
A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Giới thiệu môn học

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 2
Khoa Công nghệ Thông tin

Giới thiệu

Môn học giới thiệu:

Các cấu trúc dữ liệu cơ bản

Các giải thuật điển hình trên các cấu trúc dữ liệu đó

Dùng phương pháp hướng đối tượng.

Ngôn ngữ lập trình minh hoạ:

Mã giả (pseudocode)

C++ (không được giảng dạy chính thức trong môn
học)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 3
Khoa Công nghệ Thông tin

Nội dung

Chương 1. Tổng quan
Chương 2. Stack
Chương 3. Queue
Chương 4. Stack và Queue liên kết
Chương 5. Đệ qui
Chương 6. List và String
Chương 7. Tìm kiếm
Chương 8. Sắp xếp
Chương 10. Cây nhị phân
Chương 11. Cây nhiều nhánh
Chương 9. Bảng và truy xuất thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 4
Khoa Công nghệ Thông tin

Tài liệu tham khảo

[1] Kruse, R. L., and Ryba, A. J. 1999. Data Structures
and Program Design in C++. Prentice-Hall Inc.

[2] Trân, N. N. B. 2001. Giáo trình Cấu trúc Dữ liệu và
Giải thuật. KhoaCNTT, ĐH Bách KhoaTp.HCM

[3] Jesse Liberty, 1997. Teach Yourself C++ in 21
days. ISBN: 0-672-31070-8, SAMS

[4] Davis Chapman, 1998. Teach Yourself Visual C++ 6
in 21 days. ISBN: 0-672-31240-9, SAMS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 5
Khoa Công nghệ Thông tin

Vấn đề ngôn ngữ lập trình

Dùng C++ để diễn đạt => Có vấn đề?

Mã giả (pseudo code)

Giả lập, thường là dễ hiểu, không chi tiết đến các kỹ
thuật lập trình

Ở cấp độ hết sức tổng quát: gần ngôn ngữ tự nhiên

Hoặc rất chi tiết: như dùng ngôn ngữ tựa Pascal, tựa
C++

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 6
Khoa Công nghệ Thông tin

Giải thuật bằng mã giả

Ví dụ: Mã giả của bubble sort

Giải thuật 1 Giải thuật 2

Algorithm Bubble sort

Input: The list A of n elements is
given

Output: The list A is sorted

1. loop for n time

1.1. for each pair in the list

1.1.1. if it is not in ordered

1.1.1.1. exchange them

End Bubble sort

Algorithm Bubble sort

Input: The list A of n elements is
given

Output: The list A is sorted

1. for outter in 0..(n-2)
1.1. for inner in 0..(n-2- outter)
1.1.1. if Ainner+1 < Ainner
1.1.1.1. swap Ainner, Ainner+1

End Bubble sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 7
Khoa Công nghệ Thông tin

Giải thuật bằng ngôn ngữ lập trình

Ví dụ: Lập trình cụ thể Bubble sort

Giải thuật 1: Pascal Giải thuật 2: C++

procedure BubbleSort(var A: list);
var i,j: int;
begin
for i := 1 to n-1 do
for j := 1 to (n-1-i) do
if A[j+1] < A[j] then
begin
tmp := A[j]; A[j] := A[j+1];

A[j+1] := tmp;
end;

end;

void BubbleSort(list A)
{
int i, j;

for (i=0; i < n-2; i++)
for (j=0; j<(n-2-i); j++)
if (A[j+1] < A[j]) {
tmp := A[j]; A[j] := A[j+1];

A[j+1] := tmp;
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 8
Khoa Công nghệ Thông tin

So sánh mã giả và NNLT

Nhận xét:
Mã giả 1: gần với cách trao đổi của con người nhất
nhưng khó lập trình nhất

Mã giả 2: dễ lập trình hơn

Phương pháp:
Đầu tiên: cách giải quyết vấn đề bằng máy tính số
(giải thuật bằng mã giả)

Sau đó: ngôn ngữ lập trình cụ thể

Học:
Nhớ giải thuật (mã giả)

Dùng NNLT cụ thể để minh chứng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 9
Khoa Công nghệ Thông tin

Cấu trúc môn học

Cấu trúc:

Lý thuyết: 42 tiết/học kỳ

Thực hành: 14 tiết/học kỳ

Bài tập lớn: 4 bài

Tỉ lệ điểm:

Kiểm tra giữa kỳ : 20%

Thực hành và bài tập lớn: 20%

Thi cuối kỳ: 60%

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 10
Khoa Công nghệ Thông tin

Bài tập

Đề bài tập:

Tập bài tập in sẵn

Các bài trong sách tiếng Anh

Tự sưu tầm

Giải bài tập:

Giờ trên lớp

Giờ thực hành

Giờ tiếp sinh viên

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 11
Khoa Công nghệ Thông tin

Bài tập lớn

Mục đích:

Hiểu bài

Làm bài ở nhà

Số lượng: 4 bài, nhận đề và nộp bài theo lịch
học

Đánh giá: thang điểm A,B,C,D

Hình thức: Bài làm bằng giấy, file và nộp qua
web

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 12
Khoa Công nghệ Thông tin

Thực hành

Mục đích:

Rèn luyện khả năng làm bài độc lập

Sử dụng nhuần nhuyễn các kiến thức đã học.

Giải bài tập + Trao đổi các thắc mắc

Thời lượng:

4 buổi

Là các buổi học lý thuyết được chuyển thành

Kiểm tra lấy điểm ở buổi cuối cùng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 13
Khoa Công nghệ Thông tin

Nội dung thi

Hai nội dung chính:

Phần lý thuyết:
Thực hiện giải thuật bằng tay (vẽ hình minh hoạ)

Thiết kế cấu trúc dữ liệu theo yêu cầu

Đánh giá độ phức tập giải thuật

Phần lập trình:
Trình bày giải thuật chi tiết bằng mã giả

Hiện thực bằng ngôn ngữ lập trình C++

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 14
Khoa Công nghệ Thông tin

Trao đổi phục vụ học tập

Trang Web:

http://www.dit.hcmut.edu.vn/~thang/CTDL

Có các mục: hỏi đáp, thông tin chi tiết, lịch giảng dạy

Cán bộ giảng dạy:

ThS. Nguyễn Ngô Bảo Trân (tran@dit.hcmut.edu.vn)

ThS. Bùi Hoài Thắng (thang@dit.hcmut.edu.vn)

Trợ giảng:

Nguyễn Lưu Đăng Khoa (nldkhoa@dit.hcmut.edu.vn)

Dương Ngọc Hiếu (dnhieu@dit.hcmut.edu.vn)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://www.dit.hcmut.edu.vn/~thang/CTDL
mailto:tran@dit.hcmut.edu.vn
mailto:thang@dit.hcmut.edu.vn
mailto:nldkhoa@dit.hcmut.edu.vn
mailto:dnhieu@dit.hcmut.edu.vn
http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 15
Khoa Công nghệ Thông tin

Sinh viên senior

Sinh viên senior:

A

B

C

D

Các buổi tiếp SV phục vụ môn học:

T.Thắng:

C.Trân:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Giới thiệu môn học 16
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 1: Tổng quan

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 2
Khoa Công nghệ Thông tin

Giải bài toán bằng phần mềm

1. Xác định bài toán

2. Thiết kế phần mềm

3. Thiết kế dữ liệu

4. Thiết kế và phân tích giải thuật

5. Lập trình và gỡ rối

6. Kiểm tra phần mềm

7. Bảo trì

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 3
Khoa Công nghệ Thông tin

Lập trình hướng đối tượng (OOP)

Chương trình = tập các đối tượng tương tác nhau.

Đối tượng (object) = thuộc tính + tác vụ

entry

đối tượng
(object)

local data
of object

local data
of operation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 4
Khoa Công nghệ Thông tin

Kiểu trừu tượng

Kiểu trừu tượng (abstract type): định nghĩa
interface (tập các entry)

Entry

Tên method

Danh sách tham số hình thức

Đặc tả chức năng

Chưa có dữ liệu bên trong, chưa dùng được

Chỉ dùng để thiết kế ý niệm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 5
Khoa Công nghệ Thông tin

Hiện thực và sử dụng

Class: hiện thực của abstract type
Định nghĩa các dữ liệu

Định nghĩa các phương thức + hàm phụ trợ (nội bộ)

Định nghĩa các phương phức ‘constructor’ và
‘destructor’ nếu cần

Đối tượng = một instance của một class

Thông điệp (message):
dùng tương tác lẫn nhau = lời gọi phương thức của
các đối tượng

Student aStudent;

aStudent.print();

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 6
Khoa Công nghệ Thông tin

Đặc điểm của OOP

Tính bao đóng:

Che dấu cấu trúc dữ liệu bên trong.

Che dấu cách thức hiện thực đối tượng.

Kế thừa:

Định nghĩa thêm các dữ liệu và phương thức cần
thiết từ một class có sẵn.

Cho phép overwrite/overload.

Cho phép dùng thay thế và khả năng dynamic biding.

Bao gộp:

Một đối tượng chứa nhiều đối tượng khác.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 7
Khoa Công nghệ Thông tin

Cấu trúc của đối tượng

method

method
method

Internal function

Internal function

Internal data

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 8
Khoa Công nghệ Thông tin

class Student {
private:

int StudentID;
string StudentName;

public:
Student();
Student(const Student &)
~Student()
void operator=(const Student &)
void print();

};

void main() {
Student aStudent;
sStudent.print();

}

Khai báo một class trên C++

constructor

copy constructor

destructor

overload assignment operator

gọi phương thức

khai báo dữ liệu bên trong

phương thức (hành vi)

khai báo một đối tượng

khai báo một lớp mới

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 9
Khoa Công nghệ Thông tin

Dùng ghi chú làm rõ nghĩa

1. Ghi chú vào đầu mỗi hàm

(a) Người lập trình, ngày, bản sao

(b) Mục đích của hàm

(c) Input, output

(d) Các chỉ dẫn đến các tài liệu khác (nếu có)

Có thể dùng dạng: Precondition và Postcondition

2. Ghi chú vào mỗi biến, hằng, kiểu

3. Ghi chú vào mỗi phần của chương trình

4. Ghi chú mỗi khi dùng các kỹ thuật đặc biệt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 10
Khoa Công nghệ Thông tin

Dùng ghi chú làm rõ nghĩa – Ví dụ
void Life::update()
/* Pre: grid đang chứa một trạng thái của thực thể sống

Post: grid sẽ chứa trạng thái tiến hóa mới của thực thể sống này */
{

int row, col;
int new_grid[maxrow + 2][maxcol + 2]; //Chứa trạng thái mới vào đây
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
switch (neighbor_count(row, col)) {

case 2: //Trạng thái của tế bào không đổi
new_grid[row][col] = grid[row][col]; break;

case 3: //Tế bào sẽ sống
new_grid[row][col] = 1; break;

default: //Tế bào sẽ chết
new_grid[row][col] = 0;

}
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
grid[row][col] = new_grid[row][col]; //Cập nhật các tế bào cùng lúc

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 11
Khoa Công nghệ Thông tin

Stub và driver

Stub:
Viết các prototype trước

Viết dummy code để thử nghiệm

Ví dụ:
bool user says yes() {

return(true);

}

Driver:
Viết một chương trình nhỏ để kiểm tra

Thư viện cá nhân:
Gom các hàm dùng chung thành thư viện

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 12
Khoa Công nghệ Thông tin

Trò chơi Life

Luật:

Một ma trận các tế bào là sống hay chết

Các tế bào lân cận được tính là tám ô xung quanh

Quá trình tiến hoá áp dụng cho một trạng thái hiện tại

Một tế bào sống là sống ở thế hệ kế nếu có 2 hoặc 3
tế bào sống lân cận và chết trong trường hợp khác

Một tế bào đang chết sẽ sống ở thế hệ kế nếu nó có
chính xác 3 tế bào sống lân cận, nếu không nó vẫn
chết tiếp.

Tất cả các tế bào được kiểm chứng cùng một lúc để
quyết định trạng thái sống, chết ở thế hệ kế

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 13
Khoa Công nghệ Thông tin

Trò chơi Life – Ví dụ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 14
Khoa Công nghệ Thông tin

Trò chơi Life – Thiết kế phương thức

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 15
Khoa Công nghệ Thông tin

Trò chơi Life – Thiết kế class

const int maxrow = 20
const maxcol = 60;

class Life {
public:
void initialize();
void print();
void update();

private:
int grid[maxrow][maxcol];
int neighbor_count(int row, int col);

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 16
Khoa Công nghệ Thông tin

Trò chơi Life – Đếm số tế bào sống
lân cận

Mã C++:
count = 0

for (i = row − 1; i <= row + 1; i++)

for (j = col − 1; j <= col + 1; j++)

count += grid[i][j];

count −= grid[row][col];

Sai chỗ nào?

Nếu như row hoặc col là ngay các biên của array

Các giá trị của các tế bào không là 1 hoặc 0

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 17
Khoa Công nghệ Thông tin

Trò chơi Life – Thay đổi thiết kế

Giải pháp:
Thêm vào 2 cột và 2 hàng giả có giá trị luôn là 0

Khai báo dữ liệu: grid[maxrow + 2][maxcol + 2]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 18
Khoa Công nghệ Thông tin

Trò chơi Life – Giải thuật cập nhật

Algorithm Update
Input: một trạng thái sống
Output: trạng thái của thế hệ kế tiếp

1. Khai báo một grid mới
2. Duyệt qua toàn bộ tế bào của trạng thái hiện tại

2.1. Đếm số tế bào sống xung quanh ô hiện tại
2.2. Nếu là 2 thì trạng thái mới chính là trạng thái cũ
2.3. Nếu là 3 thì trạng thái mới là sống
2.4. Ngược lại là chết

3. Cập nhật grid mới vào trong grid cũ

End Update

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 19
Khoa Công nghệ Thông tin

Trò chơi Life – Mã C++ cập nhật
void Life::update()
/* Pre: grid đang chứa một trạng thái của thực thể sống

Post: grid sẽ chứa trạng thái tiến hóa mới của thực thể sống này */
{

int row, col;
int new_grid[maxrow + 2][maxcol + 2]; //Chứa trạng thái mới vào đây
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
switch (neighbor_count(row, col)) {

case 2: //Trạng thái của tế bào không đổi
new_grid[row][col] = grid[row][col]; break;

case 3: //Tế bào sẽ sống
new_grid[row][col] = 1; break;

default: //Tế bào sẽ chết
new_grid[row][col] = 0;

}
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
grid[row][col] = new_grid[row][col]; //Cập nhật các tế bào cùng lúc

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 20
Khoa Công nghệ Thông tin

Kết luận

Sự liên quan giữa CTDL và giải thuật:

Cấu trúc dữ liệu cụ thể: chọn giải thuật

Giải thuật cụ thể: chọn cấu trúc dữ liệu

Cấu trúc dữ liệu trừu tượng:

Dữ liệu cụ thể bên trong

Các phương thức: interface ra bên ngoài

Thích hợp cho phương pháp hướng đối tượng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 1: Tổng quan 21
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 2: Stack

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 2
Khoa Công nghệ Thông tin

Mô tả stack

Một stack là một cấu
trúc dữ liệu mà việc
thêm vào và loại bỏ
được thực hiện tại
một đầu (gọi là đỉnh –
top của stack).

