BH Bach Khoa TP.HCM

AVR Microcontroller

AtMegal62

Lé Chi Thong

chithong@hcmut.edu.vn

sites.google.com/site/chithong

Ho Chi Minh City University of Technology

Lé Chi Théng

Pins
PDIP
(OCO/T0) PBO] 1 ~ 40 D vee
(OC2/T1) PB1 2 39 2 PAO (ADO/PCINTO)
(RXD1/AIND) PB2 3 38 [0 PA1 (AD1/PCINT1)
(TXD1/AINT) PB3] 4 37 [0 PA2 (AD2/PCINT2)
(§S/OC3B) PB4 5 36 [0 PA3 (AD3/PCINT3)
(MOSI) PB5 ¢ 35 [0 PA4 (AD4/PCINT4)
(MISO) PB6 O 7 34 [0 PA5 (AD5/PCINTS)
(SCK) PB7 8 33 |2 PA6 (AD6/PCINTE)
RESETO ¢ 32 [0 PA7 (AD7/PCINT7Y)
(RXD0) PDO 10 31 @ PED (ICP1/INT2)
(TXDO) PD1 { 11 30 |2 PE1 (ALE)
(INTO/XCK1) PD2] 12 29 [0 PE2 (OC1B)
(INT1/ICP3) PD3 O 13 28 (2 PC7 (A15/TDI/PCINT15)
(TOSC1/XCKO/OC3A) PD4] 14 27 £ PC6 (A14/TDO/PCINT14)
(OC1A/TOSC2) PD5 15 26 (2 PC5 (A13/TMS/PCINT13)
(WR) PDE] 16 25 O PC4 (A12/TCK/PCINT12)
D) PD7 . 17 24 [T PC3 (A11/PCINT11)
XTAL2] 18 23 2 PC2 (A10/PCINT10)
XTAL1 O 19 22 B PC1 (A9/PCINT9)
GND O 20 21 [PCO (A8/PCINTS)
Lé Chi Théng

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

mailto:chithong@hcmut.edu.vn
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Status Register

The AVR Status Register — SREG —is defined as:

Bit 7 6 4 3 2 1 0

I 1 | T | H | E] | v ‘ N z C I SREG
Read/Write RW RW RW R/W RW R/W RW R/W
Initial Value 0 0 0 0 0 0 0 0

w

Lé Chi Thong

Status Register

* Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

+ Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T bit as source or destina-
tion for the operated bit. A bit from a register in the Register File can be copied into T by the BST
instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD
instruction.

* Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a half carry in some arithmetic operations. Half Carry is useful in
BCD arithmetic. See the “Instruction Set Description” for detailed information.

Lé Chi Théng 4

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 2

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Status Register

* Bit4-S:SignBit, S=N&®V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

* Bit 3 - V: Two’s Complement Overflow Flag

The Two's Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

* Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

* Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

* Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

Lé Chi Thong 5

General Purpose Register
7 0 Addr
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0x0F
Working R16 0x10
Registers R17 Ox11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 ox1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte
Lé Chi Théng 6

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 3

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

X-register, Y-register, Z-register
15 XH XL 0
X - register 17 of7 0]
R27 (0x1B) R26 (0x1A)
15 YH YL 0
Y - register 17 of7 0]
R29 (0x1D) R28 (0x1C)
15 7H 7L 0
Z - register 17 0 17 0 |
R31 (0x1F) R30 (0x1E)
Lé Chi Thong 7
Interrupt Vectors
Program
Vector No. | Address® | Source Interrupt Definition
1 0x000™M RESET External Pin, Power-on Reset, Brown-out
Reset, Watchdog Reset, and JTAG AVR
Reset
2 0x002 INTO External Interrupt Request 0
3 0x004 INT1 External Interrupt Request 1
4 0x006 INT2 External Interrupt Request 2
5 0x008 PCINTO Pin Change Interrupt Request 0
6 0x00A PCINT1 Pin Change Interrupt Request 1
7 0x00C TIMER3 CAPT Timer/Counter3 Capture Event
8 0x00E TIMER3 COMPA | Timer/Counter3 Compare Match A
9 0x010 TIMER3 COMPB | Timer/Counter3 Compare Match B
10 0x012 TIMER3 OVF Timer/Counter3 Overflow
Lé Chi Théng 8

