cản process cần chạy CS
nhiều lần hơn.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

9

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 17
Chương 3 : Tương tranh giữa các process

5. Phương pháp Peterson
Để khắc phục vấn đề của phương pháp luân phiên, Peterson đã nâng cấp
thuật giải In_Control() và Out_Control() như sau :
#define FALSE 0
#define TRUE 1
#define N 2
int turn = 0; // chỉ số process được phép thi hành vùng CS
int interested[N]; // dãy ghi nhận ý muốn các process, ban đầu = 0
void In_control (int idproc) {
int other = 1 - idproc;

interested[idproc] = TRUE; // khai báo ý muốn vào CS
turn = idproc; // khẳng định ý muốn vào CS
while (interested[other]==TRUE && idproc!=turn) ; //chờ

}
void Out_control(int idproc) {

interested[idproc] = FALSE;
}

3.3 Các phương pháp chờ chủ động

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 18
Chương 3 : Tương tranh giữa các process

3.3 Các phương pháp chờ chủ động

5. Phương pháp Peterson
Phân tích hàm In_Control(), ta thấy nếu 2 process cùng muốn vào
vùng CS 1 lượt thì process nào xin vào trước sẽ thắng còn process
xin vào sau sẽ phải chờ. Hơn nữa, mỗi process có quyền vào vùng
CS mà không cần chờ đến lượt mình như trước đây.

Lưu ý đoạn code ở slide trước chỉ đúng cho trường hợp 2 process.
Nếu có nhiều process cần truy xuất vùng CS, ta phải hiệu chỉnh lại
đoạn code phức tạp hơn nhiều mới giải quyết được vấn đề.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

10

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 19
Chương 3 : Tương tranh giữa các process

3.4 Đồng bộ các process : Bài toán Sản xuất-Tiêu dùng

Trong hệ thống có 2 loại phần tử :

Sản xuất chuyên tạo sản phẩm mới và để vào kho chứa.

Tiêu dùng chuyên lấy sản phẩm từ kho chứa ra để sử dụng.

Bài toán Sản xuất -Tiêu dùng trên có 2 vấn đề cần giải quyết :

làm sao để phần tử Sản xuất và Tiêu dùng không được tranh
chấp nhau khi truy xuất kho chứa sản phẩm.

làm sao để đồng bộ tốc độ thi hành của 2 phần tử để chúng
có thể hoạt động tốt theo thời gian, không gây khủng hoảng
thừa hay khủng hoảng thiếu.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 20
Chương 3 : Tương tranh giữa các process

Ý tưởng giải quyết Bài toán Sản xuất -Tiêu dùng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

11

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 21
Chương 3 : Tương tranh giữa các process

Ý tưởng giải quyết Bài toán Sản xuất -Tiêu dùng

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 22
Chương 3 : Tương tranh giữa các process

Ý tưởng giải quyết Bài toán Sản xuất -Tiêu dùng

Ý tưởng của đoạn code trong 2 slide trước là :

kiểm tra điều kiện chạy tiếp cho process Sản xuất và Tiêu
dùng. Nếu không thể chạy tiếp (kho đầy/rỗng) thì gọi hàm
sleep() để dừng chạy đến lúc được process khác đánh thức.
Khi cần thiết, process sẽ gọi hàm wakeup() để đánh thức
dùm process khác dậy để nó tiếp tục chạy từ lúc ngủ trước
đây.

Mặc dù ý tưởng trên giải quyết được vấn đề đồng bộ giữa các
process, nhưng nếu lập trình bằng ngôn ngữ C như slide trước thì có
thể gây lỗi.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 23
Chương 3 : Tương tranh giữa các process

Ý tưởng giải quyết Bài toán Sản xuất -Tiêu dùng

Cụ thể nếu Producer kiểm tra kho chứa đầy, tính gọi hàm sleep() để
ngủ thì hết khe thời gian chạy. Trình lập lịch sẽ dừng tạm Producer,
chọn Consumer chạy. Consumer kiểm tra kho chứa, lấy được sản
phẩm và đánh thức Producer dậy. Tuy nhiên việc đánh thức này
không có giá trị vì Producer chứa ngủ.