Là một dạng vào sau
ra trước – LIFO (Last
In First Out)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 3
Khoa Công nghệ Thông tin

Ví dụ về stack

Stack rỗng:

Đẩy (push) Q vào:

Đẩy A vào:

Lấy (pop) ra một => được A:

Lấy ra một => được Q và stack rỗng:

Q

Q

A

Q

A

Q

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 4
Khoa Công nghệ Thông tin

Ứng dụng: Đảo ngược danh sách

Yêu cầu: Đảo ngược một danh sách nhập vào

Giải thuật:

1. Lặp lại n lần

1.1. Nhập vào một giá trị

1.2. Đẩy nó vào stack

2. Lặp khi stack chưa rỗng

2.1. Lấy một giá trị từ stack

2.2. In ra

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 5
Khoa Công nghệ Thông tin

Đảo ngược danh sách – Ví dụ
Cần nhập 4 số vào
Ban đầu Nhập 1

1

Nhập 5

1

5

Nhập 7

1

5

7

Nhập 3

1

5

7

3

Lấy ra => 3

1

5

7

3

Lấy ra => 7

1

5

7

Lấy ra => 5

1

5

Lấy ra => 1

1

Stack đã rỗng
Ngừng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 6
Khoa Công nghệ Thông tin

Đảo ngược danh sách – Mã C++
#include <stack>
using namespace std;

int main() {
int n;
double item;
stack<double> numbers;
cout << "Bao nhieu so nhap vao? "
cin >> n;
for (int i = 0; i < n; i++) {

cin >> item;
numbers.push(item);

}
while (!numbers.empty()) {

cout << numbers.top() << " ";
numbers.pop();

} }

sử dụng STL
(Standard Template Library)

khai báo một stack có kiểu dữ liệu
của các phân tử bên trong là double

đẩy một số vào trong stack

kiểm tra xem stack có khác rỗng không

lấy giá trị trên đỉnh của stack ra,
stack không đổi

lấy giá trị trên đỉnh của stack ra khỏi stack,
đỉnh của stack bây giờ là giá trị kế tiếp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 7
Khoa Công nghệ Thông tin

Kiểu trừu tượng (abstract data type)

ĐN1: Một kiểu (type)
một tập hợp

mỗi thành phần của tập hợp này là các giá trị (value)

Ví dụ: int, float, char là các kiểu cơ bản

ĐN2: Một dãy của kiểu T
có chiều dài bằng 0 là rỗng

có chiều dài n (n>=1): bộ thứ tự (Sn-1, t)

Sn-1: dãy có chiều dài n-1 thuộc kiểu T

t là một giá trị thuộc kiểu T.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 8
Khoa Công nghệ Thông tin

Stack trừu tượng

Một stack kiểu T:

Một dãy hữu hạn kiểu T

Một số tác vụ:
1. Khởi tạo stack rỗng (create)

2. Kiểm tra rỗng (empty)

3. Đẩy một giá trị vào trên đỉnh của stack (push)

4. Bỏ giá trị đang có trên đỉnh của stack (pop)

5. Lấy giá trị trên đỉnh của stack, stack không đổi (top)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 9
Khoa Công nghệ Thông tin

Thiết kế stack

enum Error_code {fail, success, overflow, underflow};

template <class Entry>
class Stack {
public:

Stack(); //constructor
bool empty() const; //kiểm tra rỗng
Error_code push(const Entry &item); //đẩy item vào
Error_code pop(); //bỏ phần tử trên đỉnh
Error_code top(Entry &item); //lấy giá trị trên đỉnh
//khai báo một số phương thức cần thiết khác

private:
//khai báo dữ liệu và hàm phụ trợ chỗ này

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 10
Khoa Công nghệ Thông tin

Thiết kế các phương thức
template <class Entry>
bool Stack<Entry>::empty() const;
Pre: Không có
Post: Trả về giá trị true nếu stack hiện tại là rỗng, ngược lại thì trả về false

template <class Entry>
Error_code Stack<Entry>::push(const Entry &item);
Pre: Không có
Post: Nếu stack hiện tại không đầy, item sẽ được thêm vào đỉnh của stack.

Ngược lại trả về giá trị overflow của kiểu Error_code và stack không đổi.

template <class Entry>
Error_code Stack<Entry>::pop() const;
Pre: Không có
Post: Nếu stack hiện tại không rỗng, đỉnh của stack hiện tại sẽ bị hủy bỏ.

Ngược lại trả về giá trị underflow của kiểu Error_code và stack không đổi.

template <class Entry>
Error_code Stack<Entry>::top(Entry &item) const;
Pre: Không có
Post: Nếu stack hiện tại không rỗng, đỉnh của stack hiện tại sẽ được chép vào tham

biến item. Ngược lại trả về giá trị fail của kiểu Error_code.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 11
Khoa Công nghệ Thông tin

Hiện thực stack liên tục

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 12
Khoa Công nghệ Thông tin

Khai báo stack liên tục

const int maxstack = 10; //small number for testing

template <class Entry>
class Stack {
public:

Stack();
bool empty() const;
Error_code pop();
Error_code top(Entry &item) const;
Error_code push(const Entry &item);

private:
int count;
Entry entry[maxstack];

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 13
Khoa Công nghệ Thông tin

Đẩy một phần tử vào stack

Giải thuật:
1. Nếu còn chỗ trống trong stack

1.1. Tăng vị trí đỉnh lên 1

1.2. Chứa giá trị vào vị trí đỉnh của stack

1.3. Tăng số phần tử lên 1

top

1

5

7

count=2count=3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 14
Khoa Công nghệ Thông tin

Bỏ phần tử trên đỉnh stack

Giải thuật:
1. Nếu còn phần tử trong stack

1.1. Giảm vị trí đỉnh đi 1

1.2. Giảm số phần tử đi 1

top

1

5

7

count=3count=2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 15
Khoa Công nghệ Thông tin

Thêm/Bỏ phần tử - Mã C++
template <class Entry>
Error_code Stack<Entry>:: push(const Entry &item) {

if (count >= maxstack)
return overflow;

else
entry[count++] = item;

return success;
}

template <class Entry>
Error_code Stack<Entry>:: pop() {

if (count == 0)
return underflow;

else
count--;

return success;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 16
Khoa Công nghệ Thông tin

Lấy giá trị trên đỉnh stack

Giải thuật:
1. Nếu còn phần tử trong stack

1.1. Trả về giá trị tại vị trí đỉnh

Mã C++:
template <class Entry>

Error_code Stack<Entry>:: top(Entry &item) {

if (count == 0)

return underflow;

else

item = entry[count - 1];

return success;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 17
Khoa Công nghệ Thông tin

Reverse Polish Calculator

Mô tả bài toán:

Các toán hạng được đọc vào trước và đẩy vào stack

Khi đọc vào toán tử, lấy hai toán hạng ra từ stack,
tính toán với toán tử này, rồi đẩy kết quả vào stack

Thiết kế phần mềm:

Cần một stack để chứa toán hạng

Cần hàm get_command để nhận lệnh từ người dùng

Cần hàm do_command để thực hiện lệnh

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 18
Khoa Công nghệ Thông tin

Reverse Polish Calculator
– Thiết kế chức năng

Tập lệnh:

‘?’: đọc một giá trị rồi đẩy vào stack

Toán tử ‘+’, ‘-’, ‘*’, ‘/’: lấy 2 giá trị trong stack, tính toán
và đẩy kết quả vào stack

Toán tử ‘=’: in đỉnh của stack ra

‘q’: kết thúc chương trình

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 19
Khoa Công nghệ Thông tin

Reverse Polish Calculator – Ví dụ

Ban đầu

Tính toán biểu thức: 3 5 + 2 * =

Toán tử ?
Nhập vào 3

3

Toán tử ?
Nhập vào 5

3

5

Toán tử +
Lấy ra 5 và 3
Tính 3 + 5 => 8

3

5

Đẩy 8 vào

8

Toán tử *
Lấy ra 2 và 8
Tính 8 * 2 => 16

8

Đẩy vào 16

16

Toán tử =
In ra 16

16

Toán tử ?
Nhập vào 2

8

2 2

16

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 20
Khoa Công nghệ Thông tin

Reverse Polish Calculator –
Hàm get_command

char get command() {
char command;
bool waiting = true;
cout << "Select command and press < Enter > :";
while (waiting) {

cin >> command;
command = tolower(command);
if (command == ‘?’ || command == ‘=‘ || command == ‘+’ ||

command == ‘−’|| command == ‘*’ || command == ‘/’ ||
command == ‘q’) waiting = false;

else {
cout << "Please enter a valid command:" << endl

<< "[?]push to stack [=]print top" <<endl
<< "[+] [−] [*] [/] are arithmetic operations" << endl
<< "[Q]uit." << endl;

}
}
return command;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 21
Khoa Công nghệ Thông tin

Reverse Polish Calculator –
Giải thuật tính toán với toán tử

Algorithm Op_process
Input: toán tử op, stack chứa các toán hạng
Output: stack chứa các toán hạng sau khi tính xong toán tử op

1. Nếu stack không rỗng
1.1. Lấy đỉnh stack ra thành p
1.2. Bỏ phần tử trên đỉnh stack
1.3. Nếu stack rỗng

1.3.1. Đẩy p ngược lại
1.3.2. Báo lỗi và thoát

1.4. Lấy đỉnh stack ra thành q
1.5. Bỏ phần tử trên đỉnh stack
1.6. Tính toán (q op p)
1.7. Đẩy kết quả vào stack

End Op_process

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 22
Khoa Công nghệ Thông tin

Reverse Polish Calculator –
Mã C++ cho toán tử cộng

if (numbers.top(p) == underflow)
cout << "Stack rỗng";

else {
numbers.pop();
if (numbers.top(q) == underflow) {

cout << "Stack chỉ có 1 trị”;
numbers.push(p);

}
else {

numbers.pop();
if (numbers.push(q + p) == overflow)

cout << "Stack đầy”;
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 23
Khoa Công nghệ Thông tin

Reverse Polish Calculator –
Chương trình chính

#include "stack.cpp"

//prototype
void introduction();
void instructions();
char get_command();
bool do_command(char command, Stack<double> &numbers);

int main() {
Stack<double> stored_numbers;
introduction();
instructions();
while (do_command(get_command(), stored_numbers));

}
//implementation
…

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 24
Khoa Công nghệ Thông tin

Reverse Polish Calculator –
Hàm do_command

bool do_command(char command, Stack &numbers) {
double p, q;
switch (command) {

case '?’:
cout << "Enter a real number: " << flush; cin >> p;
if (numbers.push(p) == overflow)

cout << "Warning: Stack full, lost number" << endl; break;
case '=‘:

if (numbers.top(p) == underflow) cout << "Stack empty" << endl;
else cout << p << endl; break;

// Add options for further user commands.
case ‘q’: cout << "Calculation finished.\n"; return false;

}
return true;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 2: Stack 25
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 3: Queue

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 2
Khoa Công nghệ Thông tin

Mô tả queue

Một queue là một cấu trúc dữ liệu mà việc thêm vào được thực
hiện ở một đầu (rear) và việc lấy ra được thực hiện ở đầu còn lại
(front)

Phần tử vào trước sẽ ra trước – FIFO (First In First Out)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 3
Khoa Công nghệ Thông tin

Queue trừu tượng

Một queue kiểu T:

Một dãy hữu hạn kiểu T

Một số tác vụ:
1. Khởi tạo queue rỗng (create)

2. Kiểm tra rỗng (empty)

3. Thêm một giá trị vào cuối của queue (append)

4. Bỏ giá trị đang có ở đầu của queue (serve)

5. Lấy giá trị ở đầu của queue, queue không đổi (retrieve)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 4
Khoa Công nghệ Thông tin

Thiết kế queue

enum Error_code {fail, success, overflow, underflow};

template <class Entry>
class Queue {
public:

Queue(); //constructor
bool empty() const; //kiểm tra rỗng
Error_code append(const Entry &item); //đẩy item vào
Error_code serve(); //bỏ 1 phần tử ở đầu
Error_code retrieve(Entry &item); //lấy giá trị ở đầu
//khai báo một số phương thức cần thiết khác

private:
//khai báo dữ liệu và hàm phụ trợ chỗ này

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 5
Khoa Công nghệ Thông tin

Thiết kế các phương thức
template <class Entry>
bool Queue<Entry>::empty() const;
Pre: Không có
Post: Trả về giá trị true nếu queue hiện tại là rỗng, ngược lại thì trả về false

template <class Entry>
Error_code Queue<Entry>::append(const Entry &item);
Pre: Không có
Post: Nếu queue hiện tại không đầy, item sẽ được thêm vào cuối của queue.

Ngược lại trả về giá trị overflow của kiểu Error_code và queue không đổi.

template <class Entry>
Error_code Queue<Entry>::serve() const;
Pre: Không có
Post: Nếu queue hiện tại không rỗng, đầu của queue hiện tại sẽ bị hủy bỏ.

Ngược lại trả về giá trị underflow của kiểu Error_code và queue không đổi.

template <class Entry>
Error_code Queue<Entry>::retrieve(Entry &item) const;
Pre: Không có
Post: Nếu queue hiện tại không rỗng, đầu của queue hiện tại sẽ được chép vào tham

biến item. Ngược lại trả về giá trị underflow của kiểu Error_code.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 6
Khoa Công nghệ Thông tin

Mở rộng queue

Có thêm các tác vụ:
Kiểm tra đầy (full)
Tính kích thước (size)
Giải phóng queue (clear)
Lấy giá trị ở đầu và bỏ ra khỏi queue (serve_and_retrieve)

Mã C++:
template <class Entry>
class Extended_queue: public Queue<Entry> {
public:

bool full() const;
int size() const;
void clear();
Error_code serve_and_retrieve(Entry &item);

};

Có các khả năng public,
protected, private

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 7
Khoa Công nghệ Thông tin

Tính thừa hưởng

Dùng tính thừa hưởng:
Extended_queue có đầy đủ các thành phần của Queue

Thêm vào đó các thành phần riêng của mình

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 8
Khoa Công nghệ Thông tin

Queue liên tục

Dùng một array: Có xu hướng dời về cuối array

Hai cách hiện thực đầu tiên:
Khi lấy một phần tử ra thì đồng thời dời hàng lên một vị trí.

Chỉ dời hàng về đầu khi cuối hàng không còn chỗ

A B C D B C D B C D E

Ban đầu Lấy ra 1 phần tử:
dời tất cả về trước

Thêm vào 1 phần tử

A B C D B C D B C D E

Ban đầu Lấy ra 1 phần tử Thêm vào 1 phần tử:
dời tất cả về trước để
trống chỗ thêm vào

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 9
Khoa Công nghệ Thông tin

Queue là array vòng (circular array)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 10
Khoa Công nghệ Thông tin

Array vòng với ngôn ngữ C++

Xem array như là một vòng:

phần tử cuối của array nối với phần tử đầu của array

Tính toán vị trí kề:

i = ((i + 1) == max) ? 0 : (i + 1);

if ((i + 1) == max) i = 0; else i = i + 1;

i = (i + 1)%max;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 11
Khoa Công nghệ Thông tin

Điều kiện biên của queue vòng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 12
Khoa Công nghệ Thông tin

Một số cách hiện thực queue liên tục

Một array với front là phần tử đầu và tất cả các phần tử
sẽ được dời lên khi lấy ra một phần tử.

Một array có hai chỉ mục luôn tăng chỉ đến phần tử đầu
và cuối.

Một array vòng có chỉ mục front và rear và một ô luôn
trống.

Một array vòng có chỉ mục front và rear và một cờ (flag)
cho biết queue là đầy (rỗng) chưa.

Một array vòng với chỉ mục front và rear có các giá trị
đặc biệt cho biết queue đang rỗng.