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Interrupt Vectors

1 0x014 TIMER2 COMP Timer/Counter2 Compare Match
12 0x016 TIMER2 OVF Timer/Counter2 Overflow

13 0x018 TIMER1 CAPT Timer/Counter1 Capture Event

14 0x01A TIMER1 COMPA | Timer/Counter1 Compare Match A
15 0x01C TIMER1 COMPB | Timer/Counter1 Compare Match B
16 0x01E TIMER1 OVF Timer/Counter1 Overflow

17 0x020 TIMERO COMP Timer/Counter0 Compare Match
18 0x022 TIMERO OVF Timer/Counter0 Overflow

19 0x024 SPI, STC Serial Transfer Complete
20 0x026 USARTO, RXC USARTO, Rx Complete

L& Chi Théng 9
Interrupt Vectors

21 0x028 USART1, RXC USART1, Rx Complete

22 0x02A USARTO, UDRE | USARTO Data Register Empty
23 0x02C USART1, UDRE USART1 Data Register Empty
24 0x02E USARTQ, TXC USARTO, Tx Complete

25 0x030 USART1, TXC USART1, Tx Complete

26 0x032 EE_RDY EEPROM Ready

27 0x034 ANA_COMP Analog Comparator

28 0x036 SPM_RDY Store Program Memory Ready

Lé Chi Théng 10

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

1/O Port

Three 1/0 memory address locations are allocated for each port, one each for the Data Register
— PORTX, Data Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
In addition, the Pull-up Disable — PUD bit in SFIOR disables the pull-up function for all pins in all
ports when set.

Lé Chi Thong 11

Port Pin Configurations
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when a reset condition becomes
active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (ene). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

Lé Chi Théng 12

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 6

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Port Pin Configurations

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver

and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user

must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
=0b11) as an intermediate step.

Lé Chi Thong 13

. . .
Port Pin Configurations
7 6 5 4 3 2 1 0
I PORTA7 PORTAG PORTAS | PORTA4 PORTA3 PORTA2 PORTA1 PORTAOQ I PORTA
RIW RwW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDA7 DDA& DDAS5 DDA4 DDA3 DDA2 DDA1 DDAO | DDRA
RW R/W RIW R/W RW RW RIW R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PINAT PINAG PINAS5 PINA4 PINA3 PINA2 PINA1 PINAO | PINA
R R R R R R R R
N/A N/A N/A N/A NIA N/A N/A NIA
Lé Chi Théng 14
Sltes . g Oog | e . Com/oﬁﬂﬁéﬁmmgwng https://fb.com/tailieudientucntt 7

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Port Pin Configurations

DDxn | PORTxn | (in Z‘.LI:::E)R) [[e]} Pull-up | Comment
0 0 X Input No Tri-state (Hi-Z)
Pxn will source current if ext. pulled
0 1 0 Input Yes low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Qutput Low (Sink)
1 1 X Output No Qutput High (Source)
L& Chi Théng 15

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

DORTB = (1<<PB7) | (1<<PB&) | (1<<PB1) | (1<<DPBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP () ;

/* Read port pins */

i = PINB;

Lé Chi Théng

16

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Alternate Functions of Port A

Port Pin

Alternate Function

PAT

AD7 (External memory interface address and data bit 7)
PCINT7 (Pin Change INTerrupt 7)

PAB

ADG (External memory interface address and data bit 6)
PCINT®6 (Pin Change INTerrupt 6)

PAS

AD5 (External memory interface address and data bit 5)
PCINTS (Pin Change INTerrupt 5)

PA4

AD4 (External memory interface address and data bit 4)
PCINT4 (Pin Change INTerrupt 4)

PA3

AD3 (External memory interface address and data bit 3)
PCINT3 (Pin Change INTerrupt 3)