Sau đó producer chạy tiếp, nó sẽ gọi sleep() để ngủ và sẽ không
bao giờ thức dậy vì consumer không bao giờ đánh thức nó nữa.

Riêng Consumer chạy tiếp và theo thời gian, nó sẽ lấy hết sản phẩm
trong kho chứa, khi đó nó sẽ gọi sleep() để ngủ chờ Producer đánh
thức nhưng sẽ không bao giờ thức dậy được vì Producer cũng đã và
đang ngủ như Consumer. Hiện tượng này được gọi là Deadlock và
ta sẽ giới thiệu các phương pháp khác nhau để giải quyết trong
chương 4.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 24
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

1. Phương pháp dùng Semaphore
Semaphore là đối tượng được cung cấp sẵn bởi hệ thống, đối tượng
này gồm :

1 thuộc tính chứa giá trị nguyên dương, ta gọi là biến semaphore s.

hàm down(s) có chức năng giảm s 1 đơn vị, nếu giảm không được thì
phải chờ đến khi có điều kiện giảm được thì làm lại. Thời gian thực
hiện hàm down có thể rất dài, nhưng các process khác không thể
thấy được trạng thái trung gian của hàm down này. Nói cách khác
việc thi hành hàm down có tính nguyên tử, không chia cắt được.

hàm up(s) có chức năng tăng s 1 đơn vị, nếu sau khi tăng mà s = 1 thì
phải đánh thức các process đang ngủ vì đã thực hiện down(s) trước
đây mà chưa được. Thời gian thực hiện hàm up rất nhanh, việc thi
hành hàm up cũng có tính nguyên tử, không chia cắt được.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

13

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 25
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

Ta có thể dùng Semaphore để giải quyết tương tranh giữa nhiều process
như sau :

kết hợp 1 semaphore nhị phân với vùng CS tương ứng. Semaphore
này sẽ được gán trị đầu là 1 và sau này nó chỉ có thể chứa 2 trị : hoặc
0 hoặc 1. Ta gọi semaphore này là semaphore nhị phân.

hàm In_Control() để kiểm soát vào vùng CS của process sẽ là lời gọi
hàm down (s).

hàm Out_Control() để kiểm soát ra vùng CS của process sẽ là lời gọi
hàm up (s).

Như vậy, tại 1 thời điểm chỉ có 1 process down(s) được và vào vùng CS,
các process khác nếu down(s) đều bị thất bại và phải ngủ chờ. Khi
process đầu tiên thực hiện xong CS, nó thực hiện up(s) và sẽ đánh thức
các process ngủ dậy. Trong các process dậy này, chỉ có 1 process thực
hiện thành công lệnh down(s) để vào vùng CS...

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 26
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup
//dùng Semaphore giải quyết bài toán Sản xuất — Tiêu dùng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

14

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 27
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup
//dùng Semaphore giải quyết bài toán Sản xuất — Tiêu dùng

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 28
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

Phân tích code dùng semaphore để giải quyết đồng thời 2 vấn đề
tương tranh và đồng bộ process trong bài toán Sản xuất — Tiêu dùng
trong slide trước, ta thấy việc dùng semaphore khá gọn nhẹ và hiệu
quả. Tuy nhiên khuyết điểm của việc dùng semaphore là độ an toàn
không cao. Cụ thể nếu ta hoán vị 2 lệnh down(&full) và
down(&mutex) trong process Consumer thì dễ dẫn đến deadlock vì
khi hết sản phẩm trong kho chứa, Consumer tới sẽ khóa kho trước
rồi mới kiểm tra kho chứa, lúc này kho chứa rỗng nên Consumer sẽ
dừng chờ Producer đánh thức, tuy nhiên Producer sẽ phải ngủ chờ
Consumer mở kho chứa → Producer và Consumer đã ngủ chờ nhau
và cả 2 sẽ ngủ mãi, đây là hiện tượng deadlock mà ta sẽ trình bày
trong chương 4.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

15

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 29
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

2. Phương pháp dùng Monitor
Monitor là đối tượng được cung cấp
sẵn bởi hệ thống. Về cấu trúc,
monitor cũng gồm nhiều thuộc tính
dữ liệu và nhiều tác vụ chức năng :