Một array vòng với chỉ mục front và rear và một số
chứa số phần tử của queue.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 13
Khoa Công nghệ Thông tin

Hiện thực queue liên tục

const int maxqueue = 10; // small value for testing

template <class Entry>
class Queue {
public:

Queue();
bool empty() const;
Error_code serve();
Error_code append(const Entry &item);
Error_code retrieve(Entry &item) const;

protected:
int count;
int front, rear;
Entry entry[maxqueue];

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 14
Khoa Công nghệ Thông tin

Khởi tạo và kiểm tra rỗng

Khởi tạo:
template <class Entry>

Queue<Entry>::Queue() {

count = 0;

rear = maxqueue − 1;

front = 0;

}

Kiểm tra rỗng:
template <class Entry>

bool Queue<Entry>::empty() const {

return count == 0;

}

Dùng biến count để
biết số phần tử
trong queue

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 15
Khoa Công nghệ Thông tin

Thêm một giá trị vào queue

Giải thuật:
1. Nếu hàng đầy

1.1. Báo lỗi overflow

2. Tính toán vị trí cuối mới theo array vòng

3. Gán giá trị vào vị trí cuối mới này

4. Tăng số phần tử lên 1

4. Báo success

A B C

front rear

D

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 16
Khoa Công nghệ Thông tin

Loại một giá trị khỏi queue

Giải thuật:
1. Nếu hàng rỗng

1.1. Báo lỗi underflow

2. Tính toán vị trí đầu mới theo array vòng

3. Giảm số phần tử đi 1

3. Báo success

A B C D

front rear

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 17
Khoa Công nghệ Thông tin

Thêm/loại một giá trị – Mã C++

template <class Entry>
Error_code Queue<Entry>::append(const Entry &item) {

if (count >= maxqueue) return overflow;
count++;
rear = ((rear + 1) == maxqueue) ? 0 : (rear + 1);
entry[rear] = item;
return success;

}

template <class Entry>
Error_code Queue<Entry>::serve() {

if (count <= 0) return underflow;
count−−;
front = ((front + 1) == maxqueue) ? 0 : (front + 1);
return success;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 18
Khoa Công nghệ Thông tin

Ứng dụng: Giả lập phi trường

Mô tả:

1. Sử dụng hàng đợi runway cho việc cất và hạ cánh.

2. Một máy bay có thể cất hoặc hạ cánh trong một
đơn vị thời gian.

3. Tại một thời điểm, số máy bay đến là ngẫu nhiên.

4. Máy bay hạ cánh được ưu tiên trước máy bay cất
cánh.

5. Các máy bay chờ cất/hạ cánh được chứa vào các
hàng đợi tương ứng và với số lượng giới hạn.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 19
Khoa Công nghệ Thông tin

Giả lập phi trường – Hàng đợi

enum Runway_activity {idle, land, takeoff};

class Runway {
public:

Runway(int limit);
Error_code can_land(const Plane ¤t);
Error_code can_depart(const Plane ¤t);
Runway_activity activity(int time, Plane &moving);
void shut_down(int time) const;

private:
Extended queue landing;
Extended queue takeoff;
int queue_limit;
…

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 20
Khoa Công nghệ Thông tin

Giả lập phi trường – Hạ cánh

Error_code Runway :: can_land(const Plane ¤t) {
Error_code result;
if (landing.size() < queue_limit)

result = landing.append(current);
else

result = fail;
num_land_requests++;
if (result != success)

num_land_refused++;
else

num_land_accepted++;
return result;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 21
Khoa Công nghệ Thông tin

Giả lập phi trường – Xử lý

Runway_activity Runway::activity(int time, Plane &moving) {
Runway_activity in_progress;
if (!landing.empty()) {

landing.retrieve(moving);
in_progress = land;
landing.serve();

} else if (!takeoff.empty()) {
takeoff.retrieve(moving);
in_progress = takeoff;
takeoff.serve();

} else
in_progress = idle;

return in_progress;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 22
Khoa Công nghệ Thông tin

Giả lập phi trường – Giả lập
for (int current_time = 0; current_time < end_time; current_time++) {

int number_arrivals = variable.poisson(arrival_rate);
for (int i = 0; i < number_arrivals; i++) {

Plane current_plane(flight_number++, current_time, arriving);
if (small_airport.can_land(current_plane) != success)

current_plane.refuse();
}
int number_departures = variable.poisson(departure_rate);
for (int j = 0; j < number_departures; j++) {

Plane current_plane(flight_number++, current_time, departing);
if (small_airport.can_depart(current_plane) != success)

current_plane.refuse();
}
Plane moving_plane;
switch (small_airport.activity(current_time, moving_plane)) {

case land: moving_plane.land(current_time); break;
case takeoff: moving_plane.fly(current_time); break;
case idle: run_idle(current_time);

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 3: Queue 23
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 4: Stack và Queue liên
kết

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 2
Khoa Công nghệ Thông tin

Con trỏ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 3
Khoa Công nghệ Thông tin

Biểu diễn con trỏ bằng C++

Khai báo biến:
Item * item_ptr1, * item_ptr2;

Tạo mới đối tượng:
item_ptr1 = new Item;

Hủy bỏ đối tượng:
delete item_ptr1;

Sử dụng:
*item_ptr1 = 1378;

cout << Student_ptr -> StudentID;

Con trỏ NULL:
item_ptr2 = NULL;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 4
Khoa Công nghệ Thông tin

Sử dụng con trỏ trong C++

Địa chỉ của biến:

Biến: int_ptr = &x;

Array: arr_ptr = an_array;

Dynamic array:

Trong C++, array có thể được quản lý như một con
trỏ và ngược lại

Ví dụ:
int arr[3] = {0, 1, 2, 3};

int *arr_ptr = arr;

//in ra 0 – 1 – 2

cout << *arr_ptr << “ - ” << *(arr_ptr + 1) << “ - ” << arr_ptr[2];

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 5
Khoa Công nghệ Thông tin

Gán con trỏ trong C++

Gán nội dung: bình thường Gán con trỏ: nguy hiểm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 6
Khoa Công nghệ Thông tin

Thiết kế node liên kết

Cần:

Dữ liệu

Con trỏ để trỏ đến node sau

Constructor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 7
Khoa Công nghệ Thông tin

Thiết kế node liên kết bằng C++

template <class Entry>
struct Node {

Entry entry; // data members
Node<Entry> *next;
Node(); // constructors
Node(Entry item, Node<Entry> *add on = NULL);

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 8
Khoa Công nghệ Thông tin

Ví dụ với node liên kết

Node<char> first_node(‘a’);

Node<char> *p0 = &first_node;

Node<char> *p1 = new Node<char>(‘b’);

p0->next = p1;

Node<char> *p2 = new Node<char>(‘c’, p0);

p1->next = p2;

a

first_node
p0

b

p1

c

p2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 9
Khoa Công nghệ Thông tin

Stack liên kết

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 10
Khoa Công nghệ Thông tin

Khai báo stack liên kết

template <class Entry>
class Stack {
public:

Stack();
bool empty() const;
Error_code push(const Entry &item);
Error_code pop();
Error_code top(Entry &item) const;
Stack(const Stack<Entry> ©);
~Stack();
void operator=(const Stack<Entry> ©);

protected:
Node<Entry> *top_node;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 11
Khoa Công nghệ Thông tin

Thêm vào một stack liên kết

Giải thuật
1. Tạo ra một node mới với giá trị cần thêm vào

2. Trỏ nó đến đỉnh hiện tại của stack

3. Trỏ đỉnh của stack vào node mới

new node

new_top

top_node

old top middle last

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 12
Khoa Công nghệ Thông tin

Bỏ đỉnh của một stack liên kết

Giải thuật:
1. Gán một con trỏ để giữ đỉnh của stack

2. Trỏ đỉnh của stack vào node ngay sau đỉnh hiện tại

3. Xóa node cũ đi

old_top

top_node

old top middle old last

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 13
Khoa Công nghệ Thông tin

Thêm/Bỏ đỉnh của một stack liên kết
– Mã C++

template <class Entry>
Error_code push(const Entry &item) {

Node<Entry> *new_top = new Node<Entry>(item, top_node);
if (new_top == NULL) return overflow;
top_node = new_top;

}

template <class Entry>
Error_code pop() {

Node<Entry> *old_top = top_node;
if (top_node == NULL) return underflow;
top_node = old_top->next;
delete old_top;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 14
Khoa Công nghệ Thông tin

Sự không an toàn con trỏ trong C++

Kết thúc biến stack nhưng bộ nhớ còn lại:
delete stack0;

Gán hai stack: cả hai dùng chung một vùng dữ liệu
stack2 = stack1;

top middle last

top middle last

stack0

stack1

stack2

top middle last

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 15
Khoa Công nghệ Thông tin

Đảm bảo an toàn con trỏ trong C++

Destructor:
Sẽ được gọi ngay trước khi đối tượng kết thúc thời gian sống

Dùng xóa hết vùng dữ liệu

Copy constructor:
Sẽ được gọi khi khởi tạo biến lúc khai báo, hoặc truyền dữ liệu
bằng tham trị

Sao chép nguồn thành một vùng dữ liệu mới

Assignment operator:
Sẽ được gọi khi gán đối tượng này vào đối tượng khác

Xóa vùng dữ liệu của đích và đồng thời sao chép nguồn thành
một vùng dữ liệu mới

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 16
Khoa Công nghệ Thông tin

Xóa vùng dữ liệu đang có

Giải thuật:
1. Trong khi stack chưa rỗng

1.1. Bỏ đỉnh của stack

Mã C++:
while (!empty())

pop();

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 17
Khoa Công nghệ Thông tin

Sao chép vùng dữ liệu

Giải thuật:
1. Tạo một đỉnh của danh sách mới với dữ liệu của đỉnh

nguồn

2. Giữ một con trỏ đuôi chỉ vào cuối danh sách mới

2. Duyệt qua danh sách nguồn

2.1. Tạo một node mới với dữ liệu từ node nguồn hiện tại

2.2. Nối vào cuối danh sách mới

2.3. Con trỏ đuôi là node mới

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 18
Khoa Công nghệ Thông tin

Sao chép vùng dữ liệu – Ví dụ

a b c

copy_node

new_top

new_copy

a b c

copy.top_node

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 19
Khoa Công nghệ Thông tin

Sao chép vùng dữ liệu – Mã C++

Node<Entry> *new_top, *new_copy, *copy_node = copy.top_node;
if (copy_node == NULL) new_top = NULL;
else {

// Sao chép vùng dữ liệu thành danh sách mới
new_copy = new_top = new Node<Entry>(copy_node->entry);
while (copy_node->next != NULL) {

copy_node = copy_node->next;
new_copy->next = new Node<Entry>(copy_node->entry);
new_copy = new_copy->next;

}
}
clear(); //xóa rỗng dữ liệu hiện tại trước
top_node = new_top; // thay thế dữ liệu bằng danh sách mới.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 20
Khoa Công nghệ Thông tin

Queue liên kết

Thiết kế:

Dùng hai con trỏ chỉ đến đầu và cuối của danh sách
dữ liệu (front và rear)

Khởi tạo rỗng: gán cả front và rear về NULL

front middle last

front rear

front rear

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 21
Khoa Công nghệ Thông tin

Khai báo Queue liên kết

template <class Entry>
class Queue {
public:

Queue();
bool empty() const;
Error_code append(const Entry &item);
Error_code serve();
Error_code retrieve(Entry &item) const;
~Queue();
Queue(const Queue<Entry> &original);
void operator = (const Queue<Entry> &original);

protected:
Node<Entry> *front, *rear;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 22
Khoa Công nghệ Thông tin

Thêm phần tử vào một queue liên kết

Giải thuật:
1. Tạo một node mới với dữ liệu cần thêm vào

2. Nếu queue đang rỗng

2.1. front và rear là node mới

3. Ngược lại

3.1. Nối node mới vào sau rear

3.2. rear chính là node mới

rear

front middle last

front

new_last

new_rear

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 23
Khoa Công nghệ Thông tin

Bỏ phần tử khỏi một queue liên kết

Giải thuật:
1. Dùng một con trỏ để giữ lại front hiện tại

2. Nếu queue có một phần tử

2.1. Gán front và rear về NULL

3. Ngược lại

3.1. Trỏ front đến nút kế sau

4. Xóa nút cũ đi

old_front

front

front middle last

rear

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 24
Khoa Công nghệ Thông tin

Thêm/Bỏ phần tử của một queue liên
kết – Mã C++

template <class Entry>
Error_code append(const Entry &item) {

Node<Entry> *new_rear = new Node<Entry>(item);
if (new_rear == NULL) return overflow;
if (rear == NULL) front = rear = new_rear;
else { rear->next = new_rear; rear = new_rear; }
return success;

}

template <class Entry>
Error_code serve() {

if (front == NULL) return underflow;
Node<Entry> *old_front = front;
front = old_front->next;
if (front == NULL) rear = NULL;
delete old_front;
return success;

}
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 25
Khoa Công nghệ Thông tin

Kích thước của một queue liên kết

Giải thuật:
1. Khởi tạo biến đếm là 0

2. Duyệt qua danh sách

2.1. Đếm tăng số phần tử lên 1

Mã C++:
Node<Entry> *window = front;

int count = 0;

while (window != NULL) {

window = window->next;

count++;

}

return count;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 26
Khoa Công nghệ Thông tin

Ứng dụng: tính toán đa thức

Dùng lại bài reverse Polish calculator

Thiết kế cấu trúc dữ liệu cho đa thức:

Một bản ghi có thành phần mũ và hệ số

Một danh sách các bản ghi theo thứ tự giảm của số mũ

Có thể dùng queue

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 27
Khoa Công nghệ Thông tin

Giải thuật cộng hai đa thức 1

Algorithm Equals_sum1
Input: p,q là hai đa thức
Output: đa thức tổng

1. Trong khi p và q chưa rỗng
1.1. Lấy phần tử front của p và q thành p_term, q_term
1.2. Nếu bậc của p_term lớn (hoặc nhỏ) hơn bậc của q_term

1.2.1. Đẩy p_term (hoặc q_term) vào kết quả
1.2.2. Bỏ phần tử đầu trong p (hoăc trong q)

1.3. Ngược lại
1.3.1. Tính hệ số mới cho số hạng này
1.3.2. Đẩy vào kết quả

2. Nếu p (hoặc q) chưa rỗng
2.1. Đẩy toàn bộ p (hoặc q) vào kết quả

End Equals_sum1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 28
Khoa Công nghệ Thông tin

Ví dụ cộng hai đa thức bằng giải
thuật 1

<3.0, 6> <4.0, 0>< -2.0, 4> <1.0, 3>

p = 3x6 – 2x4 + x3 + 4

<5.0, 5> <2.0, 1><2.0, 4> <4.0, 2>

q = 5x5 + 2x4 + 4x2 + 2x

<3.0, 6> <5.0, 5> <1.0, 3> <4.0, 2>

<2.0, 1>

p + q = 3x6 + 5x5 + x3 + 4x2 + 2x + 4

<4.0, 0>

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 29
Khoa Công nghệ Thông tin

Mã C++ cộng hai đa thức 1

Term p_term, q_term;
while (!p.empty() && !q.empty()) {

p.retrieve(p_term); q.retrieve(q_term);
if (p_tem.degree > q_term.degree) {

p.serve(); append(p_term);
} else if (q_term.degree > p_term.degree) {

q.serve(); append(q_term);
} else {

p.serve(); q.serve();
if (p_term.coefficient + q_term.coefficient != 0) {

Term answer_term(p_term.degree,
p_term.coefficient + q_term.coefficient);

append(answer_term);
} } }

while (!p.empty()) { p.serve_and_retrieve(p_term); append(p_term); }
while (!q.empty()) { q.serve_and_retrieve(q_term); append(q_term); }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 30
Khoa Công nghệ Thông tin