PA2

AD2 (External memory interface address and data bit 2)
PCINT2 (Pin Change INTerrupt 2)

PA1

AD1 (External memory interface address and data bit 1)
PCINT1 (Pin Change INTerrupt 1)

PAD

ADQ (External memory interface address and data bit 0)
PCINTO (Pin Change INTerrupt 0)

Lé Chi Thong

17

Alternate Functions of Port B

Port Pin

Alternate Functions

PB7Y

SCK (SPI Bus Serial Clock)

PB6

MISO (SPI Bus Master Input/Slave Output)

PB5

MOSI (SPI Bus Master Output/Slave Input)

PB4

SS (SPI Slave Select Input)
OC3B (Timer/Counter3 Output Compare Match Output)

PB3

AIN1 (Analog Comparator Negative Input)
TXD1 (USART1 Qutput Pin)

PB2

AINO (Analog Comparator Positive Input)
RXD1 (USART1 Input Pin)

PB1

T1 (Timer/Counter1 External Counter Input)
OC2 (Timer/Counter2 Output Compare Match Output)

PBO

TO (Timer/Counter0 External Counter Input)
OCO (Timer/Counter0 Cutput Compare Match Qutput)
clk,o (Divided System Clock)

Lé Chi Théng

18

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Alternate Functions of Port C

Port Pin Alternate Function

A15 (External memory interface address bit 15)
PC7 TDI (JTAG Test Data Input)
PCINT15 (Pin Change INTerrupt 15)

A14 (External memory interface address bit 14)
PC8 TDO (JTAG Test Data Output)
PCINT14 (Pin Change INTerrupt 14)

A13 (External memory interface address bit 13)
PC5 TMS (JTAG Test Mode Select)
PCINT13 (Pin Change INTerrupt 13)

A12 (External memory interface address bit 12)
PC4 TCK (JTAG Test Clock)
PCINT12 (Pin Change INTerrupt 12)

A11 (External memory interface address bit 11)

PC3
PCINT11 (Pin Change INTerrupt 11)

PC2 A10 (External memory interface address bit 10)
PCINT10 (Pin Change INTerrupt 10)

PC1 A9 (External memory interface address bit 9)
PCINT9 (Pin Change INTerrupt 9)

PCO A8 (External memory interface address bit 8)

PCINTS8 (Pin Change INTerrupt 8)

Lé Chi Thong

19

Alternate Functions of Port D
Port Pin Alternate Function
PD7 ﬁ(Read strobe to external memory)
PD6 WR (Write strobe to external memory)
PD5 TOSC2 (Timer Oscillator Pin 2)
OC1A (Timer/Counter1 Output Compare A Match Output)
TOSC1 (Timer Oscillator Pin 1)
PD4 XCKDO (USARTO External Clock Input/Qutput)
QOC3A (Timer/Counter3 Qutput Compare A Match Qutput)
PD3 INT1 (External Interrupt 1 Input)
ICP3 (Timer/Counter3 Input Capture Pin)
PD2 INTO (External Interrupt O Input)
XCK1 (USART1 External Clock Input/Qutput)
PD1 TXDO0 (USARTO Qutput Pin)
PDO RXD0 (USARTO Input Pin)
Lé Chi Théng 20
Sltes . g Oog | e . Com/oﬁﬂﬁéﬁmmgwng https://fb.com/tailieudientucntt

Lé Ch

e

Thong

10

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Alternate Functions of Port E

Port Pin Alternate Function
PE2 OC1B (Timer/Counter1 Output CompareB Match Output)
PE1 ALE (Address Latch Enable to external memory)

ICP1 (Timer/Counter1 Input Capture Pin)

PEO INT2 (External Interrupt 2 Input)

Lé Chi Thong 21

C Code Example

void main(void)

{
// Port initialization
PORTA=0x00; // Pull up registers
DDRA=0xff; // output
PORTB=0x00; // Pull up registers
DDRB=0xff; // output
PORTA=0x6f; // code of number 9
PORTB=0xc0; // 0b11000000
// Loop
while(1)
{
}