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 30
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

Sự khác biệt giữa Monitor và 1 đối tượng (module phần mềm) bình thường
được thể hiện bởi 2 tính chất sau :

1. trong monitor, ta có thể định nghĩa nhiều biến điều kiện. Biến điều kiện
chỉ có tên, không có kiểu và không có giá trị nên ta không dùng nó
như biến bình thường. Chỉ có 2 tác vụ định sẵn có thể truy xuất biến
điều kiện :

- hàm wait(cond) : bắt process ngủ chờ trên biến điều kiện cond.

- hàm signal(cond) : đánh thức các process đang ngủ chờ trên biến
cond.

2. Về mặt điều khiển, Monitor chỉ cho phép tối đa 1 process được vào thi
hành 1 tác vụ nào đó của Monitor tại từng thời điểm. Nhờ tính chất
này, ta dễ dàng giải quyết việc loại trừ tương hỗ giữa các process khi
chúng truy xuất đồng thời 1 tài nguyên dùng chung nào đó bằng cách
đặt mỗi đoạn CS vào 1 tác vụ riêng và đặt tất cả các tác vụ này trong
một Monitor nào đó.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

16

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 31
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup
//dùng Monitor giải quyết bài toán Sản xuất — Tiêu dùng

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 32
Chương 3 : Tương tranh giữa các process

Code Java dùng Monitor hiện thực bài toán Sản xuất-Tiêu dùng
//đặc tả class ứng dụng demo bài toán Sản xuất — Tiêu dùng
public class ProducerConsumer {

static final int N = 100; //kích thước kho chứa
 static producer p = new producer(); //đối tượng thread producer
 static producer c = new consumer(); //đối tượng thread consumer
 static ourMonitor mon = new ourMonitor(); //đối tượng monitor
 //điểm nhập ứng dụng demo

public static void main(String args[]) {
p.start(); //khởi động thread Producer
c.start(); //khởi động thread Consumer

}
//(xem tiếp slide kế)

3.5 Các phương pháp sleep/wakeup

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

17

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 33
Chương 3 : Tương tranh giữa các process

Code Java dùng Monitor hiện thực bài toán Sản xuất-Tiêu dùng
 //class đặc tả thread Producer

static class producer extends Thread {
public void run() {
int item;

while (true) {
item = produce_item();
mon.insert (item);

}
}
priavte int produce_item () {...}

}

3.5 Các phương pháp sleep/wakeup

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 34
Chương 3 : Tương tranh giữa các process

Code Java dùng Monitor hiện thực bài toán Sản xuất-Tiêu dùng
//class đặc tả thread Consumer
static class consumer extends Thread {

public void run() {
int item;

while (true) {
item = mon.remove();
consume_item(item);

}
}
priavte void consume_item (int item) {...}

}

3.5 Các phương pháp sleep/wakeup

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

18

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 35
Chương 3 : Tương tranh giữa các process

Code Java dùng Monitor hiện thực bài toán Sản xuất-Tiêu dùng
//class đặc tả Monitor
static class our_monitor {

private int buffer[] = new int[N]; // kho chứa
private int count = 0, lo = 0, hi = 0; //các biến quản lý kho chứa

//hàm thêm sản phẩm vào kho chứa
public synchronized vois insert (int val) {

if (count == N) goto_sleep(); //nếu kho đầy thì ngủ
 buffer[hi] = val; // để sản phầm vào vị trí
 hi = (hi+1) % N; //tăng vị trí để sản phẩm
 count = count +1; //tăng counter sản phẩm
 if (count == 1) notify(); //đánh thức consumer nếu cần

}

3.5 Các phương pháp sleep/wakeup

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 36
Chương 3 : Tương tranh giữa các process

Code Java dùng Monitor hiện thực bài toán Sản xuất-Tiêu dùng
//hàm lấy sản phẩm từ kho chứa
public synchronized int remove () {
int val;

if (count == 0) goto_sleep(); //nếu kho hết thì ngủ
val = buffer[lo]; // lấy sản phầm từ vị trí

 lo = (lo+1) % N; //tăng vị trí lấy sản phẩm
count = count - 1; //giảm counter sản phẩm

 if (count == N-1) notify(); //đánh thức producer nếu cần
return val;

