
Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 1
Chương 4 : Deadlockvà xử lý

MÔN HỆ ĐIỀU HÀNH

Chương 4

DEADLOCK &XỬ

LÝ

4.1 Định nghĩa deadlock
4.2 Bốn ₫iều kiện cần và ₫ủ ₫ể

gây ra deadlock

4.3 Bốn chiến lược giải quyết deadlock
4.4 Chiến lược phát hiện & chữa trị

deadlock

4.5 Chiến lược né

tránh deadlock

4.6 Chiến lược phòng ngừa deadlock

Tài liệu tham khảo : chương 2, sách "Modern Operating Systems",
Andrew S. Tanenbaum: , 2nd ed, Prentice Hall

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 2
Chương 4 : Deadlockvà xử lý

4.1 Định nghĩa deadlock

Deadlock là trạng thái của hệ thống mà ở ₫ó có ít nhất 2
process ₫ang dừng chờ lẫn nhau và như thế chúng không thể
chạy tiếp ₫ược.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 3
Chương 4 : Deadlockvà xử lý

4.2 Bốn ₫iều kiện cần và ₫ủ ₫ể

gây ra deadlock

1.

Loại trừ tương hỗ ₫oạn code CS truy xuất tài nguyên dùng
chung của các process chạy ₫ồng thời.

2.

Process giữ

tài nguyên cũ ₫ang chiếm dụng trong khi cố

 gắng xin thêm tài nguyên mới.
3.

Hệ

thống có

dùng tài nguyên “non-preemptive”, là

loại tài

nguyên mà sau khi ₫ã giao cho 1 process nào ₫ó truy xuất,
hệ

thống không ₫ược quyền lấy lại tạm thời ₫ể

cho process

khác truy xuất.
4.

Đã xuất hiện vòng khép kín giữa các process chờ

nhau.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 4
Chương 4 : Deadlockvà xử lý

4.3 Bốn chiến lược giải quyết deadlock

1.

Phớt lờ

: không làm gì

cả

vì

hy vọng hệ

thống sẽ

không có

 deadlock Nếu hệ thống có deadlock thì chịu chết!!.
2.

Phát hiện và

chữa trị

deadlock (Dectection & Recovery) : cứ ₫ể

 hệ

thống hoạt ₫ộng tự do, theo ₫ịnh kỳ

hay khi hệ

thống rãnh,

máy sẽ

kiểm tra ₫ể

phát hiện có

deadlock không ? Nếu không thì

 thôi, nếu có

thì

tìm cách chữa trị

sao cho hệ

thống hết bị

 deadlock và

làm việc bình thường trở

lại.

3.

Né

tránh deadlock (Deadlock Avoidance) : mỗi khi sắp cấp phát

tài nguyên cho process, máy kiểm tra cẩn thận xem có

dẫn ₫ến

deadlock không ? Nếu không thì

cấp phát bình thường, còn nếu

có nguy cơ deadlock thì

trì

hoãn việc cấp phát ₫ể

né

tránh

deadlock có

thể

xảy ra.

4.

Phòng ngừa deadlock (deadlock prevention) : hệ

thống sẽ

dùng 1

tập các nguyên tắc rất nghiêm khắc trong việc cấp phát tài
nguyên cho các process sao cho deadlock không thể

xảy ra.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 5
Chương 4 : Deadlockvà xử lý

4.4 Chiến lược phát hiện & chữa trị

deadlock

1.

Giải thuật ₫ơn giản cho hệ

thống mà

mỗi loại tài nguyên chỉ

có

tối

₫a 1 tài nguyên (hệ

thống có 1 CPU, 1 ₫ĩa cứng, 1 máy in, 1

scanner,...).
2.

Giải thuật tổng quát cho hệ

thống mà

mỗi loại tài nguyên có

thể

 có

nhiều tài nguyên (hệ

thống có 8 CPU, 4 ₫ĩa cứng, 5 máy in, 3

scanner,...)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 6
Chương 4 : Deadlockvà xử lý

Nếu mỗi loại tài nguyên chỉ có tối ₫a 1 tài nguyên thì khi 1
process Pi nào ₫ó ₫ang chiếm giữ tài nguyên Rj thì không có
process nào khác có thể truy xuất Rj nữa (nguyên tắc loại trừ
tương hỗ). Như vậy, nếu process Pj cần truy xuất Rj, nó buộc phải
dừng chờ process Pi trả tài nguyên Rj, ta nói trong trường hợp
này, Pj phụ thuộc Pi.
Ý tưởng cơ bản của giải thuật phát hiện deadlock ₫ơn giản là hệ
thống sẽ xây dựng và quản lý ₫ồ thị miêu tả sự phụ thuộc giữa
các process theo thời gian. Đồ thị này có các thành phần sau :
mỗi process hay mỗi tài nguyên là 1 nút của ₫ồ thị, cung có
hướng từ nút i ₫ến j miêu tả phần tử i phụ thuộc phần tử j.