Lé Chi Théng 22

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 11

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

8-bit Timer/Counter 0 with PWM

Timer/CounterQ is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

Single Channel Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Frequency Generator

External Event Counter

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV0 and OCF0)

Lé Chi Thong 23

TimerO Registers

The Timer/Counter (TCNTO) and Output Compare Register (OCRO) are 8-bit registers. Interrupt
request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag
Register (TIFR). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK). TIFR and TIMSK are not shown in the figure since these registers are shared by other
timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clk;0).

e Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits

Lé Chi Théng 24

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 12

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

TimerO Registers

7 6 5 4 3 2 1 0

I FOCO WGM00 | COMO1 | COMOO | WGMO1 cso02 Ccso1 Ccsoo I TCCRO
W RW RW R/W RW RIW R/W RW
0 0 0 0 0 0 0 0

Timer/Counter Control Register

Cs02 cso1 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkyo/(No prescaling)
0 1 0 clkyo/8 (From prescaler)
0 1 1 clkyo/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clk;,o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.
Lé Chi Thong 25
TimerO Registers
7 6 5 4 3 2 1 0
[TCNTO[7:0]] Tenmo
RIW RIW RIW RW RIW RW RIW RIW
0 0 0 0 0 0 0 0
Timer/Counter Register
7 6 5 4 3 2 1 0
I OCRO[7:0]] ocro
RIW RIW RIW RIW RW RIW RIW RIW
0 0 0 0 0 0 0 0
Output Compare Register
7 6 5 4 3 2 1 0
| TOIE1 | OCIE1A | OCIE1B | OCIE2 | TICIE1 | TOIE2 | TOIEO | OCIE0 | TIMSK
RIW RW RW RW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Timer/Counter Interrupt Mask Register
Lé Chi Théng 26

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

13

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

16-bit Timer/Counterl (Timer/Counter3)

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

True 16-bit Design (i.e., allows 16-bit PWM)

Two Independent Output Compare Units

Double Buffered Output Compare Registers

One Input Capture Unit

Input Capture Noise Canceler

Clear Timer on Compare Match (Auto Reload)
Glitch-free, Phase Correct Pulse Width Modulator (PWM)
Variable PWM Period

Frequency Generator

External Event Counter

Eight Independent Interrupt Sources (TOV1, OCF1A, OCF1B, ICF1, TOV3, OCF3A, OCF3B, and
ICF3)

Lé Chi Théng 27

8-bit Timer/Counter2 with PWM
and Asynchronous operation

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

Single Channel Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Frequency Generator

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)

Allows Clocking from External 32 kHz Watch Crystal Independent of the /O Clock

e e e e e

The Timer/Counter (TCNTZ2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt
request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and
TIMSK are not shown in the figure since these registers are shared by other timer units.

Lé Chi Théng 28

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

Lé Ch

e

Thong

14

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

C Code Example

unsigned int i;

/* Set TCNTn to O0xO01FF */
TCNTn = O0X1FF;

/* Read TCNTn into 1 */

i = TCNTnh;

Lé Chi Thong

29

C Code Example

unsigned int i;

/* Set TCNTh to 0XO01FF */
TCNTnh = 0x1FF;

/* Read TCNTn into i */

i = TCNTnh;

Lé Chi Théng

30

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

15

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Example 1: Delay 200 us

//
//Define Function
/!
// Required Delay

// Timer Count = -1

// Clock Time Period

// clock interrupt 11.0592/8 = 1.3824 Mhz

// 1 clock = 0.72337 us

// t =200us => Timer count = 200us/0.72337us -1 = 276-1 = 275
// TCNT1= 65535-276= 65529 ; or -275

#define RELOAD_TIMER1 -275

Lé Chi Thong 31

Example 1: Delay 200 us

e
//Define Function

//
// Required Delay

// Timer Count = -1

// Clock Time Period

// clock interrupt 11.0592/8 = 1.3824 Mhz

// 1 clock = 0.72337 us

// t =200us => Timer count = 200us/0.72337us -1 = 276-1 = 275
// TCNT1= 65535-276= 65529 ; or -275