}
private void goto_sleep () {
try { wait();
} catch (InterruptedException exc) {}

}
}

3.5 Các phương pháp sleep/wakeup

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

19

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 37
Chương 3 : Tương tranh giữa các process

3.5 Các phương pháp sleep/wakeup

3. Phương pháp gởi/nhận thông báo
Hệ thống cung cấp 2 hàm chức năng :

send (proc_id, message) cho phép gởi 1 chuỗi byte tới prcoess
proc_id.

receive (proc_id, message) cho phép chờ nhận chuỗi byte từ
process proc_id gởi tới.

Đoạn code C sau sẽ giải quyết bài toán Sản xuất — Tiêu dùng dùng
phương pháp gởi/nhận thông báo.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 38
Chương 3 : Tương tranh giữa các process

3. Phương pháp gởi/nhận thông báo
//Code C hiện thực bài toán Sản xuất-Tiêu dùng
#define N 100
void Producer(void) {
int item;
message m;

while (TRUE) {
item = produce_item(); //tạo sản phầm mới
receive(consumer, &m); //chờ nhận yêu cầu từ consumer
build_message(&m, tiem); //xây dựng thông báo chứa sản phẩm
send(consumer, &m); //gởi đến consumer

}
}

3.5 Các phương pháp sleep/wakeup

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

20

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 39
Chương 3 : Tương tranh giữa các process

3. Phương pháp gởi/nhận thông báo
//Code C hiện thực bài toán Sản xuất-Tiêu dùng
#define N 100
void Consumer(void) {
int item;
message m;

//gởi n yêu cầu sản xuất tới Producer
for (i = 0; i <N; i++)

send (producer, &m);
while (TRUE) {

receive(producer, &m); //chờ nhận sản phầm từ consumer
item = extract_item(&m); //rút trích sản phầm mới từ thông báo
send(producer, &m); //gởi yêu cầu mới đến producer
consume_item(&tiem); //tiêu dùng sản phẩm

}
}

3.5 Các phương pháp sleep/wakeup

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 40
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

1. Bài toán 5 SV ăn cơm :
1. bàn ăn có 5 chén cơm

dành cho 5 SV, đánh số
thứ tự từ 0 - 4.

2. do thiếu đủa, chỉ có 5 chiếc
được để xen kẻ giữa các
chén cơm, đánh số thứ tự
từ 0 -4.

3. mỗi SV ăn cơm cần 1 đôi
đủa. Vì lịch sự, mỗi SV chỉ
được phép lấy 2 chiếc kề
chén cơm của mình (chiếc
bên trái và chiếc bên phải).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

21

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 41
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

1. Bài toán 5 SV ăn cơm :
4. hãy tìm qui trình ăn cơm

cho mỗi SV sao cho các
điều kiện sau được thỏa :
- các SV ăn cơm được

càng đồng thời càng tốt
(hiệu quả nhất).

- các SV không được
tranh chấp nhau trong
việc lấy đôi đủa.

- các SV không bị
deadlock trong quá
trình chờ lấy đủa.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 42
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

1. Bài toán 5 SV ăn cơm :
Phân tích hoạt động ăn cơm của SV :

- quá trình ăn cơm không đòi hỏi phải sở hữu liên tục đôi đủa.
- quá trình ăn cơm là hoạt động lặp, mỗi chu kỳ gồm 3 công đoạn :

1. đang nhai cơm hay nói chuyện. (THINKING)

2. cố gắng chiếm hữu đôi đủa. (HUNGRY)
3. và cơm và gắp thức ăn rồi để đủa xuống bàn. (EATING)

- trong đó công đoạn 1 tốn nhiều thời gian nhất nhưng may mắn là
trong công đoạn này, SV không cần đủa (tài nguyên). Còn bước
2 và 3 thì rất ngắn và cần loại trừ tương hỗ giữa các SV.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

22

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 43
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