Giải thuật phát hiện deadlock ₫ơn giản

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 7
Chương 4 : Deadlockvà xử lý

Giải thuật phát hiện deadlock ₫ơn giản

Tài nguyên R1
₫ang bị

P1 truy
xuất (chiếm giữ)

Process P2 ₫ang dừng chờ

tài
nguyên R2 (₫ang bị

chiếm giữ

 bởi process khác)

P1

R1

P2

R2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 8
Chương 4 : Deadlockvà xử lý

Giải thuật phát hiện deadlock ₫ơn giản
Thí dụ có 2 process P1 và P2 ₫ang chạy, theo giải thuật process
P1 sẽ truy xuất tài nguyên R1 rồi R2, trong khi ₫ó process P2 sẽ
truy xuất R2 rồi R1 với tiến ₫ộ thời gian cụ thể như sau :

tại t1 : process P1 xin truy xuất R1 ⇒ OK ⇒ hệ thống vẽ 1 cung
từ R1 tới P1 và cho P1 chạy tiếp.
tại t2 : process P2 xin truy xuất R2 ⇒ OK ⇒ hệ thống vẽ 1 cung
từ R2 tới P2 và cho P2 chạy tiếp.
tại t3 : process P1 xin truy xuất R2 (₫ang bị P2 chiếm giữ) ⇒ hệ
thống vẽ 1 cung từ P1 tới R2 và bắt P1 dừng ₫ợi process P2.
tại t4 : process P2 xin truy xuất R1 (₫ang bị P1 chiếm giữ) ⇒ hệ
thống vẽ 1 cung từ P2 tới R1 và bắt P2 dừng ₫ợi process P1.
từ t4 trở ₫i : ₫ã xuất hiện vòng kép kín chứa 2 process P1 và P2 ⇒
2 process P1 và P2 ₫ều bị dừng vì phải chờ lẫn nhau và chúng
không bao giờ chạy ₫ược nữa ⇒ deadlock.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 9
Chương 4 : Deadlockvà xử lý

Giải thuật phát hiện deadlock ₫ơn giản

P1

P2

R1 R2

t1

t2

t3

t4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 10
Chương 4 : Deadlockvà xử lý

Trạng thái sử

dụng các tài nguyên của các process tại từng thời

₫iểm ₫ược xác ₫ịnh bởi 4 thông số sau ₫ây :
vector miêu tả số lượng tài nguyên tổng thể ₫ã ₫ược gắn vào máy
E(E1, E2,...,Em), trong ₫ó Ei là số lượng tài nguyên loại i mà hệ
thống ₫ược trang bị. Như vậy vector E là hằng số trong lúc hệ
thống hoạt ₫ộng (ta không ₫ược phép gắn/gở tài nguyên trong lúc
máy ₫ang vận hành).

vector miêu tả số lượng tài nguyên chưa dùng (₫ang rãnh) A(A1,
A2,...,Am), trong ₫ó Ai là số lượng tài nguyên loại i còn ₫ang rãnh.
Như vậy, vector A ≤ E theo nghĩa ∀j, Aj ≤ Ej.

4.5 Giải thuật phát hiện deadlock tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 11
Chương 4 : Deadlockvà xử lý

ma trận C miêu tả số lượng tài nguyên thuộc từng loại ₫ã ₫ược cấp
phát cho các process (giả sử có n process và m loại tài nguyên
khác nhau) :

4.5 Giải thuật phát hiện deadlock tổng quát

C11 C12 C13 ... C1m

C21 C22 C23 ... C2m

.

.
.
.

.

.
.
.

.

.