#define RELOAD_TIMER1 -275

Lé Chi Théng 32

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 16

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Example 1: Delay 200 us

void Init_Timer1(void)

{
// Clock prescaler is set to divided by 8
TCCR1B = (0<<CS12)|(1<<CS11)|(0<<CS10);

// initialize counter
TCNT1=0; //16 bit, TCNT1H = 0; TCNTLL = 0; 8bit

TCNT1 = RELOAD_TIMER1; //Loading Timer/Counter0
TIMSK = (1<<TOIE1); //Enable Timer Overflow

#asm("sei" //Enable global interrupt
}
Example 1: Delay 200 us
e

// Timer1 overflow interrupt service routine
// called whenever TCNTO overflows
interrupt [TIM1_OVF] void timer1_ovf_isr(void)
{
LED = 0; // LED TURN ON
TIMSK &= ~(1<<TOIE1);
//TCNT1 = RELOAD_TIMER1; //Loading Timer/CounterQ

}

Lé Chi Théng 34

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 17

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Example 2: 5 KHz Square Wave

void main(void)

{
// Port B initialization
PORTB=0xff;
DDRB=0xff; // OUTPUT

Init_Timer1();
// Loop
while(1)

{
}

Lé Chi Thong

35

Example 2: 5 KHz Square Wave

#define RELOAD_TIMER1 -137

void Init_Timer1(void)

{
// Clock prescaler is set to divided by 8
TCCR1B = (0<<CS12)|(1<<CS11) | (0<<CS10);

// initialize counter
TCNT1 = 0; //16 bit, TCNT1H = 0; TCNT1L = 0; 8bit

TCNT1 = RELOAD_TIMER1; //Loading Timer/Counter0
TIMSK = (1<<TOIE1); //Enable Timer OverFlow

#asm("sei") //Enable gobal interrupt

Lé Chi Théng

36

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

18

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Example 2: 5 KHz Square Wave

//
// Timer1 overflow interrupt service routine
// called whenever TCNTO overflows
interrupt [TIM1_OVF] void timer1_ovf_isr(void)
{

PORTB "= 0x01; // P1.0

TCNT1 = RELOAD_TIMER1; //Loading Timer

}

Lé Chi Thong 37

USART

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:

Full Duplex Operation (Independent Serial Receive and Transmit Registers)

* Asynchronous or Synchronous Operation

Master or Slave Clocked Synchronous Operation

High Resolution Baud Rate Generator

Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

Odd or Even Parity Generation and Parity Check Supported by Hardware

Data OverRun Detection

Framing Error Detection

Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter

Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
Multi-processor Communication Mode

Double Speed Asynchronous Communication Mode

The ATmega162 has two USARTs, USARTO and USART1.

Lé Chi Théng 38

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

Lé Ch

e

Thong

19

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

USART

The USART is fully compatible with the AVR UART regarding:
+ Bit locations inside all USART Registers

+ Baud Rate Generation

+ Transmitter Operation

+ Transmit Buffer Functionality

+ Receiver Operation

Lé Chi Thong 39

Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSEL bit in USART
Control and Status Register C (UCSRC) selects between asynchronous and synchronous oper-
ation. Double Speed (asynchronous mode only) is controlled by the U2X found in the UCSRA
Register. When using synchronous mode (UMSEL = 1), the Data Direction Register for the XCK
pin (DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave
mode). The XCK pin is only active when using synchronous mode.

Lé Chi Théng 40

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 20

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Baud Rate

Equation for Calculating Equation for Calculating
Operating Mode Baud Rate(" UBRR Value
?Sg;crrg)nous Normal Mode BAUD - fOSC UBRER - fOS(“ B
: 16(UBRR + 1) 16BAUD
:\nsoydnec?ﬂgr;?isﬁoume speed BAUD = méOT%n UBRR = %—1
Synchronous Master Mode BAUD - fOSC UBRR - fOS(" »
2(UBRR + 1) 2BAUD

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

Lé Chi Thong 41

USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART cperaticn, the
Global Interrupt Flag should be cleared (and interrupts glebally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXC Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXC Flag must be
cleared hefore each transmission (before UDR is written) if it is used for this purpose.