1. Bài toán 5 SV ăn cơm :
Phát họa qui trình ăn cơm cho mỗi SV :
#define N 5
void Sinhvien (int i) {
 while (còn cơm) {
 think(); //công đoạn 1
 take_fork(i); //công đoạn 2, có thể bị kẹt 1 thời gian

take_fork((i+1)%N);
 eat();
 put_fork(i); //công đoạn 3 thường rất nhanh

put_fork((i+1)%N);
}

}
Qui trình ăn ở trên dễ bị deadlock, thí dụ như 5 SV đều thực hiện lệnh
take_fork(i); đồng thời và đều thành công. Bây giờ họ thực hiện tiếp lệnh kế
thì tất cả đều bị dừng chờ mãi mãi vì không còn đủa trên bàn.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 44
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

1. Bài toán 5 SV ăn cơm :
//thuật giải cải tiến để tránh deadlock :
#define N 5
void Sinhvien (int i) {
 while (còn cơm) {
 think(); //công đoạn 1
L1: take_fork(i);

if (!asyn_take_fork((i+1)%5)) { //thất bại
 put_fork(i); sleep(random()); goto L1; //công đoạn 2
 }
 eat(); //công đoạn 3

...
}

}
Qui trình ăn ở trên tránh được deadlock, nhưng còn dựa vào yếu tố ngẫu
nhiên nên chưa hiệu quả triệt để.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

23

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 45
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
//thuật giải dùng semaphore để giải quyết tranh chấp và đồng bộ :
#define N 5
#define LEFT (i-1)%N
#define RIGHT (i+1)%N
#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef unsigned int semaphore;
int state[N];
semaphore mutex = 1;
semaphore s[N];
void Sinhvien (int i) {
 while (còn cơm) {
 think(); //công đoạn 1
 take_forks(i); //công đoạn 2, có thể bị kẹt 1 thời gian
 eat(); put_forks(i); //công đoạn 3

}
}

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 46
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
//thuật giải dùng semaphore để giải quyết tranh chấp và đồng bộ :
void take_forks(int i) {
 down(&mutex); //đảm bảo 0 tranh chấp khi lấy đủa

state[i] = HUNGRY; //ghi nhận trạng thái đang cố gắng lấy đủa
test(i); //kiểm tra lấy được không ? nếu được s[i] → 1

 up(&mutex); //đánh thức các SV khác để họ truy xuất đủa
down(&s[i]); //cố gắng và cơm & gắp thức ăn, có thể bị kẹt

}

void test (int i) {
if (state[i] == HUNGRY //SV i muốn lấy đủa

&& state[LEFT] != EATING //SV bên trái chưa lấy
&& state[RIGHT] != EATING) { //SV bên phải chưa lấy
state[i] = EATING; //ghi nhận SV i đã lấy được đủa

 up(&s[i]); //tăng s[i] → 1
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

24

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 47
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
//thuật giải dùng semaphore để giải quyết tranh chấp và đồng bộ :
void put_forks (int i) {
 down(&mutex); //đảm bảo 0 tranh chấp khi lấy đủa

state[i] = THINKING; //ghi nhận trạng thái không dùng đủa
test(LEFT); //kiểm tra lấy được không ? nếu được đánh thức

//SV LEFT dậy để và cơm và gắp thức ăn
test(RIGHT); //kiểm tra lấy được không ? nếu được đánh thức

//SV RIGHT dậy để và cơm và gắp thức ăn
 up(&mutex); //đánh thức các SV khác để họ truy xuất đủa
}

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 48
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

2. Bài toán đọc/ghi database :
1. có nhiều process cần đọc/ghi database.

2. làm sao cho việc đọc/ghi database của các process thỏa các
điều kiện sau :

không tranh chấp nhau và không làm hỏng dữ liệu.

việc truy xuất database hiệu quả cao nhất.
Cách giải quyết đơn giản nhất :

1. xem toàn bộ database như 1 tài nguyên dùng chung, dùng 1
semaphore nhị phân db để bảo vệ nó.

