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4.13 Using Karnaugh maps, find a minimal sum-of-products expression for each of the

following logic functions. Indicate the distinguished 1-cells in each map. 

4.14 Find a minimal product-of-sums expression for each function in Drill 4.13 using

the method of Section 4.3.6.

4.15 Find a minimal product-of-sums expression for the function in each of the follow-

ing figures and compare its cost with the previously found minimal sum-of-

products expression: (a) Figure 4-27; (b) Figure 4-29; (c) Figure 4-33.

4.16 Using Karnaugh maps, find a minimal sum-of-products expression for each of the

following logic functions. Indicate the distinguished 1-cells in each map.

4.17 Find a minimal product-of-sums expression for each function in Drill 4.16 using

the method of Section 4.3.6.

4.18 Find the complete sum for the logic functions in Drill 4.16(d) and (e).

4.19 Using Karnaugh maps, find a minimal sum-of-products expression for each of the

following logic functions. Indicate the distinguished 1-cells in each map.

4.20 Repeat Drill 4.19, finding a minimal product-of-sums expression for each logic

function.

4.21 For each logic function in the two preceding exercises, determine whether the

minimal sum-of-products expression equals the minimal product-of-sums

expression. Also compare the circuit cost for realizing each of the two

expressions.

4.22 For each of the following logic expressions, find all of the static hazards in the

corresponding two-level AND-OR or OR-AND circuit, and design a hazard-free

circuit that realizes the same logic function.

Exercises

(a) F = ΣX,Y,Z(1,3,5,6,7) (b) F = ΣW,X,Y,Z(1,4,5,6,7,9,14,15)

(c) F = ∏W,X,Y(0,1,3,4,5) (d) F = ΣW,X,Y,Z(0,2,5,7,8,10,13,15)

(e) F = ∏A,B,C,D(1,7,9,13,15) (f) F = ΣA,B,C,D(1,4,5,7,12,14,15)

(a) F = ΣA,B,C(0,1,2,4) (b) F = ΣW,X,Y,Z(1,4,5,6,11,12,13,14)

(c) F = ∏A,B,C(1,2,6,7) (d) F = ΣW,X,Y,Z(0,1,2,3,7,8,10,11,15)

(e) F = ΣW,X,Y,X(1,2,4,7,8,11,13,14) (f) F = ∏A,B,C,D(1,3,4,5,6,7,9,12,13,14) 

(a) F = ΣW,X,Y,Z(0,1,3,5,14) + d(8,15) (b) F = ΣW,X,Y,Z(0,1,2,8,11) + d(3,9,15)

(c) F = ΣA,B,C,D(1,5,9,14,15) + d(11) (d) F = ΣA,B,C,D(1,5,6,7,9,13) + d(4,15)

(e) F = ΣW,X,Y,Z(3,5,6,7,13) + d(1,2,4,12,15)

(a) F = W ⋅ X + W′Y′ (b) F = W ⋅ X′ ⋅ Y′ + X ⋅ Y′ ⋅ Z + X ⋅ Y

(c) F = W′ ⋅ Y + X′ ⋅ Y′ + W ⋅ X ⋅ Z (d) F = W′ ⋅ X + Y′ ⋅ Z + W ⋅ X ⋅ Y ⋅ Z + W ⋅ X′ ⋅ Y ⋅ Z

(e) F = (W + X + Y) ⋅ (X′ + Z′) (f) F = (W + Y′+Z′) ⋅ (W′ + X′ + Z′) ⋅ (X′+Y+Z)

(g) F = (W + Y + Z′) ⋅ (W + X′ + Y + Z) ⋅ (X′ + Y′) ⋅ (X + Z)
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4.23 Design a non-trivial-looking logic circuit that contains a feedback loop but whose

output depends only on its current input.

4.24 Prove the combining theorem T10 without using perfect induction, but assuming

that theorems T1–T9 and T1′–T9′ are true.

4.25 Show that the combining theorem, T10, is just a special case of consensus (T11)

used with covering (T9).

4.26 Prove that (X + Y′) ⋅ Y = X ⋅ Y without using perfect induction. You may assume

that theorems T1–T11 and T1′–T11′ are true.

4.27 Prove that (X+Y) ⋅ (X′+ Z) = X ⋅ Z + X′ ⋅ Y without using perfect induction. You

may assume that theorems T1–T11 and T1′–T11′ are true. 

4.28 Show that an n-input AND gate can be replaced by n−1 2-input AND gates. Can

the same statement be made for NAND gates? Justify your answer.

4.29 How many physically different ways are there to realize V ⋅ W ⋅ X ⋅ Y ⋅ Z using

four 2-input AND gates (4/4 of a 74LS08)? Justify your answer.