Lé Chi Théng 42

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 21

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

USART Initialization

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16 Regis-
ters. When the function writes to the UCSRC Register, the URSEL bit (MSB) must be set due to
the sharing of /O location by UBRRH and UCSRC.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in UCSRB
and UCSRC. The Receiver and Transmitter use the same setting. Note that changing the setting
of any of these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The receiver ignores the
second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the first
stop bit is zero.

Lé Chi Thong 43

USART Initialization

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in UCSRB
and UCSRC. The Receiver and Transmitter use the same setting. Note that changing the setting
of any of these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPM1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBS) bit. The receiver ignores the
second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the first
stop bit is zero.

Lé Chi Théng 44

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 22

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

DBH Bach Khoa TP.HCM

UDR Register — Data Register

* Transmit: write data to UDR
e Receive: read UDR

Lé Chi Théng 45

UCSROA Register — Status Data

UCSROA
Bit # Description

bit 7 RXCO USART Receive Complete. Set when data is available and the data
register has not be read yet.

bit 6 TXCO USART Transmit Complete. Set when all data has transmitted.

bit 5 UDREO USART Data Register Empty. Set when the UDRO register is empty and
new data can be transmitted.

bit 4 FEO Frame Error. Set when next byte in the UDRO register has a framing
error.

bit 3 DORO Data OverRun. Set when the UDRO was not read before the next

frame arrived.

bit 2 UPEO USART Parity Error. Set when next frame in the UDRO has a parity
error.
bit 1 u2xo0 USART Double Transmission Speed. When set decreases the bit time

by half doubling the speed.

bit 0 MPCMO Multi-processor Communication Mode. When set incoming data is
ignored if no addressing information is provided

sites.google.com/site/chithang hips:fb.comfalieudientuortt

Lé Chi Thong

23

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

DBH Bach Khoa TP.HCM

bit 7

bit 6

bit 5

bit 4
bit 3

bit 2

bit 1

bit 0

UCSROB Register - Settings

RXCIEO

TXCIEO

UDRIEOQ

RXENO

TXENO

UCszo2

RXB80

TXB80

UCSROB
Bit # Description

RX Complete Interrupt Enable. Set to allow receive complete
interrupts.

TX Complete Interrupt Enable. Set to allow transmission complete
interrupts.

USART Data Register Empty Interrupt Enable. Set to allow data
register empty interrupts.

Receiver Enable. Set to enable receiver.
Transmitter enable. Set to enable transmitter.

USART Character Size 0. Used together with UCSZ01 and UCSZ00 to
set data frame size. Available sizes are 5-bit (000), 6-bit (001), 7-bit
(010), 8-bit (011) and 9-bit (111).

Receive Data Bit 8. When using 8 bit transmission the 8th bit received.

Transmit Data Bit 8. When using 8 bit transmission the 8th bit to be
submitted.

Lé Chi Théng 47

bit 7

bit 6

bit 5
bit 4

bit 3
bit 2
bit 1

bit 0

UCSROC Register - Settings

URSELO

UMSELO

UPMO1
UPMOO0

USBSO

UCszo1
UCSZ00

UCPOLO

UCSROC
Bit # Description

Select between UCSRC or UBRRH. Set URSEL when writing the
UCSRC

0: asynchronous ;1: synchronous

USART Parity Mode 1 and 0. UPMO01 and UPMOO select the parity.
Available modes are none (00), even (10) and odd (11).

0: 1 stop bit; 1: 2 stop bits.

USART Character Size 1 and 0. Used together with with UCSZ20 to
set data frame size. Available sizes are 5-bit (000), 6-bit (001), 7-bit
(010), 8-bit (011) and 9-bit (111).