Cn1 Cn2 Cn3 ... Cnm

Phần tử

Cij miêu tả

số lượng tài nguyên loại j ₫ang bị

process i

chiếm giữ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 12
Chương 4 : Deadlockvà xử lý

ma trận R miêu tả số lượng tài nguyên thuộc từng loại ₫ang ₫ược
các process xin thêm nhưng chưa ₫ược cấp phát (vì chưa có
sẵn!) :

4.5 Giải thuật phát hiện deadlock tổng quát

R11 R12 R13 ... R1m

R21 R22 R23 ... R2m

.

.
.
.

.

.
.
.

.

.

Rn1 Rn2 Rn3 ... Rnm

Phần tử

Rij miêu tả

số lượng tài nguyên loại j ₫ang ₫ược

process i xin thêm nhưng chưa ₫ược cấp phát.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 13
Chương 4 : Deadlockvà xử lý

Ej = Aj + ∑
=

n

1i
ijC

4.5 Giải thuật phát hiện deadlock tổng quát

Số

tài nguyên

tổng thể

loại j

Số

tài nguyên

loại j còn rãnh

Tổng Số

tài nguyên

loại j ₫ang bị

n process

chiếm giữ
= +

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 14
Chương 4 : Deadlockvà xử lý

BOOL deadlock[n]; // = 0 : chua deadlock, = 1 : bi deadlock

int E[m]; // bản sao vector E của hệ

thống

Int A[m];

// bản sao vector A của hệ

thống

int C[n][m];

// bản sao vector E của hệ

thống

int R[n][m];

// bản sao vector E của hệ

thống

4.5 Giải thuật phát hiện deadlock tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 15
Chương 4 : Deadlockvà xử lý

// dung timer ₫ịnh ky tao ngăt ₫ø̉

chay thu tuc nay

void Deadlock_Detection(void) {
int i;

//1. khơi ₫úng cac process ₫ø̀u bị deadlock
for (i=0; i<n; i++) deadlock[i] = 1;
//2. Lặp těm process i chay ₫ươc
while (i=FindProcess()) >=0) { // co

process chay ₫ươc

deadlock[i] = 0;
for (j = 0; j<m;j++) A[j] += C[i][j];

}
//3. kiø̉m tra co

deadlock khúng

for (i=0; i<n,i++) if (deadlock[i] ==1) break;
if (i>=n) return; // khúng co deadlock
// co

deadlock, giai quyǿt

....
}

4.5 Giải thuật phát hiện deadlock tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 16
Chương 4 : Deadlockvà xử lý

// Těm 1 process co thø̉ chay ₫ươc
int FindProcess(void) {

for (i=0; i<n;i++)
if (deadlock[i]==1 && lessequal(R,i,A)) return i;

// khúng těm ₫ươc process co thø̉ chay tiǿp
return -1;

}

// Kiø̉m tra hang i cua ma trön C co

nho hơn hay băng vector A

BOOL lessequal(C,i,A) {
for (j=0;j<m;j++) if (C[i][j] > A[j]) return FALSE;
return TRUE;

}

4.5 Giải thuật phát hiện deadlock tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 17
Chương 4 : Deadlockvà xử lý

Chữa trị

deadlock :

dùng cơ chề "Preemption" tài nguyãn có liên quan : không
tổng quát vì không khả thi nếu tài nguyêôn liên quan là tài
nguyên dạng “non-preemptive”.

giết 1 hay n process rồi cho chúng chạy lại từ ₫ầu : chọn
process nào ₫ể giết? Giết process sẽ làm mất tính nhất quán
dữ liệu (vì bị process hiệu chỉnh 1 phần rồi).

rollback process về checkpoint thích hợp : tốn bộ nhớ lưu trữ
trạng thái process ở những checkpoint.

4.5 Giải thuật phát hiện deadlock tổng quát

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 18
Chương 4 : Deadlockvà xử lý

4.6 Chiến lược né

tránh deadlock

Né

tránh deadlock :

₫ể hệ thống hoạt ₫ộng tự do, chỉ khi cần cấp phát tài nguyên
cho process thì phải cẩn thận : tiên tri xem nếu cấp phát thì có
dẫn hệ thống ₫ến deadlock không ? Nếu có thì không cấp phát
(cho process xin cấp phát ngủ chờ), nều không thì cấp phát tài
nguyên bình thường.