4.30 Use switching algebra to prove that tying together two inputs of an n + 1-input

AND or OR gate gives it the functionality of an n-input gate.

4.31 Prove DeMorgan’s theorems (T13 and T13′) using finite induction.

4.32 Which logic symbol more closely approximates the internal realization of a TTL

NOR gate, Figure 4-4(c) or (d)? Why?

4.33 Use the theorems of switching algebra to rewrite the following expression using

as few inversions as possible (complemented parentheses are allowed):

4.34 Prove or disprove the following propositions:

(a) Let A and B be switching-algebra variables. Then A ⋅ B = 0 and A + B = 1

implies that A = B′.

(b) Let X and Y be switching-algebra expressions. Then X ⋅ Y = 0 and X + Y = 1

implies that X = Y′.

4.35 Prove Shannon’s expansion theorems. (Hint: Don’t get carried away; it’s easy.)

4.36 Shannon’s expansion theorems can be generalized to “pull out” not just one but i

variables so that a logic function can be expressed as a sum or product of 2 i terms.

State the generalized Shannon expansion theorems.

4.37 Show how the generalized Shannon expansion theorems lead to the canonical

sum and canonical product representations of logic functions.

4.38 An Exclusive OR (XOR) gate is a 2-input gate whose output is 1 if and only if

exactly one of its inputs is 1. Write a truth table, sum-of-products expression, and

corresponding AND-OR circuit for the Exclusive OR function.

4.39 From the point of view of switching algebra, what is the function of a 2-input

XOR gate whose inputs are tied together? How might the output behavior of a real

XOR gate differ?

4.40 After completing the design and fabrication of a digital system, a designer finds

that one more inverter is required. However, the only spare gates in the system are

B′ ⋅ C + A ⋅ C ⋅ D′ + A′ ⋅ C + E ⋅ B′ + E ⋅ (A + C) ⋅ (A′ + D′)

generalized Shannon 
expansion theorems

Exclusive OR (XOR)

gate
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a 3-input OR, a 2-input AND, and a 2-input XOR. How should the designer realize

the inverter function without adding another IC?

4.41 Any set of logic-gate types that can realize any logic function is called a complete

set of logic gates. For example, 2-input AND gates, 2-input OR gates, and invert-

ers are a complete set, because any logic function can be expressed as a sum of

products of variables and their complements, and AND and OR gates with any

number of inputs can be made from 2-input gates. Do 2-input NAND gates form

a complete set of logic gates? Prove your answer.

4.42 Do 2-input NOR gates form a complete set of logic gates? Prove your answer.

4.43 Do 2-input XOR gates form a complete set of logic gates? Prove your answer.

4.44 Define a two-input gate, other than NAND, NOR, or XOR, that forms a complete

set of logic gates if the constant inputs 0 and 1 are allowed. Prove your answer.

4.45 Some people think that there are four basic logic functions, AND, OR, NOT, and

BUT. Figure X4.45 is a possible symbol for a 4-input, 2-output BUT gate. Invent

a useful, nontrivial function for the BUT gate to perform. The function should

have something to do with the name (BUT). Keep in mind that, due to the sym-

metry of the symbol, the function should be symmetric with respect to the A and

B inputs of each section and with respect to sections 1 and 2. Describe your BUT’s

function and write its truth table.

4.46 Write logic expressions for the Z1 and Z2 outputs of the BUT gate you designed

in the preceding exercise, and draw a corresponding logic diagram using AND

gates, OR gates, and inverters. 

4.47 Most students have no problem using theorem T8 to “multiply out” logic expres-

sions, but many develop a mental block if they try to use theorem T8 ′ to “add out”

a logic expression. How can duality be used to overcome this problem?

4.48 How many different logic functions are there of n variables? 

4.49 How many different 2-variable logic functions F(X,Y) are there? Write a simpli-

fied algebraic expression for each of them.

4.50 A self-dual logic function is a function F such that F = FD. Which of the following

functions are self-dual? (The symbol ⊕ denotes the Exclusive OR (XOR)

operation.)

4.51 How many self-dual logic functions of n input variables are there? (Hint: Consid-

er the structure of the truth table of a self-dual function.)

(a) F = X (b) F = ΣX,Y,Z(0,3,5,6)

(c) F = X ⋅ Y′ + X′ ⋅ Y (d) F = W ⋅ (X⊕Y⊕Z) + W′ ⋅ (X⊕Y⊕Z)′

(e) A function F of 7 variables such 

that F = 1 if and only if 4 or more 

of the variables are 1

(f) A function F of 10 variables such

that F = 1 if and only if 5 or more

of the variables are 1

complete set

BUT

A1

B1

A2

B2

Z1

Z2

Figure X4.45

BUT gate

self-dual logic function

⊕
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4.52 Prove that any n-input logic function F(X1,…,Xn) that can be written in the form

F = X1 ⋅ G(X2,…,Xn) + X1′ ⋅ GD(X2,…,Xn) is self-dual.