Giải thuật cộng hai đa thức 2

Algorithm Bac_da_thuc
Input: đa thức
Output: bậc của đa thức

1. Nếu đa thức rỗng
1.1. Trả về -1

2. Trả về bậc của phần tử đầu

End Bac_da_thuc

Algorithm Equals_sum2
Input: p,q là hai đa thức
Output: đa thức tổng

1. Trong khi p hoặc q chưa rỗng
1.1. Nếu bậc của p lớn hơn bậc của q

1.1.1. Lấy từ p thành term
1.1.2. Đẩy term vào kết quả

1.2. Nếu bậc của q lớn hơn bậc của p
1.2.1. Lấy từ q thành term
1.2.2. Đẩy term vào kết quả

1.3. Ngược lại
1.3.1. Lấy p_term, q_term từ p và q
1.3.2. Tính tổng hai hệ số
1.3.3. Nếu hệ số kết quả khác không

1.3.3.1. Đẩy vào kết quả
End Equals_sum2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 31
Khoa Công nghệ Thông tin

Ví dụ cộng hai đa thức bằng giải
thuật 2

degree(p) =

degree(p) = 5

6

<3.0, 6> <4.0, 0>< -2.0, 4> <1.0, 3>

p = 3x6 – 2x4 + x3 + 4

<5.0, 5> <2.0, 1><2.0, 4> <4.0, 2>

q = 5x5 + 2x4 + 4x2 + 2x

<3.0, 6> <5.0, 5> <1.0, 3> <4.0, 2>

<2.0, 1>

p + q = 3x6 + 5x5 + x3 + 4x2 + 2x + 4

<4.0, 0>

4

4

3

2

0

1-1

-1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 32
Khoa Công nghệ Thông tin

Mã C++ cộng hai đa thức 2

while (!p.empty() || !q.empty()) {
Term p_term, q_term;
if (p.degree() > q.degree()) {

p.serve_and_retrieve(p_term);
append(p_term);

} else if (q.degree() > p.degree()) {
q.serve_and_retrieve(q_term);
append(q_term);

} else {
p.serve_and_retrieve(p_term);
q.serve_and_retrieve(q_term);
if (p_term.coefficient + q_term.coefficient != 0) {

Term answer_term(p_term.degree,
p_term.coefficient + q_term.coefficient);

append(answer_term);
} } }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 4: Stack và Queue liên kết 33
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 5: Đệ qui

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 2
Khoa Công nghệ Thông tin

Khái niệm đệ qui

Khái niệm (định nghĩa) đệ qui có dùng lại chính
nó.

Ví dụ: giai thừa của n là 1 nếu n là 0 hoặc là n nhân
cho giai thừa của n-1 nếu n > 0

Quá trình đệ qui gồm 2 phần:
Trường hợp cơ sở (base case)

Trường hợp đệ qui: cố gắng tiến về trường hợp cơ
sở

Ví dụ trên:
Giai thừa của n là 1 nếu n là 0

Giai thừa của n là n * (giai thừa của n-1) nếu n>0

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 3
Khoa Công nghệ Thông tin

Tính giai thừa

Định nghĩa không đệ qui:

n! = n * (n-1) * … * 1

Định nghĩa đệ qui:

n! = 1 nếu n=0

n * (n-1)! nếu n>0

Mã C++:
int factorial(int n) {

if (n==0) return 1;

else return (n * factorial(n - 1));

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 4
Khoa Công nghệ Thông tin

Thi hành hàm tính giai thừa

n=2

…

2*factorial(1)

factorial (2)

n=1

…

1*factorial(0)

factorial (1)

n=0

…
return 1;

factorial (0)

1

1

6

2

n=3

…

3*factorial(2)

factorial (3)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 5
Khoa Công nghệ Thông tin

Trạng thái hệ thống khi thi hành hàm
tính giai thừa

factorial(3) factorial(3)

factorial(2)

factorial(3)

factorial(2)

factorial(1)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(1)

factorial(3)

factorial(2)

factorial(3)

t

Gọi hàm
factorial(3)

Gọi hàm
factorial(2)

Gọi hàm
factorial(1)

Gọi hàm
factorial(0)

Trả về từ
hàm
factorial(0)

Trả về từ
hàm
factorial(1)

Trả về từ
hàm
factorial(2)

Trả về từ
hàm
factorial(3)

Stack hệ thống

Thời gian hệ thống

t

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 6
Khoa Công nghệ Thông tin

Bài toán Tháp Hà nội

Luật:

Di chuyển mỗi lần một đĩa

Không được đặt đĩa lớn lên trên đĩa nhỏ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 7
Khoa Công nghệ Thông tin

Bài toán Tháp Hà nội – Thiết kế hàm

Hàm đệ qui:

Chuyển (count-1) đĩa trên đỉnh của cột start sang cột
temp

Chuyển 1 đĩa (cuối cùng) của cột start sang cột finish

Chuyển count-1 đĩa từ cột temp sang cột finish

magic

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 8
Khoa Công nghệ Thông tin

Bài toán Tháp Hà nội – Mã C++

void move(int count, int start, int finish, int temp) {
if (count > 0) {

move(count − 1, start, temp, finish);
cout << "Move disk " << count << " from " <<

start
<< " to " << finish << "." << endl;

move(count − 1, temp, finish, start);
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 9
Khoa Công nghệ Thông tin

Bài toán Tháp Hà nội – Thi hành

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 10
Khoa Công nghệ Thông tin

Bài toán Tháp Hà nội – Cây đệ qui

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 11
Khoa Công nghệ Thông tin

Thiết kế các giải thuật đệ qui

Tìm bước chính yếu (bước đệ qui)

Tìm qui tắc ngừng

Phác thảo giải thuật

Dùng câu lệnh if để lựa chọn trường hợp.

Kiểm tra điều kiện ngừng

Đảm bảo là giải thuật luôn dừng lại.

Vẽ cây đệ qui

Chiều cao cây ảnh hưởng lượng bộ nhớ cần thiết.

Số nút là số lần bước chính yếu được thi hành.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 12
Khoa Công nghệ Thông tin

Cây thi hành và stack hệ thống

Cây thi hành

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 13
Khoa Công nghệ Thông tin

Đệ qui đuôi (tail recursion)

Định nghĩa: câu lệnh thực thi cuối cùng là lời gọi
đệ qui đến chính nó.

Khử: chuyển thành vòng lặp.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 14
Khoa Công nghệ Thông tin

Khử đệ qui đuôi hàm giai thừa

Giải thuật:
product=1

for (int count=1; count < n; count++)

product *= count;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 15
Khoa Công nghệ Thông tin

Dãy số Fibonacci

Định nghĩa:
F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2 khi n>2

Ví dụ: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Hàm đệ qui:

int fibonacci (int n) {

if (n<=0) return 0;

if (n==1) return 1;

else return (fibonacci(n-1) + fibonacci(n-2));

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 16
Khoa Công nghệ Thông tin

Dãy số Fibonacci – Cây thi hành

Đã tính rồi

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 17
Khoa Công nghệ Thông tin

Dãy số Fibonacci – Khử đệ qui

Nguyên tắc:

Dùng biến lưu trữ giá trị đã tính của Fn-2

Dùng biến lưu trữ giá trị đã tính của Fn-1

Tính Fn = Fn-1 + Fn-2 và lưu lại để dùng cho lần sau

Giải thuật:

int Fn2=0, Fn1=1, Fn;

for (int i = 2; i <= n; i++) {

Fn = Fn1 + Fn2;

Fn2 = Fn1; Fn1 = Fn;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 18
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 19
Khoa Công nghệ Thông tin

Bài toán 4 con Hậu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 20
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Giải thuật

Algorithm Solve

Input trạng thái bàn cờ

Output

1. if trạng thái bàn cờ chứa đủ 8 con hậu

1.1. In trạng thái này ra màn hình

2. else

2.1. for mỗi ô trên bàn cờ mà còn an toàn

2.1.1. thêm một con hậu vào ô này

2.1.2. dùng lại giải thuật Solve với trạng thái mới

2.1.3. bỏ con hậu ra khỏi ô này

End Solve Vét cạn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 21
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Thiết kế
phương thức

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 22
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Thiết kế dữ liệu
đơn giản

const int max_board = 30;

class Queens {
public:

Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);
int board_size; // dimension of board = maximum number of queens

private:
int count; // current number of queens = first unoccupied row
bool queen_square[max_board][max_board];

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 23
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Mã C++

void Queens :: insert(int col) {
queen_square[count++][col] = true;

}

bool Queens :: unguarded(int col) const {
int i;
bool ok = true;
for (i = 0; ok && i < count; i++) //kiểm tra tại một cột

ok = !queen_square[i][col];
//kiểm tra trên đường chéo lên
for (i = 1; ok && count − i >= 0 && col − i >= 0; i++)

ok = !queen_square[count − i][col − i];
//kiểm tra trên đường chéo xuống
for (i = 1; ok && count − i >= 0 && col + i < board_size; i++)

ok = !queen_square[count − i][col + i];
return ok;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 24
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Góc nhìn khác

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 25
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Thiết kế mới

const int max_board = 30;
class Queens {
public:

Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);
int board size;

private:
int count;
bool col_free[max board];
bool upward_free[2 * max board − 1];
bool downward_free[2 * max board − 1];
int queen_in_row[max board]; //column number of queen in each row

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 26
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Mã C++ mới
Queens :: Queens(int size) {

board size = size;
count = 0;
for (int i = 0; i < board_size; i++)

col_free[i] = true;
for (int j = 0; j < (2 * board_size − 1); j++)

upward_free[j] = true;
for (int k = 0; k < (2 * board_size − 1); k++)

downward_free[k] = true;
}

void Queens :: insert(int col) {
queen_in_row[count] = col;
col_free[col] = false;
upward_free[count + col] = false;
downward_free[count − col + board size − 1] = false;
count++;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 27
Khoa Công nghệ Thông tin

Bài toán 8 con Hậu – Đánh giá

Thiết kế đầu

Thiết kế mới

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 5: Đệ qui 28
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 6: Danh sách và chuỗi

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 2
Khoa Công nghệ Thông tin

Danh sách trừu tượng

Một danh sách (list) kiểu T
Một dãy hữu hạn kiểu T

Một số tác vụ:

1. Khởi tạo danh sách rỗng (create)

2. Kiểm tra rỗng (empty)

3. Kiểm tra đầy (full)

4. Tính kích thước (size)

5. Xóa rỗng danh sách (clear)

6. Thêm một giá trị vào danh sách tại một ví trí cụ thể (insert)

7. Lấy một giá trị tại một vị trí cụ thể ra khỏi danh sách (remove)

8. Nhận về giá trị tại một vị trí cụ thể (retrieve)

9. Thay thế một giá trị tại một vị trí cụ thể (replace)

10. Duyệt danh sách và thi hành một tác vụ tại mỗi vị trí (traverse)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 3
Khoa Công nghệ Thông tin

Thiết kế các phương thức

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 4
Khoa Công nghệ Thông tin

Chỉ số các phần tử

Đánh chỉ số một danh sách có n phần tử:

Đánh chỉ số từ 0, 1, … các phần tử

Ví dụ: a0, a1, a2, …, an-1

Phần tử aidx đứng sau aidx-1 và trước aidx+1 (nếu có)

Dùng chỉ số:

Tìm thấy một phần tử, trả về vị trí (chỉ số) của nó.

Thêm vào một phần tử tại vị trí idx thì chỉ số các
phần tử cũ từ idx trở về sau đều tăng lên 1.

Chỉ số này được dùng bất kể danh sách được hiện
thực thế nào ở cấp vật lý.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 5
Khoa Công nghệ Thông tin

Phương thức insert và remove

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 6
Khoa Công nghệ Thông tin

Phương thức retrieve và replace

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 7
Khoa Công nghệ Thông tin

Phương thức traverse và tham số
hàm

void print_int(int &x) { cout << x << “ ”; }
void increase_int(int &x) { x++; }

void main() {
List<int> alist;
…
alist.traverse(print_int);
…
alist.traverse(increase_int);
…

}

Khi gọi tham số hàm,
chương trình dịch phải
nhìn thấy hàm được gọi.

Tùy theo mục đích mà gọi
các hàm khác nhau.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 8
Khoa Công nghệ Thông tin

Hiện thực danh sách liên tục
template <class List_entry>
class List {
public:

// methods of the List ADT
List();
int size() const;
bool full() const;
bool empty() const;
void clear();
void traverse(void (*visit)(List_entry &));
Error_code retrieve(int position, List_entry &x) const;
Error_code replace(int position, const List_entry &x);
Error_code remove(int position, List_entry &x);
Error_code insert(int position, const List_entry &x);

protected:
// data members for a contiguous list implementation
int count;
List_entry entry[max_list];

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 9
Khoa Công nghệ Thông tin

Thêm vào một danh sách liên tục

insert(3, ‘z’)

da b c

0 1 2 3 4 5 6 7 8 9

e f g hd e f g h

z

count=8count=9

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 10
Khoa Công nghệ Thông tin

Giải thuật thêm vào một danh sách
liên tục

Algorithm Insert
Input: position là vị trí cần thêm vào, x là giá trị cần thêm vào
Output: danh sách đã thêm vào x

1. if list đầy
1.1. return overflow

2. if position nằm ngoài khoảng [0..count]
2.1. return range_error
//Dời tất cả các phần tử từ position về sau 1 vị trí

3. for index = count-1 down to position
3.1. entry[index+1] = entry[index]

4. entry[position] = x //Gán x vào vị trí position

5. count++ //Tăng số phần tử lên 1

6. return success;

End Insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 11
Khoa Công nghệ Thông tin

Mã C++ thêm vào một danh sách liên
tục

template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x) {

if (full())
return overflow;

if (position < 0 || position > count)
return range_error;

for (int i = count − 1; i >= position; i−−)
entry[i + 1] = entry[i];

entry[position] = x;
count++;
return success;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 12
Khoa Công nghệ Thông tin

Xóa từ một danh sách liên tục

x

remove(3, x)

da b c

0 1 2 3 4 5 6 7 8 9

e f g hd e f g h

count=8count=7

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 13
Khoa Công nghệ Thông tin

Giải thuật xóa từ một danh sách liên
tục

Algorithm Remove
Input: position là vị trí cần xóa bỏ, x là giá trị lấy ra được
Output: danh sách đã xóa bỏ phần tử tại position

1. if list rỗng
1.1. return underflow

2. if position nằm ngoài khoảng [0..count-1]
2.1. return range_error

3. x = entry[position] //Lấy x tại vị trí position ra
4. count-- //Giảm số phần tử đi 1

//Dời tất cả các phần tử từ position về trước 1 vị trí
5. for index = position to count-1

5.1. entry[index] = entry[index+1]
6. return success;

End Remove

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 14
Khoa Công nghệ Thông tin

Giải thuật duyệt một danh sách liên
tục

Algorithm Traverse
Input: hàm visit dùng để tác động vào từng phần tử
Output: danh sách được cập nhật bằng hàm visit

//Quét qua tất cả các phần tử trong list
1. for index = 0 to count-1

1.1. Thi hành hàm visit để duyệt phần tử entry[index]

End Traverse

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 15
Khoa Công nghệ Thông tin

Mã C++ duyệt một danh sách liên tục

template <class List_entry>
void List<List_entry> :: traverse(void (*visit)(List_entry &))
/* Post: Tác vụ cho bởi hàm visit sẽ được thi hành tại mỗi
thành phần của list bắt đầu từ vị trí 0 trở đi. */
{

for (int i = 0; i < count; i++)
(*visit)(entry[i]);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 16
Khoa Công nghệ Thông tin

Danh sách liên kết đơn (DSLK đơn)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 17
Khoa Công nghệ Thông tin

Hiện thực DSLK đơn

template <class List_entry>
class List {
public:

// Specifications for the methods of the list ADT go here.
// The following methods replace compiler-generated defaults.
List();
~List();
List(const List<List_entry> ©);
void operator = (const List<List_entry> ©);

protected:
// Data members for the linked list implementation now follow.
int count;
Node<List_entry> * head;
// The following auxiliary function is used to locate list positions
Node<List_entry> *set_position(int position) const;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 18
Khoa Công nghệ Thông tin

Tìm vị trí trên DSLK đơn

Nhu cầu:

Nhập vào chỉ số của một phần tử

Cho biết đó là phần tử nào (con trỏ chỉ đến phần tử)

Ý tưởng:

Bắt đầu từ phần tử đầu tiên

Di chuyển đúng position bước thì đến được phần tử
cần tìm

Phải đảm bảo là position nằm trong khoảng
[0..count-1]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 19
Khoa Công nghệ Thông tin

q

Giải thuật tìm vị trí trên DSLK đơn

Algorithm Set position
Input: position là vị trí cần tìm
Output: con trỏ chỉ đến phần tử tại vị trí cần tìm

1. set q to head
2. for index =0 to position //Thi hành position bước

2.1. advance q to the next element //Trỏ q đến phần tử kế tiếp
3. return q

End Set position

x y z

head

m

index=0

set_position(2)

index=1 index=2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 20
Khoa Công nghệ Thông tin

Mã C++ tìm vị trí trên DSLK đơn

template <class List_entry>
Node<List_entry> *List<List_entry> :: set_position(int position) const
/* Pre: position là vị trí hợp lệ trong list, 0 < position < count.