USART Clock Polarity. Set to transmit on falling edge and sample on
rising edge. Unset to transmit on rising edge and sample on falling
edge.

Lé Chi Thang 48

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

Lé Ch

e

Thong

24

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

DBH Bach Khoa TP.HCM Lé Chi Théng

USART Initialization

* Character size:

uCsz02 ucszo1 ucszo0 | size |
0 0 0

5 bit
0 0 1 6 bit
0 1 0 7 bit
0 1 1 8 bit
1 1 1 9 bit

* Receiver Enable: Set RXENO
* Transmitter Enable: Set TXENO

Lé Chi Théng 49

USART Initialization

Ex: fosc = 11.0592 MHz, Baud rate = 2400
—>UBRR =11059.2/16/2400 -1 = 287 = 11FH

Lé Chi Thang 50

sites.google.com/site/chithang S 25

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

UCSROC=0

C Code Example

| (0<<UMSELO1) | (0<<UMSELOQOQ) // Asynchronous USART
| (0<<UPMO01) | (0<<UPMO0O) // Parity Disabled

| (0<<USBSO0) // 1 stop bit

| (1<<UCSZ01)

| (1<<UCSZ00) // 8-bit character size

| (0<<UCPOL) // Rising TX, falling RX ;

Lé Chi Thong

51

#define
#define
#define
#define
#define

Example 1: Sending Data

FRAMING ERROR (1<<FEOQ)

PARITY ERROR (1<<UPEOQ)

DATA OVERRUN (1<<DOR)

DATA REGISTER EMPTY (1<<UDRE)
RX COMPLETE (1<<RXC)

Lé Chi Théng

52

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

26

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

{

Example 1: Sending Data

void main (void)

// Port D initialization
PORTD=0x00 ;
DDRD=0x00;

// Init UART
Init_UART() ;

// Loop

while (1)

{
UART Printf ("Micro-processing Systems Lab\r");
delay ms(10);

Lé Chi Thong 53

Example 1: Sending Data

// USARTO initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity
// USARTO Receiver: Off

// USARTO Transmitter: On

// USARTO Mode: Asynchronous

// USARTO Baud Rate: 2400
UCSROA=OXOO;| RXC | TXC | UDRE | FE | DOR | UPE | U2 | MPCM |

UCSROB=0x08; | RXCIE | TXCIE | UDRIE | RXEN | TXEN | UCSZ2 | RXBE | TXBS

UCSROC=0x86; ["URSEL | UMSEL | UPMT | UPMO | USBS | Ucszi | UCSZ0 | UCPOL

UBRROH=0x01;
UBRROL=0x1F;

Lé Chi Théng 54

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

27

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Example 1: Sending Data

char UART getChar (void)
{
char status,data;
while (1)
{
while (((status=UCSROA) & RX COMPLETE)==0) ;
data=UDR;

if ((status & (FRAMING ERROR | PARITY ERROR
| DATA OVERRUN))==0)

return data;

};

Lé Chi Thong 55

Example 1: Sending Data

void UART putChar (char c)
{
while ((UCSROA & DATA REGISTER EMPTY)==0);
UDR=c;
}
void UART Printf (char *s)
{
// loop through entire string
while (*s)
{
UART putChar (*s) ;
delay ms(20);
s++;

Lé Chi Théng 56

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

28

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

{

{

USART Initialization

#define FOSC 1843200// Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1

void main{ wvoid)

USART Init (MYUERR);

}

void USART Init(unsigned int ubrr)

/* Set baud rate */
UBRRH = (unsigned char) (ubrr>=8);
UBRRL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSRB = (1<<RXEN) | (1<<TXEN) ;
/* Set frame format: 8data, 2stop bit */
UCSRC = (1<<URSEL) | (1<<USBS) | (3<<UCSZ0) ;

Lé Chi Théng

57

clock.