4.53 Assuming that an inverting gate has a propagation delay of 5 ns, and a noninvert-

ing gate has a propagation delay of 8 ns, compare the speeds of the circuits in

Figure 4-24(a), (c), and (d).

4.54 Find the minimal product-of-sums expressions for the logic functions in Figures

4-27 and 4-29.

4.55 Use switching algebra to show that the logic functions obtained in Exercise 4.54

equal the AND-OR functions obtained in Figures 4-27 and 4-29.

4.56 Determine whether the product-of-sums expressions obtained by “adding out”

the minimal sums in Figure 4-27 and 4-29 are minimal.

4.57 Prove that the rule for combining 2i 1-cells in a Karnaugh map is true, using the

axioms and theorems of switching algebra.

4.58 An irredundant sum for a logic function F is a sum of prime implicants for F such

that if any prime implicant is deleted, the sum no longer equals F. This sounds a

lot like a minimal sum, but an irredundant sum is not necessarily minimal. For

example, the minimal sum of the function in Figure 4-35 has only three product

terms, but there is an irredundant sum with four product terms. Find the irredun-

dant sum and draw a map of the function, circling only the prime implicants in

the irredundant sum.

4.59 Find another logic function in Section 4.3 that has one or more nonminimal irre-

dundant sums, and draw its map, circling only the prime implicants in the

irredundant sum.

4.60 Derive the minimal product-of-sums expression for the prime BCD-digit detector

function of Figure 4-37. Determine whether or not the expression algebraically

equals the minimal sum-of-products expression and explain your result.

4.61 Draw a Karnaugh map and assign variables to the inputs of the AND-XOR circuit

in Figure X4.61 so that its output is F = ΣW,X,Y,Z(6,7,12,13). Note that the output

gate is a 2-input XOR rather than an OR.

4.62 The text indicates that a truth table or equivalent is the starting point for tradition-

al combinational minimization methods. A Karnaugh map itself contains the

same information as a truth table. Given a sum-of-products expression, it is pos-

sible to write the 1s corresponding to each product term directly on the map

without developing an explicit truth table or minterm list, and then proceed with

irredundant sum

F
Figure X4.61
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the map minimization procedure. Find a minimal sum-of-products expression for

each of the following logic functions in this way:

4.63 Repeat Exercise 4-60, finding a minimal product-of-sums expression for each

logic function.

4.64 A Karnaugh map for a 5-variable function can be drawn as shown in

Figure X4.64. In such a map, cells that occupy the same relative position in the V

= 0 and V = 1 submaps are considered to be adjacent. (Many worked examples of

5-variable Karnaugh maps appear in Sections \ref{synD} and~\ref{synJK}.)

Find a minimal sum-of-products expression for each of the following functions

using a 5-variable map:

4.65 Repeat Exercise 4.64, finding a minimal product-of-sums expression for each

logic function.

4.66 A Karnaugh map for a 6-variable function can be drawn as shown in

Figure X4.66. In such a map, cells that occupy the same relative position in adja-

cent submaps are considered to be adjacent. Minimize the following functions

using 6-variable maps:

(a) F = X′ ⋅ Z + X ⋅ Y + X ⋅ Y′ ⋅ Z (b) F = A′ ⋅ C′ ⋅ D + B′ ⋅ C ⋅ D + A ⋅ C′ ⋅ D + B ⋅ C ⋅ D

(c) F = W ⋅ X ⋅ Z′ + W ⋅ X′ ⋅ Y ⋅ Z + X ⋅ Z (d) F = (X′ + Y′) ⋅ (W′ + X′ + Y) ⋅ (W′+ X + Z)

(e) F = A ⋅ B ⋅ C′ ⋅ D′ + A′ ⋅ B ⋅ C′ + A ⋅ B ⋅ D + A′ ⋅ C ⋅ D + B ⋅ C ⋅ D′

(a) F = ΣV,W,X,Y,Z(5,7,13,15,16,20,25,27,29,31)

(b) F = ΣV,W,X,Y,Z(0,7,8,9,12,13,15,16,22,23,30,31)

(c) F = ΣV,W,X,Y,Z(0,1,2,3,4,5,10,11,14,20,21,24,25,26,27,28,29,30)

(d) F = ΣV,W,X,Y,Z(0,2,4,6,7,8,10,11,12,13,14,16,18,19,29,30)