Post: Trả về một con trỏ chỉ đến Node đang ở vị trí position
*/
{

Node<List_entry> *q = head;
for (int i = 0; i < position; i++)

q = q->next;
return q;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 21
Khoa Công nghệ Thông tin

Thêm vào một DSLK đơn

new_node

a

y

following_node

phần tử tại vị trí position

x

previous_node

phần tử tại vị trí position-1

bây giờ, phần tử này
có vị trí position

bây giờ, phần tử này
có vị trí position+1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 22
Khoa Công nghệ Thông tin

Giải thuật thêm vào một DSLK đơn

Algorithm Insert
Input: position là vị trí thêm vào, x là giá trị thêm vào
Output: danh sách đã thêm vào x tại vị trí position

1. Nếu position > 0
1.1. Trỏ previous đến phần tử tại vị trí position-1
1.2. Trỏ following đến phần tử sau previous

2. Ngược lại
2.1. Trỏ following đến head

3. Tạo ra node mới là new_node với giá trị x
4. Trỏ next của new_node đến following
5. Nếu position là 0

5.1. Trỏ head đến new_node
6. Ngược lại

6.1. Trỏ next của previous đến new_node
7. Tăng số lượng các phần tử lên 1
End Insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 23
Khoa Công nghệ Thông tin

Mã C++ thêm vào một DSLK đơn

template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x) {

if (position < 0 || position > count)
return range_error;

Node<List_entry> *new_node, *previous, *following;
if (position > 0) {

previous = set_position(position − 1);
following = previous->next;

} else following = head;
new_node = new Node<List_entry>(x, following);
if (new_node == NULL) return overflow;
if (position == 0) head = new_node;
else previous->next = new_node;
count++;
return success;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 24
Khoa Công nghệ Thông tin

Xóa bỏ từ một DSLK đơn

bây giờ, phần tử này
có vị trí position

phần tử tại vị trí position

phần tử tại vị trí position+1

x z

previous_node

phần tử tại vị trí position-1

y

following_node

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 25
Khoa Công nghệ Thông tin

DSLK kép (Doubly linked list)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 26
Khoa Công nghệ Thông tin

Định nghĩa DSLK kép

template <class List_entry>
class List {
public:

// Add specications for methods of the list ADT.
// Add methods to replace compiler generated defaults.

protected:
// Data members for the doubly-linked list implementation follow:
int count;
mutable int current_position;
mutable Node<List_entry> *current;
// The auxiliary function to locate list positions follows:
void set_position(int position) const;

};

Các hàm hằng (const) có thể thay đổi giá trị của các biến mutable này

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 27
Khoa Công nghệ Thông tin

Định nghĩa Node cho DSLK kép

template <class Node_entry>
struct Node {

// data members
Node_entry entry;
Node<Node_entry> *next;
Node<Node_entry> *back;
// constructors
Node();
Node(Node_entry, Node<Node_entry> *link_back = NULL,

Node<Node_entry> *link_next = NULL);
};

z

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 28
Khoa Công nghệ Thông tin

Tìm vị trí trong DSLK kép

set_position(6)set_position(8)

x y z m

current
current_position

position = 5 position = 6 position = 7 position = 8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 29
Khoa Công nghệ Thông tin

Thêm vào trong DSLK kép

x

y

z

current

previous following

new_node

phần tử tại vị trí position-1

phần tử tại vị trí position

phần tử này bây giờ
có vị trí là position

phần tử này bây giờ
có vị trí là position+1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 30
Khoa Công nghệ Thông tin

Thêm vào trong DSLK kép

Algorithm Insert
Input: x là giá trị cần thêm vào tại position (0<=position<=count)
Output: danh sách đã thêm giá trị x vào vị trí position

1. if position là 0
1.1. if số phần tử là 0

1.1.1. Trỏ following đến NULL
1.2. Trỏ preceding đến NULL

2. else
2.1. Trỏ preceding đến vị trí position -1, following đến vị trí position

3. Tạo ra phần tử mới new_node
4. Trỏ next và back của new_node đến following và preceding
5. if preceding khác rỗng

5.1. Trỏ next của preceding đến new_node
6. if following khác rỗng

6.1. Trỏ back của following đến new_node
7. Tăng số phần tử lên 1
End Insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 31
Khoa Công nghệ Thông tin

Mã C++ thêm vào trong DSLK kép
template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x) {

Node<List_entry> *new node, *following, *preceding;
if (position < 0 || position > count) return range_error;
if (position == 0) {

if (count == 0) following = NULL;
else { set_position(0); following = current; }
preceding = NULL;

} else {
set_position(position − 1);
preceding = current; following = preceding->next;

}
new_node = new Node<List_entry>(x, preceding, following);
if (new_node == NULL) return overflow;
if (preceding != NULL) preceding->next = new_node;
if (following != NULL) following->back = new_node;
current = new_node; current_position = position;
count++;
return success;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 32
Khoa Công nghệ Thông tin

So sánh cách hiện thực liên tục và
cách hiện thực liên kết

DS liên tục thích hợp khi:
Kích thước từng phần tử là
rất nhỏ

Kích thước của cả danh
sách (số phần tử) đã biết
khi lập trình

Có ít sự thêm vào hay loại
bỏ ở giữa danh sách

Hình thức truy cập trực
tiếp là quan trọng

DSLK thích hợp khi:
Kích thước từng phần tử là
lớn

Kích thước của danh sách
không biết trước

Có nhiều sự thêm vào, loại
bỏ, hay xắp xếp các phần
tử trong danh sách

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 33
Khoa Công nghệ Thông tin

Chuỗi (string)

Chuỗi là một dãy các ký tự

Ví dụ:
“This is a string” là 1 chuỗi có 16 ký tự

“” là một chuỗi rỗng (có 0 ký tự)

Chuỗi trừu tượng:
Có thể xem là danh sách

Có các tác vụ thường dùng:

Sao chép (strcpy)

Nối kết (strcat)

Tính chiều dài (strlen)

So sánh 2 chuỗi (strcmp)

Tìm một chuỗi trong chuỗi khác (strstr)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 34
Khoa Công nghệ Thông tin

Chuỗi trên C

Có kiểu là char *

Kết thúc bằng ký tự ‘\0’ (NULL)

Số phần tử trong bộ nhớ nhiều hơn chiều dài chuỗi
là 1

Cần chuẩn bị bộ nhớ cần thiết khi thao tác

Ví dụ:
char *str1, *str2;

…

delete str2;

str2 = new char[strlen(str1) + 1];

strcpy(str2, str1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 35
Khoa Công nghệ Thông tin

Thiết kế lại kiểu dữ liệu chuỗi

class String {
public: // methods of the string ADT

String();
~String();
String (const String ©); // copy constructor
String (const char * copy); // conversion from C-string
String (List<char> ©); // conversion from List
void operator = (const String ©);
const char *c_str() const; // conversion to C-style string

protected:
char *entries;
int length;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 36
Khoa Công nghệ Thông tin

Thiết kế các toán tử cần thiết

bool operator == (const String &first, const String &second);
bool operator > (const String &first, const String &second);
bool operator < (const String &first, const String &second);
bool operator >= (const String &first, const String &second);
bool operator <= (const String &first, const String &second);
bool operator != (const String &first, const String &second);

bool operator == (const String &first, const String &second) {
return strcmp(first.c_str(), second.c_str()) == 0;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 37
Khoa Công nghệ Thông tin

Khởi tạo với chuỗi C

String :: String (const char *in_string)
/* Pre: The pointer in_string references a C-string.
Post: The String is initialized by the C-string in_string. */
{

length = strlen(in_string);
entries = new char[length + 1];
strcpy(entries, in_string);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 38
Khoa Công nghệ Thông tin

Khởi tạo với danh sách ký tự

String :: String (List<char> &in_list)
/* Post: The String is initialized by the character List in_list. */
{

length = in_list.size();
entries = new char[length + 1];
for (int i = 0; i < length; i++)

in_list.retrieve(i, entries[i]);

//Gán ‘\0’ để kết thúc chuỗi
entries[length] = ‘\0’;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 6. Danh sách và chuỗi 39
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 7: Tìm kiếm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 2
Khoa Công nghệ Thông tin

Khái niệm tìm kiếm

Cho biết:
Một danh sách các bản ghi (record).

Một khóa cần tìm.

Tìm bản ghi có khóa trùng với khóa cần tìm
(nếu có).

Đo độ hiệu quả:
Số lần so sánh khóa cần tìm và khóa của các bản ghi

Phân loại:
Tìm kiếm nội (internal searching)

Tìm kiếm ngoại (external searching)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 3
Khoa Công nghệ Thông tin

Bản ghi và khóa

Bản ghi:

Khóa

Dữ liệu

Khóa:

So sánh được

Thường là số

Trích khóa từ bản ghi:

So sánh các bản ghi

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 4
Khoa Công nghệ Thông tin

Bản ghi và khóa trên C++
class Key {
public: // Add any constructors and methods for key data.
private: // Add declaration of key data members here.
};
bool operator == (const Key &x, const Key &y);
bool operator > (const Key &x, const Key &y);
bool operator < (const Key &x, const Key &y);
bool operator >= (const Key &x, const Key &y);
bool operator <= (const Key &x, const Key &y);
bool operator != (const Key &x, const Key &y);

class Record{
public:

operator Key(); // implicit conversion from Record to Key .
// Add any constructors and methods for Record objects.

private:
// Add data components.

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 5
Khoa Công nghệ Thông tin

Hàm tìm kiếm

Tham số vào:

Danh sách cần tìm

Khóa cần tìm

Tham số ra:

Vị trí phần tử tìm thấy (nếu có)

Kết quả hàm: kiểu Error_code

Tìm thấy: success

Không tìm thấy: not_present

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 6
Khoa Công nghệ Thông tin

Tìm tuần tự (sequential search)

5
Target key

7 13 5 21 6 2 8 15

0 1 2 3 4 5 6 7

position = 2

return success

Số lần so sánh: 3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 7
Khoa Công nghệ Thông tin

Tìm tuần tự - không tìm thấy

9
Target key

7 13 5 21 6 2 8 15

0 1 2 3 4 5 6 7

return not_present

Số lần so sánh: 8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 8
Khoa Công nghệ Thông tin

Tìm tuần tự - Mã C++

Error_code sequential_search(const List<Record> &the_list,
const Key &target, int &position)

/* Post: If an entry in the_list has key equal to target, then return success
and the output parameter position locates such an entry within the list.
Otherwise return not_present and position becomes invalid. */
{

int s = the_list.size();
for (position = 0; position < s; position++) {

Record data;
the_list.retrieve(position, data);
if (data == target) return success;

}
return not_present;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 9
Khoa Công nghệ Thông tin

Tìm tuần tự - Đánh giá

Số lần so sánh trên khóa đối với danh sách có n
phần tử:

Tìm không thành công: n.

Tìm thành công, trường hợp tốt nhất: 1.

Tìm thành công, trường hợp xấu nhất: n.

Tìm thành công, trung bình: (n + 1)/2.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 10
Khoa Công nghệ Thông tin

Tìm trên danh sách có thứ tự

Danh sách có thứ tự (ordered list):

Phần tử tại vị trí i có khóa nhỏ hơn hoặc bằng phần
tử tại vị trí j (i<j).

Tìm tuần tự có thể kết thúc sớm hơn:

Khi khóa cần tìm nhỏ hơn khóa của phần tử hiện tại.

Trả giá:

Mỗi bước lặp cần kiểm tra xem ngừng được chưa.

Tốn 2 phép so sánh trên khóa cho mỗi lần lặp.

Số phép so sánh “có vẻ” gấp đôi so với phép tìm trên
danh sách bất kỳ.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 11
Khoa Công nghệ Thông tin

Quản lý danh sách có thứ tự

Thừa hưởng từ List và
Hiệu chỉnh (override) lại các phương thức insert,
replace: Đảm bảo là danh sách kết quả vẫn còn thứ
tự.

Thiết kế thêm (overload) phương thức insert mới
không cần tham số position.

class Ordered_list: public List<Record> {

public:

…

Error_code insert (const Record &data);

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 12
Khoa Công nghệ Thông tin

Thêm vào danh sách có thứ tự
- Giải thuật

Algorithm Insert
Input: x là giá trị cần thêm vào
Output: danh sách đã thêm x vào và vẫn có thứ tự

// Đi tìm vị trí position mà khóa của x nằm giữa khóa của các phần từ
// tại vị trí position – 1 và position.

1. for position = 0 to size
1.1. list_data = phần tử tại vị trí position
1.2. if x nhỏ hơn hoặc bằng list_data

1.2.1. thêm vào tại vị trí này
1.2.2. ngừng lại

End Insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 13
Khoa Công nghệ Thông tin

Thêm vào danh sách có thứ tự
- Mã C++

Error_code Ordered_list :: insert(const Record &data)
/* Post: If the Ordered_list is not full, the function succeeds: The Record
data is inserted into the list, following the last entry of the list with a strictly
lesser key (or in the rst list position if no list element has a lesser key).
Else: the function fails with the diagnostic Error_code overflow. */
{

int s = size();
int position;
for (position = 0; position < s; position++) {

Record list_data;
retrieve(position, list_data);
if (data <= list_data) break;

}
return List<Record> :: insert(position, data);

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 14
Khoa Công nghệ Thông tin

Thêm vào danh sách (viết đè)
- Giải thuật

Algorithm Insert_overridden
Input: position là vị trí cần thêm vào, x là giá trị cần thêm vào
Output: danh sách đã thêm x vào và vẫn có thứ tự

// Kiểm tra xem có thỏa mãn mà khóa của x nằm giữa khóa của
// các phần từ tại vị trí position – 1 và position.

1. if position > 0
1.1. list_data = phần tử tại vị trí position -1
1.2. if x nhỏ hơn list_data

1.2.1. có lỗi
2. if position < count

2.1. list_data = phần tử tại vị trí position
2.2. if x lớn hơn list_data

2.2.1. có lỗi
3. Thêm vào tại vị trí này

End Insert_overridden

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 15
Khoa Công nghệ Thông tin

Tìm nhị phân (binary search)

Ý tưởng:

So sánh khóa cần tìm với phần tử giữa.