USART Transmitter — Data Transmission

Lé Chi Théng

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB
Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-
den by the USART and given the function as the transmitter's serial output. The baud rate, mode
of operation and frame format must be set up once before doing any transmissions. If synchro-
nous operation is used, the clock on the XCK pin will be overridden and used as transmission

58

sites.google.com/site/chithong

https://fb.com/tailieudientucntt

L& Chi Thong

29

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

R16

Sending Frames with 5 to 8 Data Bit

Lé Chi Thong

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDR 1/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2X bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDRE) Flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDR are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register

59

{

Sending Frames with 5 to 8 Data Bit

void USART Transmit (unsigned char data)

/* Wait for empty transmit buffer */

while (! (UCSRA & (1<<UDRE)))

/* Put data into buffer, sends the data */
UDR = data;

Lé Chi Théng

60

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

30

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB
before the low byte of the character is written to UDR. The following code examples show a
transmit function that handles 9-bit characters. For the assembly code, the data to be sent is

assumed to be stored in Registers R17:R16.

Lé Chi Théng 61

Sending Frames with 9 Data Bit

void USART Transmit (unsigned int data)

{

/* Walt for empty transmit buffer */
while (!(UCSRA & (1<<UDRE)))
/* Copy 9th bit to TXB& */
UCSRB &= ~(1<<TXB8) ;
if (data & 0x0100)
UCSRB |= (1<<TXB8);
/* Put data into buffer, sends the data */

UDR = data;

Lé Chi Théng 62

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

31

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDRE) and Transmit Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRA Register.

When the Data Register Empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRE is set (provided that
global interrupts are enabled). UDRE is cleared by writing UDR. When interrupt-driven data
transmission is used, the Data Register Empty Interrupt routine must either write new data to
UDR in order to clear UDRE or disable the Data Register Empty Interrupt, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

Lé Chi Thong 63

USART Receiver — Data Reception

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Regis-
ter to one. When the receiver is enabled, the normal pin operation of the RxD pin is overridden
by the USART and given the function as the receiver's serial input. The baud rate, mode of oper-
ation and frame format must be set up once before any serial reception can be done. If
synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

Lé Chi Théng 64

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 32

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

then be

Receiving Frames with 5 to 8 Data Bit

read by reading the UDR I/O location.

Lé Chi Théng

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until
the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. When
the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift Register,
the contents of the Shift Register will be moved into the receive buffer. The receive buffer can

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXC) Flag. When using frames with less than eight bits the maost significant
bits of the data read from the UDR will be masked to zero. The USART has to be initialized
before the function can be used.

65

Receiving Frames with 5 to 8 Data Bit

unsigned char USART Receive(veoid)
{
/* Walt for data to be received */
while (! (UCSRA & (1<<RXC)))
/* Get and return received data from buffer */

return UDR;

Lé Chi Théng

66

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

33

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM

Receiving Frames with 9 Data Bit

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB
before reading the low bits from the UDR. This rule applies to the FE, DOR and UPE Status
Flags as well. Read status from UCSRA, then data from UDR. Reading the UDR I/O location will
change the state of the receive buffer FIFO and consequently the TXB8, FE, DOR and UPE bits,
which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

Lé Chi Théng 67

Receiving Frames with 9 Data Bit

unsigned int USART Receive(void)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSRA & (1<<RXC)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRA;
resh = UCSEB;
resl = UDR;
/* If error, return -1 */
if (status & (1<<FE)|(1<<DOR) | (1<<UPE))
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;
return ((resh << 8) \ resl) ;
1
Lé Chi Théng 68

sites.google.com/site/chithang hitps://fb. comtailieudientucntt

L& Chi Thong

34

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

BH Bach Khoa TP.HCM Lé Chi Thong

Receive Complete Flag and Interrupt

The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXEN = 0),
the receive buffer will be flushed and consequently the RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive
Complete Interrupt will be executed as long as the RXC Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDR in order to clear the RXC Flag, otherwise a new interrupt
will occur once the interrupt routine terminates.

Lé Chi Thong 69

sites.google.com/site/chithang hitps://fb. comtailieudientucntt 35

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