(e) F = ∏V,W,X,Y,Z(4,5,10,12,13,16,17,21,25,26,27,29)

(f) F = ΣV,W,X,Y,Z(4,6,7,9,11,12,13,14,15,20,22,25,27,28,30)+d(1,5,29,31)

(a) F = ΣU,V,W,X,Y,Z(1,5,9,13,21,23,29,31,37,45,53,61)

(b) F = ΣU,V,W,X,Y,Z(0,4,8,16,24,32,34,36,37,39,40,48,50,56)

5-variable Karnaugh 
map
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4.67 A 3-bit “comparator” circuit receives two 3-bit numbers, P = P2P1P0 and Q =

Q2Q1Q0. Design a minimal sum-of-products circuit that produces a 1 output if

and only if P > Q.

4.68 Find minimal multiple-output sum-of-products expressions for F = ΣX,Y,Z(0,1,2),

G = ΣX,Y,Z(1,4,6), and H = ΣX,Y,Z(0,1,2,4,6).

4.69 Prove whether or not the following expression is a minimal sum. Do it the easiest

way possible (algebraically, not using maps).

4.70 There are 2n m-subcubes of an n-cube for the value m = n − 1. Show their text

representations and the corresponding product terms. (You may use ellipses as

required, e.g., 1, 2, …, n.)

4.71 There is just one m-subcube of an n-cube for the value m = n; its text representa-

tion is xx…xx. Write the product term corresponding to this cube. 

4.72 The C program in Table 4-9 uses memory inefficiently because it allocates mem-

ory for a maximum number of cubes at each level, even if this maximum is never

used. Redesign the program so that the cubes and used arrays are one-dimen-

sional arrays, and each level uses only as many array entries as needed. (Hint:

You can still allocate cubes sequentially, but keep track of the starting point in the

array for each level.)

4.73 As a function of m, how many times is each distinct m-cube rediscovered in

Table 4-9, only to be found in the inner loop and thrown away? Suggest some

ways to eliminate this inefficiency.

(c) F = ΣU,V,W,X,Y,Z(2,4,5,6,12–21,28–31,34,38,50,51,60–63)

F = T′ ⋅ U ⋅ V ⋅ W ⋅ X + T′ ⋅ U ⋅ V′ ⋅ X ⋅ Z + T′ ⋅ U ⋅ W ⋅ X ⋅ Y′ ⋅ Z
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4.74 The third for-loop in Table 4-9 tries to combine all m-cubes at a given level with

all other m-cubes at that level. In fact, only m-cubes with x’s in the same positions

can be combined, so it is possible to reduce the number of loop iterations by using

a more sophisticated data structure. Design a data structure that segregates the

cubes at a given level according to the position of their x’s, and determine the

maximum size required for various elements of the data structure. Rewrite

Table 4-9 accordingly.

4.75 Estimate whether the savings in inner-loop iterations achieved in Exercise 4.75

outweighs the overhead of maintaining a more complex data structure. Try to

make reasonable assumptions about how cubes are distributed at each level, and

indicate how your results are affected by these assumptions.

4.76 Optimize the Oneones function in Table 4-8. An obvious optimization is to drop

out of the loop early, but other optimizations exist that eliminate the for loop

entirely. One is based on table look-up and another uses a tricky computation

involving complementing, Exclusive ORing, and addition. 

4.77 Extend the C program in Table 4-9 to handle don’t-care conditions. Provide

another data structure, dc[MAX_VARS+1][MAX_CUBES], that indicates whether a

given cube contains only don’t-cares, and update it as cubes are read and

generated.

4.78 (Hamlet circuit.) Complete the timing diagram and explain the function of the cir-

cuit in Figure X4.78. Where does the circuit get its name?

4.79 Prove that a two-level AND-OR circuit corresponding to the complete sum of a

logic function is always hazard free.

4.80 Find a four-variable logic function whose minimal sum-of-products realization is

not hazard free, but where there exists a hazard-free sum-of-products realization

with fewer product terms than the complete sum.

4.81 Starting with the WHEN statements in the ABEL program in Table 4-14, work out

the logic equations for variables X4 through X10 in the program. Explain any

discrepancies between your results and the equations in Table 4-15.

4.82 Draw a circuit diagram corresponding to the minimal two-level sum-of-products

equations for the alarm circuit, as given in Table 4-12. On each inverter, AND

gate, and OR gate input and output, write a pair of numbers (t0,t1), where t0 is

the test number from Table 4-25 that detects a stuck-at-0 fault on that line, and t1

is the test number that detects a stuck-at-1 fault.

2B
F

2B

F

Figure X4.78