Nếu nó nhỏ hơn thì tìm bên trái danh sách.

Ngược lại tìm bên phải danh sách.

Lặp lại động tác này.

Cần 2 chỉ mục top và bottom để giới hạn đoạn
tìm kiếm trên danh sách.

Khóa cần tìm nếu có chỉ nằm trong đoạn này.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 16
Khoa Công nghệ Thông tin

Tìm nhị phân – Cách 2

10
Target key

2 5 8 10 12 13 15 18 21 24

0 1 2 3 4 5 6 7 8 9

bottom topmiddle

position = 3

return success

Số lần so sánh: 7

Khóa cần tìm không bằngKhóa cần tìm nhỏ hơnKhóa cần tìm lớn hơnKhóa cần tìm bằng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 17
Khoa Công nghệ Thông tin

Tìm nhị phân – Giải thuật 2

Algorithm Binary_search2
Input: target là khóa cần tìm, bottom và top là giới hạn danh sách
Output: position là vị trí nếu tìm thấy

1. if bottom > top
1.1. return not_present

2. if bottom <= top
2.1. list_data = phần tử tại vị trí mid = (bottom + top)/2
2.2. if x == list_data

2.2.1. position = mid
2.2.2. return success

2.3. if x < list_data
2.3.1. call Binary_search2 với đoạn bên trái (bottom, mid-1)

2.4. else
2.4.1. call Binary_search2 với đoạn bên phải (mid+1, top)

End Binary_search2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 18
Khoa Công nghệ Thông tin

Tìm nhị phân 2 – Mã C++
Error_code recursive_binary_2(const Ordered_list &the list,

const Key &target, int bottom, int top, int &position) {
Record data;
if (bottom <= top) {

int mid = (bottom + top)/2;
the_list.retrieve(mid, data);
if (data == target) {

position = mid;
return success;

}
else if (data < target)

return recursive_binary_2(the list, target, mid + 1, top, position);
else

return recursive_binary_2(the list, target, bottom, mid − 1, position);
}
else return not_present;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 19
Khoa Công nghệ Thông tin

Tìm nhị phân – Cách 1

10
Target key

2 5 8 10 12 13 15 18 21 24

0 1 2 3 4 5 6 7 8 9

bottom topmiddle

position = 3

return success

Số lần so sánh: 4

Khóa cần tìm nhỏ hơn hoặc bằngKhóa cần tìm lớn hơnKhóa cần tìm bằng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 20
Khoa Công nghệ Thông tin

Tìm nhị phân – Giải thuật 1

Algorithm Binary_search1
Input: target là khóa cần tìm, bottom và top là giới hạn danh sách
Output: position là vị trí nếu tìm thấy

1. if bottom == top
1.1. if x == phần tử tại vị trí bottom

1.1.1. position = bottom
1.1.2. return success

2. if bottom > top
2.1. return not_present

3. if bottom < top
3.1. if x < phần tử tại vị trí mid = (bottom + top)/2

3.1.1. call Binary_search1 với đoạn bên trái (bottom, mid-1)
3.2. else

3.2.1. call Binary_search1 với đoạn bên phải (mid, top)

End Binary_search1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 21
Khoa Công nghệ Thông tin

Tìm nhị phân 1 – Mã C++

Error_code recursive_binary_1(const Ordered_list &the_list,
const Key &target, int bottom, int top, int &position) {

Record data;
if (bottom < top) { // List has more than one entry.

the_list.retrieve((bottom + top)/2, data);
if (data < target)

return recursive_binary_1(the list, target, mid + 1, top, position);
else // Reduce to bottom half of list.

return recursive_binary_1(the list, target, bottom, mid, position);
} else if (top < bottom)

return not_present; // List is empty.
else { position = bottom;

the_list.retrieve(bottom, data);
if (data == target) return success;
else return not_present;

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 22
Khoa Công nghệ Thông tin

Cây so sánh của giải thuật 1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 23
Khoa Công nghệ Thông tin

Cây so sánh của giải thuật 2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 24
Khoa Công nghệ Thông tin

Tìm nhị phân – Đánh giá

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 25
Khoa Công nghệ Thông tin

So sánh trong trường hợp trung
bình các giải thuật

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 26
Khoa Công nghệ Thông tin

Đánh giá độ phức tạp của giải thuật

So sánh với các hàm cơ bản:

g(n) = 1 Constant function

g(n) = log n Logarithmic function

g(n) = n Linear function

g(n) = n2 Quadratic function

g(n) = n3 Cubic function

g(n) = 2n Exponential function

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 27
Khoa Công nghệ Thông tin

Độ phức tạp tính bằng tiệm cận

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 28
Khoa Công nghệ Thông tin

Độ tăng của các hàm chung

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 29
Khoa Công nghệ Thông tin

Ký hiệu Big-O

f(n)  Bậc của f so với g limn->∞ (f(n)/g(n)

o(g(n)) < : nhỏ hơn hẳn 0

O(g(n)) ≤ : nhỏ hơn hoặc bằng a

Θ(g(n)) = : bằng a ≠ 0

Ω(g(n)) ≥ : lớn hơn hoặc bằng a ≠ 0 hoặc là ∞

Thứ tự tăng dần về độ lớn:

O(1) O(lg n) O(n) O(n lg n) O(n2) O(n3) O(2n)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 7. Tìm kiếm 30
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 8: Sắp thứ tự

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 2
Khoa Công nghệ Thông tin

Khái niệm

Sắp thứ tự:

Đầu vào: một danh sách

Đầu ra: danh sách có thứ tự tăng (hoặc giảm) trên
khóa

Phân loại:

Sắp thứ tự ngoại (external sort): tập tin

Sắp thứ tự nội (internal sort): bộ nhớ

Giả thiết:

Sắp thứ tự nội

Sắp tăng dần

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 3
Khoa Công nghệ Thông tin

Insertion sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 4
Khoa Công nghệ Thông tin

Insertion sort - Danh sách liên tục

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 5
Khoa Công nghệ Thông tin

Giải thuật insertion sort – Danh sách
liên tục

Algorithm Insertion_sort
Input: danh sách cần sắp thứ tự
Output: danh sách đã được sắp thứ tự

1. for first_unsorted = 1 to size
//Tìm vị trí hợp lý để chèn giá trị đang có vào
1.1. current = list[first_unsorted]
1.2. position = first_unsorted
1.3. while (position>0 and list[position - 1] > current)

//Dời chỗ các phần tử lớn về sau
1.3.1. list[position] = list[position - 1]
1.3.2. position = position - 1

//Chép phần tử trước đó vào đúng vị trí của nó
1.4. list[position - 1] = current

End Insertion_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 6
Khoa Công nghệ Thông tin

Mã C++ Insertion sort – Danh sách
liên tục

template <class Record>
void Sortable_list<Record> :: insertion_sort() {

int first_unsorted; // position of first unsorted entry
int position; // searches sorted part of list
Record current; // holds the entry temporarily removed from list
for (first_unsorted = 1; first_unsorted < count; first_unsorted++)

if (entry[first_unsorted] < entry[first_unsorted − 1]) {
position = first_unsorted;
current = entry[first_unsorted]; // Pull unsorted entry out of the list.
do {

// Shift all entries until the proper position is found.
entry[position] = entry[position − 1];
position−−; // position is empty.

} while (position > 0 && entry[position − 1] > current);
entry[position] = current;

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 7
Khoa Công nghệ Thông tin

Insertion sort – DSLK

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 8
Khoa Công nghệ Thông tin

Giải thuật Insertion sort - DSLK

Algorithm Insertion_sort
Input: danh sách cần sắp thứ tự và có ít nhất 1 phần tử
Output: danh sách đã được sắp thứ tự

1. last_sorted = head
//Đi dọc danh sách liên kết

2. while (last_sorted chưa là phần tử cuối)
2.1. first_unsorted là phần tử kế của last_sorted
//Chèn vào đầu?
2.2. if (dữ liệu của first_unsorted < dữ liệu của head)

//Chèn vào đầu
2.2.1. Gỡ first_unsorted ra khỏi danh sách
2.2.2. Nối first_unsorted vào đầu danh sách
2.2.3. head = first_unsorted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 9
Khoa Công nghệ Thông tin

Giải thuật Insertion sort – DSLK (tt.)

2.3. else
//Tìm vị trí hợp lý để chèn giá trị đang có vào
2.3.1. tailing = head
2.3.2. current là phần tử kế của tailing
2.3.3. while (dữ liệu của first_unsorted > dữ liệu của current)

2.3.3.1. Di chuyển tailing và current đến phần tử kế
2.3.4. if (first_unsorted chính là current)

2.3.4.1. last_sorted = current //Đã đúng vị trí rồi
2.3.5. else

2.3.4.1. Gỡ first_unsorted ra khỏi danh sách
2.3.4.2. Nối first_unsorted vào giữa tailing và current

2.4. Di chuyển last_sorted đến phần tử kế

End Insertion_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 10
Khoa Công nghệ Thông tin

Mã C++ Insertion sort - DSLK

template <class Record>
void Sortable_list<Record> :: insertion_sort() {

Node <Record> *first_unsorted, *last_sorted, *current, *trailing;
if (head != NULL) {

last_sorted = head;
while (last_sorted->next != NULL) {

first_unsorted = last sorted->next;
if (first_unsorted->entry < head->entry) {

last_sorted->next = first_unsorted->next;
first_unsorted->next = head;
head = first_unsorted; }

else { trailing = head;
current = trailing->next;
while (first_unsorted->entry > current->entry) {

trailing = current;
current = trailing->next;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 11
Khoa Công nghệ Thông tin

Mã C++ Insertion sort – DSLK (tt.)

if (first_unsorted == current)
last_sorted = first_unsorted;

else {
last_sorted->next = first_unsorted->next;
first_unsorted->next = current;
trailing->next = first_unsorted;

}
}

}
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 12
Khoa Công nghệ Thông tin

Đánh giá Insertion sort

Danh sách có thứ tự ngẫu nhiên:

So sánh trung bình là n2/4 + O(n)

Dời chỗ trung bình là n2/4 + O(n)

Danh sách có thứ tự tăng dần: tốt nhất

So sánh n-1 lần

Dời chỗ 0 lần

Danh sách có thứ tự giảm dần: tệ nhất

So sánh n2/2 + O(n) lần

Dời chỗ n2/2 + O(n) lần

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 13
Khoa Công nghệ Thông tin

Selection sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 14
Khoa Công nghệ Thông tin

Selection sort – Danh sách liên tục

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 15
Khoa Công nghệ Thông tin

Giải thuật Selection sort

Algorithm Selection_sort
Input: danh sách cần sắp thứ tự
Output: danh sách đã được sắp thứ tự

1. for position = size − 1 downto 0
//Tìm vị trí phần tử có khóa lớn nhất trong phần chưa sắp thứ tự
1.1. max = 0 //Giả sử phần tử đó ở tại 0
1.2. for current = 1 to position //Xét các phần tử còn lại

1.2.1. if (list[current] > list[max]) //Nếu có phần tử nào lớn hơn
1.2.1.1. max = current //thì giữ lại vị trí đó

//Đổi chỗ phần tử này với phần tử đang xét
1.3. temp = list[max]
1.4. list[max] = list[position]
1.5. list[position] = temp

End Selection_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 16
Khoa Công nghệ Thông tin

Mã C++ Selection sort

template <class Record>
void Sortable_list<Record> :: selection_sort() {

Record temp;
for (int position = count − 1; position > 0; position−−) {

int largest = 0;
for (int current = 1; current <= position; current++)

if (entry[largest] < entry[current])
largest = current;

temp = entry[max];
entry[max] = entry[position];
entry[position] = temp;

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 17
Khoa Công nghệ Thông tin

Đánh giá Selection sort

Danh sách bất kỳ

Số lần so sánh: n(n-1)/2

Số lần dời chỗ: 3n

So sánh với insertion sort:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 18
Khoa Công nghệ Thông tin

Bubble sort

6 4 7 2 3

4 6 2 3 7

Bước 1

Bước 2

Bước 3

Bước 4

4 2 3 6 7

2 3 4 6 7

sorted

sorted

sorted

sorted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 19
Khoa Công nghệ Thông tin

Giải thuật Bubble sort

Algorithm Bubble_sort
Input: danh sách cần sắp thứ tự
Output: danh sách đã được sắp thứ tự

1. for step = 1 to size-1
//Với mỗi cặp phần tử kề bất kỳ, sắp thứ tự chúng.
//Sau mỗi bước phần tử cuối của danh sách hiện tại là lớn nhất,
//vì vậy được trừ ra cho bước kế tiếp
1.1. for current = 1 to (size - step)

//Nếu cặp phần tử kề hiện tại không đúng thứ tự
1.1.1. if (list[current] < list[current-1])

//Đổi chỗ chúng
1.1.1.1. temp = list[current]
1.1.1.2. list[current] = list[current-1]
1.1.1.3. list[current-1] = temp

End Bubble_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 20
Khoa Công nghệ Thông tin

Mã C++ Bubble sort

template <class Record>
void Sortable_list<Record> :: bubble_sort() {

Record temp;
for (int position = count − 1; position > 0; position−−)

for (int current = 1; current < position; current++)
if (entry[current] < entry[current-1]) {

temp = entry[current];
entry[current] = entry[current-1];
entry[current-1] = temp;

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 21
Khoa Công nghệ Thông tin

Bubble sort là exchange sort

Algorithm Exchange_sort
Input: danh sách cần sắp thứ tự
Output: danh sách đã được sắp thứ tự

1. exchanged = true
2. while exchanged

//Giả sử lần lặp này không có sự đổi chỗ thì nó đã có thứ tự
2.1. exchanged = false
2.2. for current = 1 to size – 1

//Nếu cặp này không có thứ tự thì đổi chỗ và ghi nhận lại
2.2.1. if (list[current] < list[current-1])

2.2.1.1. exchange (current, current-1)
2.2.1.2. exchanged = true

End Exchange_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 22
Khoa Công nghệ Thông tin

Đánh giá Bubble sort

Số lần so sánh: n(n-1)/2

Số lần dời chỗ:

Danh sách có thứ tự tăng dần: tốt nhất là 0 lần

Danh sách có thứ tự giảm dần: tệ nhất là 3*n(n-1)/2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 23
Khoa Công nghệ Thông tin

Chia để trị

Ý tưởng:
Chia danh sách ra làm 2 phần

Sắp thứ tự riêng cho từng phần

Trộn 2 danh sách riêng đó thành danh sách có thứ tự

Hai giải thuật:
Merge sort:

Chia đều thành 2 danh sách

Sắp thứ tự riêng

Trộn lại

Quick sort:
Chia thành 3 phần: nhỏ, giữa (pivot), lớn

Sắp thứ tự riêng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 24
Khoa Công nghệ Thông tin

Đánh giá sơ giải thuật chia để trị

Giả sử 2 danh sách có số phần tử là n’ = n/2

Dùng insertion sort riêng cho từng mảnh

Trộn 2 danh sách tốn (n’ + n’) = n lần so sánh

Số lần so sánh tổng cộng: 2*((n/2)2/2 + O(n/2))
+ n = n2/4 + O(n)

So sánh với insertion sort là n2/2 + O(n)

Có vẻ nhanh hơn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 25
Khoa Công nghệ Thông tin

Merge sort

Start

26 33 29 35

26 29 33 35 12 19 22

12 19 22 26 29 33 35

12 19

Finish

26 33 35 29 19 12 22

26 33

26 33 35 29

35 29

26 33 35 29 19 12 22

19 12

19 12 22

Trộn Trộn

Trộn

Trộn

Trộn

Trộn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 26
Khoa Công nghệ Thông tin