2. bất kỳ process đọc/ghi database nào cũng phải down(db) trước
khi truy xuất database và up(db) sau khi hoàn tất việc truy xuất
database.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

25

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 49
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
2. Bài toán đọc/ghi database :

semaphore db = 1;
void Reader (void) {

while (cần đọc datbase) {
 down(&db); //đảm bảo 0 tranh chấp
 read_database(); //đọc database
 up(&db); //đánh thức các process khác dậy

use_database((); //dùng kết quả đọc được
}

}
void Writer (void) {

while (cần ghi database) {
prepare_data(); //chuẩn bị dữ liệu để ghi

 down(&db); //đảm bảo 0 tranh chấp
write_database(); //ghi lên database

 up(&db); //đánh thức các process khác dậy
}

}

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 50
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
2. Bài toán đọc/ghi database :
Thuật giải cho Reader ở slide trước còn kém hiệu quả, vì các process
Reader phải loại trừ tương hỗ trong việc đọc database. Thực tế, việc đọc
đồng thời database không làm hư database nên cần cho phép các Reader
cùng đọc. Giải thuật Reader có thể hiệu chỉnh thành :

semaphore db = 1, mutex = 1; int rc = 0;
void Reader (void) {

while (cần đọc datbase) {
 down(&mutex); //đảm bảo 0 tranh chấp

if (++rc == 1) down(&db); //nếu là reader đầu tiên thì loại trừ với WR
up(&mutex); //cho phép các process khác truy xuất rc

 read_database(); //đọc database
 down(&mutex); //đảm bảo 0 tranh chấp

if (--rc == 0) up(&db); //nếu là reader cuối thì cho phép writer
up(&mutex); //cho phép các process khác truy xuất rc
use_database(); //dùng kết quả đọc được

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

26

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 51
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển

3. Bài toán ở tiệm hớt tóc :
1. tiệm chỉ có 1 ghế hớt và 1 thợ cắt.
2. tiệm có hàng ghế chờ N ghế. Tìm qui trình làm việc của thợ và khách

trong tiệm sao cho các điều kiện sau đây được thỏa :
không tranh chấp nhau về việc ngồi ghế chờ và ghế cắt.
ít tốn năng lượng (ít thao tác thừa) nhất.

Phân tích :
1. Tiệm có lúc vắng, lúc nhiều khách. Thợ nên ngủ khi không có khách.

Nếu được đánh thức, thợ sẽ mời từng khách đến ghế cắt và cắt tóc cho
khách cho đến khi hết khách, thợ lại tiếp tục ngủ.

2. khi đến tiệm, nếu thấy còn ghế chờ, khách sẽ ngồi vào 1 ghế, đánh
thức thợ rồi ngủ ngay. Khi nào thợ đánh thức và mời đến ghế cắt thì
khách thức dậy và đến ngồi vào ghế cắt rồi ngủ chờ thợ cắt xong, trả
tiền và ra về.

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 52
Chương 3 : Tương tranh giữa các process

3.6 Các bài toán IPC kinh điển
3. Bài toán ở tiệm hớt tóc :
//thuật giải cho thợ dùng semaphore

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1; int waiting = 0;
void Barber (void) {

while (còn làm việc) {
down(&customers); //nếu 0 có khách, ngủ chờ

 down(&mutex); //đảm bảo 0 tranh chấp
waiting--; //giảm số lượng khách chờ 1 đơn vị

 up(&barbers); //đánh thức 1 khách và mời họ cắt tóc
up(&mutex); //cho phép các process khác truy xuất waiting
cut_hair(); //cắt tóc cho khách

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

27

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ điều hành

Slide 53
Chương 3 : Tương tranh giữa các process

Các bài toán IPC kinh điển
3. Bài toán ở tiệm hớt tóc :
//thuật giải cho khách dùng semaphore

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1; int waiting = 0;
void Customer (void) {
 down(&mutex); //đảm bảo 0 tranh chấp

if (waiting<CHAIRS) { //nếu còn ghế chờ
 waiting++; //tăng waiting 1 đơn vị
 up(&customers); //đánh thức thợ dậy

up(&mutex); //cho phép các process khác truy xuất waiting
down(&barbers); //ngủ chờ thợ

 get_haircut(); //đến ghế cắt cho thợ cắt tóc
} else up(&mutex);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