Trạng thái an toàn là trạng thái mà ở ₫ó chưa có deadlock và
tồn tại ít nhất 1khả năng chạy các process sao cho chúng hoàn
tất chức năng. Ngược lại ta nói hệ thống ₫ang ở trạng thái không
an toàn.

Như vậy, trạng thái bắt ₫ầu của hệ thống (E0,A0,C0,R0) là trạng
thái an ntoàn.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 19
Chương 4 : Deadlockvà xử lý

4.6 Chiến lược né

tránh deadlock

Nếu hệ thống ₫ang ở trạng thái an toàn (Ei,Ai,Ci,Ri), nếu có
process giải phóng tài nguyên thì hệ thống sẽ chuyển ₫ến trạng
thái (Ei+1,Ai+1,Ci+1,Ri+1), an toàn hơn ⇒ không cần kiểm tra
trường hợp này.

Nếu hệ thống ₫ang ở trạng thái an toàn (Ei,Ai,Ci,Ri), nếu có
process xin cấp phát tài nguyên thì hệ thống sẽ chuyển ₫ến
trạng thái (Ei+1,Ai+1,Ci+1,Ri+1), trạng thái này có thể an toàn
hoặc không an toàn ⇒ cần kiểm tra cẩn thận trường hợp này :
dùng thuật giải phát hiện deadlock trên trạng thái
(Ei+1,Ai+1,Ci+1,Ri+1) xem có bị deadlock không? Nếu có thì
không cấp phát (cho process xin cấp phát ngủ chờ), nếu không
thì cấp phát tài nguyên bình thường.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 20
Chương 4 : Deadlockvà xử lý

4.7 Chiến lược ₫ề

phòng deadlock

Tìm cách cấp phát tài nguyên sao cho về

nguyên tắc không thể

gây

ra deadlock về

sau :

Ngừa nguyên nhân 1 : ₫ừng tạo cơ hội cho các process phải
loại trừ tương hỗ lẫn nhau khi thi hành ₫oạn code CS truy xuất
tài nguyên dùng chung, thí dụ dùng kỹ thuật 'Spooling' máy in.
Kỹ thuật này không có tính tổng quát cao vì không thích hợp
cho mọi tài nguyên.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 21
Chương 4 : Deadlockvà xử lý

4.7 Chiến lược ₫ề

phòng deadlock

Ngừa nguyên nhân 2 : ₫ừng ₫ể

process giữ

tài nguyên cũ (₫ang

chiếm giữ) khi xin và

chờ

tài nguyên mới :

cho mỗi process dùng ₫úng 1 tài nguyên, như vậy nếu process
₫ang xin tài nguyên mà chưa cấp phát thì không process nào
chờ nó cả, còn nếu process ₫ã ₫ược cấp phát tài nguyên, nó
không ₫ược xin thêm nên không thể chờ process khác ₫ược.
cho mỗi process dùng tự do n tài nguyên, nhưng phải xin toàn
bộ 1 lần, không ₫ược xin nhiều lần ⇒ cũng không gây ra việc
các process chờ vòng lẫn nhau.
cho mỗi process dùng tự do n tài nguyên và ₫ược phép xin nhiều
lần theo yêu cầu của thuật giải riêng, nhưng mỗi lần xin tài
nguyên mới, process phải trả lại tất cả các tài nguyên ₫ang
chiếm giữ rồi xin lại cùng với tài nguyên mới ⇒ cũng không gây
ra việc các process chờ vòng lẫn nhau.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Khoa Công nghệ Thông tin
Trường ĐH Bách Khoa Tp.HCM

Môn : Hệ ₫iều hành

Slide 22
Chương 4 : Deadlockvà xử lý

4.7 Chiến lược ₫ề

phòng deadlock

Ngừa nguyên nhân 3 : ₫ừng sử dụng tài nguyên dạng "No
preemptive" ⇒ không khả thi.
Ngừa nguyên nhân 4 : ₫ừng ₫ể các process tạo vòng chờ khép
kín : ₫ánh số thứ tự các tài nguyên rồi yêu cầu các process phải
xin cấp phát các tài nguyên theo thứ tự xác ₫ịnh (tăng dần hay
giảm dần). Vấn ₫ề là ₫ánh số các tài nguyên theo thứ tự nào cho
hợp lý ₫ể mọi process ₫ều có thể hoạt ₫ộng theo thuật giải riêng
của mình?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

	Slide Number 1
	4.1 Định nghĩa deadlock
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