Đánh giá Merge sort

Độ phức tạp:
Có tối đa lgn mức

Ở mỗi mức, cần trộn n phần tử

Hạn chế:
Danh sách liên tục: di chuyển các phần tử nhiều

Nên dùng trong DSLK

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 27
Khoa Công nghệ Thông tin

Giải thuật Merge sort - DSLK

Algorithm Merge_sort
Input: danh sách cần sắp thứ tự
Output: danh sách đã được sắp thứ tự

1. if (có ít nhất 2 phần tử)
//Chia danh sách ra 2 phần bằng nhau:
1.1. second_half = divide_from (sub_list)
//Sắp xếp riêng từng phần
1.2. Call Merge_sort với sub_list
1.3. Call Merge_sort với second_half
//Trộn hai phần này với nhau
1.4. Call Merge với sub_list và second_half

End Merge_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 28
Khoa Công nghệ Thông tin

Mã C++ Merge sort

template <class Record>
void Sortable_list<Record> ::

recursive_merge_sort (Node<Record> * &sub_list) {
if (sub_list != NULL && sub_list->next != NULL) {

Node<Record> *second_half = divide_from(sub_list);
recursive_merge_sort(sub_list);
recursive_merge_sort(second_half);
sub_list = merge(sub_list, second_half);

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 29
Khoa Công nghệ Thông tin

Chia đôi DSLK

3 94 8

sub_list

3 94 8

midpoint

position
second_half

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 30
Khoa Công nghệ Thông tin

Giải thuật chia đôi DSLK

Algorithm divide_from
Input: danh sách cần chia đôi
Output: hai danh sách dài gần bằng nhau

1. if (có ít nhất 1 phần tử)
//Dùng một con trỏ di chuyển nhanh gấp đôi con trỏ còn lại
1.1. midpoint = sub_list
1.2. position là phần tử kế của midpoint
1.3. while (position is not NULL)

1.3.1. Di chuyển position đến phần tử kế 2 lần
1.3.2. Di chuyển midpoint đến phần tử kế

1.4. Cắt danh sách ra 2 phần tại vị trí này

End divide_from

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 31
Khoa Công nghệ Thông tin

Mã C++ chia đôi DSLK
template <class Record>
Node<Record> *Sortable_list<Record> ::

divide_from (Node<Record> *sub_list) {
Node<Record> *position, *midpoint, *second_half;
if ((midpoint = sub_list) == NULL) return NULL;
position = midpoint->next;
while (position != NULL) {

position = position->next; //Di chuyển một lần
if (position != NULL) { //Dừng ngay trước điểm giữa

midpoint = midpoint->next;
position = position->next; //Di chuyển lần thứ hai

}
}
second_half = midpoint->next; //Phần sau là sau điểm dừng
midpoint->next = NULL; //Tách đôi danh sách
return second_half;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 32
Khoa Công nghệ Thông tin

1 75

second

3 94 8

first

Trộn 2 DSLK có thứ tự

?

Dummy node

combined

last

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 33
Khoa Công nghệ Thông tin

Giải thuật trộn hai DSLK có thứ tự
Algorithm Merge

Input: hai DSLK first và second có thứ tự
Output: một DSLK có thứ tự

1. last_sorted là một node giả
2. while (first và second khác NULL) //Cả hai vẫn còn

2.1. if (dữ liệu của first nhỏ hơn dữ liệu của second)
2.1.1. Nối first vào sau last_sorted //Gỡ phần tử từ
2.1.2. last_sorted là first //DSLK 1
2.1.3. Chuyển first đến phần tử kế //gắn vào kết quả

2.2. else
2.2.1. Nối second vào sau last_sorted //Gỡ phần tử từ
2.2.2. last_sorted là second //DSLK 2
2.2.3. Chuyển second đến phần tử kế //gắn vào kết quả

2.3. if (danh sách first còn)
2.3.1. Nối first vào sau last_sorted

2.4. else
2.4.1. Nối second vào sau last_sorted

End Merge
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 34
Khoa Công nghệ Thông tin

Mã C++ trộn hai DSLK có thứ tự
template <class Record>
Node<Record> *Sortable_list<Record> ::

merge(Node<Record> *first, Node<Record> *second) {
Node<Record> combined, *last_sorted = &combined;
while (first != NULL && second != NULL) {

if (first->entry <= second->entry) {
last_sorted->next = first;
last_sorted = first; first = first->next;

} else {
last_sorted->next = second;
last_sorted = second; second = second->next; }

}
if (first == NULL)

last_sorted->next = second;
else

last_sorted->next = first;
return combined.next;

}
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 35
Khoa Công nghệ Thông tin

Quick sort
Sort (26, 33, 35, 29, 19, 12, 22)

Sort (19, 12, 22)

Sort (33, 35, 29)

Combine into (12, 19, 22, 26, 29, 33, 35)

Phân thành (19, 12, 22) và (33,35,29) với pivot=26

Phân thành (12) và (22) với pivot=19

Phân thành (29) và (35) với pivot=33

Sort (12)

Sort (22)

Combine into (12, 19, 22)

Sort (29)

Sort (35)

Combine into (29, 33, 35)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 36
Khoa Công nghệ Thông tin

Giải thuật Quick sort

Algorithm quick_sort
Input: danh sách cần sắp xếp
Output: danh sách đã được sắp xếp

1. if (có ít nhất 2 phần tử)
//Phân hoạch danh sách thành 3 phần:
//- Phần nhỏ hơn phần tử giữa
//- Phần tử giữa
//- Phần lớn hơn phần tử giữa
1.1. Phân hoạch danh sách ra 3 phần
1.2. Call quick_sort cho phần bên trái
1.3. Call quick_sort cho phần bên phải
//Chỉ cần ghép lại là thành danh sách có thứ tự

End quick_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 37
Khoa Công nghệ Thông tin

Mã C++ Quick sort trên danh sách
liên tục

template <class Record>
void Sortable_list<Record> :: recursive_quick_sort(int low, int high) {

//Phần được sắp xếp trong danh sách từ vị trí low đến vị trí high
int pivot_position;
if (low < high) {

//pivot_postition là vị trí của phần tử giữa
pivot_position = partition(low, high);

recursive_quick_sort(low, pivot_position − 1);
recursive_quick_sort(pivot_position + 1, high);

//Danh sách kết quả đã có thứ tự trong khoảng từ low đến high
}

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 38
Khoa Công nghệ Thông tin

Phân hoạch cho quick sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 39
Khoa Công nghệ Thông tin

Phân hoạch cho quick sort (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 40
Khoa Công nghệ Thông tin

Giải thuật phân hoạch
Algorithm partition

Input: danh sách cần phân hoạch từ low đến high
Output: đã phân hoạch làm 3 phần, vị trí pivot được ghi nhận

//Chọn phần tử tại vị trí giữa là phần tử pivot và chuyển về đầu
1. swap list[low], list[(low+high)/2]
2. pivot = list[low]
3. last_small = low
4. for index = low+1 to high //Quét qua tất cả các phần tử còn lại

4.1. if list[index] < pivot
4.1.1. last_small = last_small + 1
4.1.2. swap list[last_small], list[index] //Chuyển qua phần nhỏ hơn

5. swap list[last_small], list[low] //Trả phần tử pivot về lại chính giữa
6. Vị trí pivot chính là last_small

End partition

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 41
Khoa Công nghệ Thông tin

Mã C++ phân hoạch

template <class Record>
int Sortable_list<Record> :: partition(int low, int high) {

//Giả sử hàm swap (ind1, ind2) sẽ đổi chỗ 2 phần tử tại 2 vị trí đó
Record pivot;
swap(low, (low + high)/2);
pivot = entry[low];
int last_small = low;
for (int index = low + 1; index <= high; index++)

if (entry[index] < pivot) {
last_small = last_small + 1;
swap(last_small, index);

}
swap(low, last_small);
return last_small;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 42
Khoa Công nghệ Thông tin

Ví dụ quick sort

19 35 33 26 29 12 22

0 1 2 3 4 5 6

low=0 high=6

mid=(low+high)/2=3

recursive_quick_sort(0,6)

pivot_position = partition(0,6) = 3

pivot

last_small

index

26

pivot_position

recursive_quick_sort(0,2)

recursive_quick_sort(4,6)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 43
Khoa Công nghệ Thông tin

Ví dụ quick sort (tt.)

22 19 12 26 29 33 35

0 1 2 3 4 5 6

low=0 high=2

mid=(low+high)/2=1

recursive_quick_sort(0,2)

pivot_position = partition(0,2) = 1

last_small

index

pivot

19

pivot_position

recursive_quick_sort(0,0)

recursive_quick_sort(2,2)
(Không làm gì cả)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 44
Khoa Công nghệ Thông tin

Ví dụ quick sort (tt.)

29 33 352612 19 22

0 1 2 3 4 5 6

low=4 high=6

mid=(low+high)/2=5

recursive_quick_sort(4,6)

pivot_position = partition(4,6) = 5

last_small

index

pivot

33

pivot_position

recursive_quick_sort(4,4)

recursive_quick_sort(6,6)
(Không làm gì cả)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 45
Khoa Công nghệ Thông tin

Các trường hợp của Quick sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 46
Khoa Công nghệ Thông tin

Đánh giá Quick sort

Trường hợp xấu nhất:

Một bên rỗng và một bên là n-1 phần tử => n(n-1)/2

Chọn phần tử pivot:

Đầu (hay cuối): trường hợp xấu xảy ra khi danh sách
đang có thứ tự (hoặc thứ tự ngược)

Ở trung tâm, hoặc ngẫu nhiên: trường hợp xấu khó
xảy ra

Trường hợp trung bình:

C(n) = 2n ln n + O(n) ≈ 1.39 n lg n + O(n)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 47
Khoa Công nghệ Thông tin

Heap và Heap sort

Heap (định nghĩa lại):
Danh sách có n phần tử (từ 0 đến n-1)

ak ≥ a2k+1 và ak ≥ a2k+2 (ak lớn nhất trong 3 phần tử)

Đặc tính:
a0 là phần tử lớn nhất

Danh sách chưa chắc có thứ tự

Nửa sau của danh sách bất kỳ thỏa định nghĩa heap

Heap sort:
Lấy a0 ra, tái tạo lại heap => Phần tử lớn nhất

Lấy a0 mới ra, tái tạo lại heap => Phần tử lớn kề

…

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 48
Khoa Công nghệ Thông tin

Giải thuật Heap sort

Algorithm heap_sort
Input: danh sách cần sắp xếp có n phần tử
Output: danh sách đã sắp thứ tự

//Xây dựng heap ban đầu
1. Call build_heap
//Lần lượt lấy phần tử đầu ra đem về cuối danh sách hiện tại
//rồi xây dựng heap trở lại
2. for index = size-1 to 0 //index là vị trí cuối của phần còn lại

2.1. swap list[0], list[index] //Đổi phần tử lớn nhất về cuối

//Xây dựng lại heap với số phần tử giảm đi 1
2.2. Call rebuild_heap index-1

End heap_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 49
Khoa Công nghệ Thông tin

Mã C++ Heap sort

template <class Record>
void Sortable_list<Record> :: heap_sort() {

Record current;
//Xây dựng heap ban đầu
build_heap();
for (int last_unsorted = count − 1; last_unsorted > 0; last_unsorted−−)
{

//Giữ lại phần tử cuối cũ
current = entry[last_unsorted]; // Extract last entry from list.
//Chép phần tử đầu (lớn nhất) về vị trí này
entry[last_unsorted] = entry[0];

//Xây dựng lại heap bằng cách chèn phần tử current vào đúng vị trí
insert_heap(current, 0, last_unsorted − 1);

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 50
Khoa Công nghệ Thông tin

Biểu diễn Heap

Dạng cây nhị phân:

Node gốc là a0

2 node con của phần
tử ak là 2 phần tử a2k+1

và a2k+2

Ở mức cuối cùng, các
node lấp đầy từ bên
trái sang bên phải
(cây nhị phân gần đầy
đủ) 0 1 2 3 4 5 6 7 8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 51
Khoa Công nghệ Thông tin

Ví dụ Heap sort

y r p d f b k a c

0 1 2 3 4 5 6 7 8

y

r p

d f b k

a c

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 52
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

r f p d c b k a y

0 1 2 3 4 5 6 7 8

r

f p

d c b k

a y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 53
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

p f k d c b a r y

0 1 2 3 4 5 6 7 8

p

f k

d c b a

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 54
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

k f b d c a p r y

0 1 2 3 4 5 6 7 8

k

f b

d c a p

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 55
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

f d b a c k p r y

0 1 2 3 4 5 6 7 8

f

d b

a c k p

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 56
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

d c b a f k p r y

0 1 2 3 4 5 6 7 8

d

c b

a f k p

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 57
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

c a b d f k p r y

0 1 2 3 4 5 6 7 8

c

a b

d f k p

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 58
Khoa Công nghệ Thông tin

Ví dụ Heap sort (tt.)

b a c d f k p r y

0 1 2 3 4 5 6 7 8

b

a c

d f k p

r y

current

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 59
Khoa Công nghệ Thông tin

Giải thuật tái tạo lại heap
Algorithm insert_heap

Input: danh sách là heap trong khoảng từ low+1 đến high, current là
giá trị cần thêm vào

Output: danh sách là heap trong khoảng từ low đến high

1. Bắt đầu kiểm tra tại vị trí low
2. while (chưa kiểm tra xong đến high)

2.1. Tìm lớn nhất trong bộ ba phần tử current, list[2k+1], list[2k+2]
2.2. if (phần tử đó là current)

2.2.1. Ngừng vòng lặp
2.3. else

2.3.1. Dời phần tử lớn nhất lên vị trí hiện tại
2.3.2. Kiểm tra bắt đầu từ vị trí của phần tử lớn nhất này

3. Đưa current vào vị trí đang kiểm tra

End insert_heap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 60
Khoa Công nghệ Thông tin

Mã C++ tái tạo lại heap

template <class Record>
void Sortable_list<Record> ::

nsert_heap(const Record ¤t, int low, int high) {
int large = 2 * low + 1; //P.tử lớn giả sử là tại 2k+1
while (large <= high) {

if (large < high && entry[large] < entry[large + 1])
large++; //P.tử lớn tại 2k+2

if (current >= entry[large])
break; //Nếu current là lớn nhất thì thôi

else {
entry[low] = entry[large]; //Không thì đẩy p.tử lớn nhất lên
low = large; //rồi tiếp tục kiểm tra về sau
large = 2 * low + 1;

}
}
entry[low] = current; //Đây là vị trí thích hợp cho current

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 61
Khoa Công nghệ Thông tin

Giải thuật xây dựng heap ban đầu

Algorithm build_heap
Input: danh sách bất kỳ cần biến thành heap
Output: danh sách đã là heap

//Nửa sau của 1 danh sách bất kỳ thỏa tính chất của heap
//Ta tìm cách xây dựng heap ngược từ giữa về đầu
1. for low = size/2 downto 0

//Từ vị trí low+1 đến cuối danh sách đang là heap
1.1. current = list[low];

//Xây dựng lại heap trong khoảng [low, size-1]
1.2. Call insert_heap với current, low và size − 1

End build_heap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 62
Khoa Công nghệ Thông tin

Mã C++ xây dựng heap ban đầu

template <class Record>
void Sortable_list<Record> :: build_heap() {

//Nửa sau của 1 danh sách bất kỳ thỏa tính chất của heap
//Ta tìm cách xây dựng heap ngược từ giữa về đầu
for (int low = count/2 − 1; low >= 0; low−−) {

Record current = entry[low];
insert_heap(current, low, count − 1);

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 63
Khoa Công nghệ Thông tin

Ví dụ xây dựng heap ban đầu

p c y d f b k a r

0 1 2 3 4 5 6 7 8

Bước 1

p c y r f b k a d

0 1 2 3 4 5 6 7 8

Bước 2

p c y r f b k a d

0 1 2 3 4 5 6 7 8

Bước 3

p r y c f b k a d

0 1 2 3 4 5 6 7 8

Bước 3’

p r y d f b k a c

0 1 2 3 4 5 6 7 8

Bước 4

y r p d f b k a c
0 1 2 3 4 5 6 7 8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 64
Khoa Công nghệ Thông tin

Đánh giá Heap sort

Trường hợp xấu nhất:

C = 2n lg n + O(n)

M = n lg n + O(n)

So với Quick sort

Trung bình: chậm hơn quick sort

Xấu nhất: O(n lg n) < n(n-1)/2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 8. Sắp thứ tự 65
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 9: Bảng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 2
Khoa Công nghệ Thông tin

Ma trận 2 chiều vs. 1 chiều

A[i, j]

B[max_row*i + j] C[i + max_col*j]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 3
Khoa Công nghệ Thông tin

Bảng và chỉ mục

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 4
Khoa Công nghệ Thông tin

Radix sort

r a t

m o p

c a t

m a p

c a r

t o p

c o t

t a r

r a p

Bước 1

r a t

m o p

c a t

m a p

c a r

t o p

c o t

t a r

r a p

r a t

m o p

c a t

m a p

c a r

t o p

c o t

t a r

r a p

r a t

m o p

c a t

m a p

c a r

t o p

c o t

t a r

r a p

Bước 2 Bước 3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 5
Khoa Công nghệ Thông tin

Đánh giá Radix sort

Số lần so sánh là Θ(n k), n là số phần tử và k là
số ký tự trên khóa

So sánh với các phương pháp khác là n lg n:

Nếu k lớn và n là nhỏ thì radix sort chậm

Nếu k nhỏ và n là lớn thì radix sort nhanh hơn

Bất tiện:

Việc tách thành 27 danh sách con và ghép lại lúc sau
trên DS liên tục gây ra việc di chuyển nhiều phần tử

Khóa so sánh là chuỗi nhị phân thì không tốt

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 6
Khoa Công nghệ Thông tin

Radix sort trên DSLK

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 7
Khoa Công nghệ Thông tin

Giải thuật Radix sort trên DSLK
Algorithm radix_sort

Input: danh sách cần sắp thứ tự
Output: danh sách đã sắp thứ tự

//Mỗi queue chứa các phần tử có ký tự tương ứng
1. queues là một dãy có max_character hàng

//Lặp k bước, kiểm tra các ký tự tại vị trí k
2. for position = size(khóa) to 0

2.1. while (danh sách còn)
2.1.1. Lấy phần tử đầu tiên
2.1.2. Tính toán thứ tự của chữ cái ở vị trí k trong khóa
2.1.3. Đẩy phần tử này vào queue tương ứng

2.2. Nối tất cả các queue lại với nhau thành danh sách

End radix_sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 8
Khoa Công nghệ Thông tin

Mã C++ Radix sort trên DSLK

const int max_chars = 28;
template <class Record>
void Sortable_list<Record> :: radix_sort() {

Record data;
Queue queues[max_chars];
for (int position = key_size − 1; position >= 0; position−−) {

// Loop from the least to the most significant position.
while (remove(0, data) == success) {

int queue_number = alphabetic_order(data.key_letter(position));
queues[queue_number].append(data); // Queue operation.

}
rethread(queues); // Reassemble the list.

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 9
Khoa Công nghệ Thông tin

Nối các queue liên kết

Cách 1:

Dùng các CTDL queue

Phải dùng queue.retrieve và list.insert(list.size(),x)

Cách 2:

Viết lại các CTDL kiểu queue trong chương trình

Chỉ cần tìm đến cuối mỗi queue và nối con trỏ vào
đầu queue sau (hoặc đến NULL)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 10
Khoa Công nghệ Thông tin

Tăng tốc tra cứu

Tìm kiếm: hàm f: key -> position =>O (lg n)

Nếu có hàm f: key -> position với tốc độ O(1)

Ví dụ: Tra bảng với key chính là position

Hàm đổi một key thành position: hàm Hash

search 1

key
position

search 2

key
position

Magic

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 11
Khoa Công nghệ Thông tin

Bảng Hash

Bảng Hash

Bảng

Vị trí của 1 phần tử được tính bằng hàm hash

Hàm hash:

Nhận vào một khóa

Trả về một chỉ số vị trí

(Có thể chuyển vài khóa về cùng một vị trí)

Đụng độ trên bảng hash:

Nếu vị trí tìm ra đúng là dữ liệu cần tìm: O(1)

Không đúng: giải quyết đụng độ (phải đảm bảo O(1))

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 12
Khoa Công nghệ Thông tin

Hàm Hash

Đảm bảo O(1)

Ví dụ:

f(x) = x % m;

f(‘abc’) = (char_index(‘a’)*base_number2 +
char_index(‘b’)*base_number1 +
char_index(‘c’)*base_number0) % hash_size

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 13
Khoa Công nghệ Thông tin

Ví dụ dùng bảng Hash

T

U

V

M

D

O

char_index: Space=0, A=1, B=2, …, Z=27

M O T V I D U F

3 5 0 2 9 4 1 6

hash(x) = char_index(x) % 10

Các khóa: M, O, T, V, I, D, U 0

1

2

3

4

5

6

7

8

9I

Tìm V

Tìm F

Không có

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 14
Khoa Công nghệ Thông tin

Phương pháp Địa chỉ mở (Open
Addressing)

Bảng hash là một array

Các vị trí khi có đụng độ sẽ tìm vị trí mới bằng
các phương pháp giải quyết:

Thử tuyến tính (linear probing):
Tăng chỉ số lên một: h = (h+i) % hash_size

Thử bậc hai (quadratic probing):
Tăng chỉ số lên theo bình phương: h = (h + i2)% hash_size

Phương pháp khác
Ngẫu nhiên

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 15
Khoa Công nghệ Thông tin

Thiết kế bảng Hash dùng địa chỉ mở

const int hash_size = 997; // a prime number of appropriate size

class Hash_table {
public:

Hash_table();
void clear();
Error_code insert(const Record &new entry);
Error_code retrieve(const Key &target, Record &found) const;

private:
Record table[hash_size];

};

Đảm bảo phép thử tuyến tính không bị lặp vòng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 16
Khoa Công nghệ Thông tin

Giải thuật thêm phần tử dùng bảng
Hash địa chỉ mở

Algorithm Hash_Insert
Input: bảng Hash, mẫu tin cần thêm vào
Output: bảng Hash đã có mẫu tin thêm vào

1. probe = hash(input_key)
2. increment = 1 //Dùng khi đụng độ
3. while (table[probe] không rỗng) //Có đụng độ

//Dùng các phép thử (tuyến tính, bậc hai, …)
3.1. probe = (probe + increment) % hash_size
3.2. increment = increment + 2 //Thử bậc hai

4. table[probe] = new_data

End Hash_insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 17
Khoa Công nghệ Thông tin

Mã C++ thêm phần tử dùng bảng
Hash địa chỉ mở

Error_code Hash_table :: insert(const Record &new entry) {
Error_code result = success;
int probe_count = 0, increment = 1, probe;
Key null;
probe = hash(new_entry);
while (table[probe] != null && table[probe] != new_entry

&& probe_count < (hash size + 1)/2) {
probe_count++;
probe = (probe + increment)%hash_size;
increment += 2;

}
if (table[probe] == null) table[probe] = new_entry;
else if (table[probe] == new_entry) result = duplicate_error;
else result = overflow;

return result;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 18
Khoa Công nghệ Thông tin

Phương pháp nối kết (chained hash
table)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 19
Khoa Công nghệ Thông tin

Lợi ích của phương pháp nối kết

Nếu số lượng mẫu tin lớn: tiết kiệm vùng nhớ.

Giải quyết đụng độ: đơn giản là đẩy vào cùng
một danh sách liên kết.

Bảng hash nhỏ hơn nhiều so với số lượng mẫu
tin.

Xóa một phần tử là đơn giản và nhanh chóng.

Độ phức tạp khi tìm kiếm:

Nếu có n mẫu tin, và bảng hash có kích thước m

Độ dài trung bình của DSLK là n/m

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 20
Khoa Công nghệ Thông tin

Thiết kế bảng Hash nối kết

const int hash_size = 997; // a prime number of appropriate size

class Hash_table {
public:

//Specify methods here
private:

List<Record> table[hash_size];
};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 21
Khoa Công nghệ Thông tin

Thiết kế các phương thức của bảng
Hash nối kết

Constructor:
Gọi constructor của mỗi danh sách trong array.

Clear:
Gọi phương thức clear cho mỗi danh sách trong array.

Retrieval:
sequential_search(table[hash(target)], target, position);

Insertion:
table[hash(new_entry)].insert(0, new_entry);

Deletion:
remove(const Key type &target, Record &x);

Nếu tìm thấy trong danh sách tương ứng thì xóa đi

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 22
Khoa Công nghệ Thông tin

Đánh giá phương pháp dùng bảng
Hash

load factor λ = số mẫu tin/kích thước bảng hash

Tìm kiếm với bảng hash nối kết:

1+(1/2)λ phép thử khi tìm thấy

λ phép thử khi không tìm thấy.

Tìm với bảng hash địa chỉ mở (thử ngẫu nhiên):

(1/λ)ln (1/(1-λ)) phép thử khi tìm thấy

1/(1-λ) phép thử khi không tìm thấy

Tìm với bảng hash địa chỉ mở (thử tuyến tính):

(1/2)(1 + 1/(1-λ)) phép thử khi tìm thấy

(1/2)(1 + 1/(1-λ)2) phép thử khi không tìm thấy

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 23
Khoa Công nghệ Thông tin

So sánh các phương pháp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 24
Khoa Công nghệ Thông tin

So sánh các phương pháp (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 9. Bảng 25
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 10: Cây nhị phân

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 2
Khoa Công nghệ Thông tin

Định nghĩa

Cây nhị phân

Cây rỗng

Hoặc có một node gọi là gốc (root) và 2 cây con gọi
là cây con trái và cây con phải

Ví dụ:

Cây rỗng:

Cây có 1 node: là node gốc

Cây có 2 node:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 3
Khoa Công nghệ Thông tin

Các định nghĩa khác

Mức:
Node gốc ở mức 0.

Node gốc của các cây con của một node ở mức m là
m+1.

Chiều cao:
Cây rỗng là 0.

Chiều cao lớn nhất của 2 cây con cộng 1

(Hoặc: mức lớn nhất của các node cộng 1)

Đường đi (path)
Tên các node của quá trình đi từ node gốc theo các
cây con đến một node nào đó.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 4
Khoa Công nghệ Thông tin

Các định nghĩa khác (tt.)

Node trước, sau, cha, con:

Node x là trước node y (node y là sau node x), nếu
trên đường đi đến y có x.

Node x là cha node y (node y là con node x), nếu
trên đường đi đến y node x nằm ngay trước node y.

Node lá, trung gian:

Node lá là node không có cây con nào.

Node trung gian không là node gốc hay node lá.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 5
Khoa Công nghệ Thông tin

Các tính chất khác

Cây nhị phân đầy đủ, gần đầy đủ:
Đầy đủ: các node lá luôn nằm ở mức cao nhất và
các nút không là nút lá có đầy đủ 2 nhánh con.

Gần đầy đủ: Giống như trên nhưng các node lá nằm
ở mức cao nhất (hoặc trước đó một mức) và lấp đầy
từ bên trái sang bên phải ở mức cao nhất.

Chiều cao của cây có n node:
Trung bình h = [lg n] + 1

Đầy đủ h = lg (n + 1)

Suy biến h = n

Số phần tử tại mức i nhiều nhất là 2i

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 6
Khoa Công nghệ Thông tin

Phép duyệt cây

Duyệt qua từng node của cây (mỗi node 1 lần)

Cách duyệt:

Chính thức: NLR, LNR, LRN, NRL, RNL, RLN

Chuẩn: NLR (preorder), LNR (inorder), LRN
(postorder)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 7
Khoa Công nghệ Thông tin

Ví dụ về phép duyệt cây NLR

A

B

D

H I

N

E

J K

O

C

F

L

P

G

M

AKết quả: B D H I N E J O K C F L P G M

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 8
Khoa Công nghệ Thông tin

Ví dụ về phép duyệt cây LNR

A

B

D

H I

N

E

J K

O

C

F

L

P

G

M

HKết quả: D N I B J O E K A F P L C M G

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 9
Khoa Công nghệ Thông tin

Ví dụ về phép duyệt cây LRN

A

B

D

H I

N

E

J K

O

C

F

L

P

G

M

HKết quả: N I D O J K E B P L F M G C A

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 10
Khoa Công nghệ Thông tin

Cây liên kết

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 11
Khoa Công nghệ Thông tin

Thiết kế cây liên kết
template <class Entry>
struct Binary_node {

// data members:
Entry data;
Binary_node<Entry> *left, *right;
// constructors:
Binary_node();
Binary_node(const Entry &x);

}; template <class Entry>
class Binary_tree {
public:

// Add methods here.
protected:

// Add auxiliary function prototypes here.
Binary_node<Entry> *root;

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 12
Khoa Công nghệ Thông tin

Khởi tạo và kiểm tra rỗng

template <class Entry>
Binary_tree<Entry>::Binary_tree() {

root = NULL;
};

template <class Entry>
bool Binary_tree<Entry>::empty() {

return root == NULL;
};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 13
Khoa Công nghệ Thông tin

Thiết kế các phép duyệt cây

template <class Entry>
void Binary_tree<Entry> :: inorder(void (*visit)(Entry &)) {

recursive_inorder(root, visit);
}

template <class Entry>
void Binary_tree<Entry> :: preorder(void (*visit)(Entry &)) {

recursive_preorder(root, visit);
}

template <class Entry>
void Binary_tree<Entry> :: postorder(void (*visit)(Entry &)) {

recursive_postorder(root, visit);
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 14
Khoa Công nghệ Thông tin

Giải thuật duyệt cây inorder

Algorithm recursive_inorder
Input: subroot là con trỏ node gốc và hàm visit
Output: kết quả phép duyệt

1. if (cây con không rỗng)
1.1. Call recursive_inorder với nhánh trái của subroot
1.2. Duyệt node subroot bằng hàm visit
1.3. Call recursive_inorder với nhánh phải của subroot

End recursive_inorder

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 15
Khoa Công nghệ Thông tin

Mã C++ duyệt cây inorder

template <class Entry>
void Binary_tree<Entry> ::recursive_inorder

(Binary_node<Entry> *sub_root, void (*visit)(Entry &)) {
if (sub_root != NULL) {

recursive_inorder(sub_root->left, visit);
(*visit)(sub_root->data);
recursive_inorder(sub_root->right, visit);

}
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 16
Khoa Công nghệ Thông tin

Khai báo cây nhị phân
template <class Entry>
class Binary_tree {
public:

Binary_tree();
bool empty() const;
void preorder(void (*visit)(Entry &));
void inorder(void (*visit)(Entry &));
void postorder(void (*visit)(Entry &));
int size() const;
void clear();
int height() const;
void insert(const Entry &);
Binary_tree (const Binary_tree<Entry> &original);
Binary_tree & operator = (const Binary_tree<Entry> &original);
~Binary_tree();

protected:
Binary_node<Entry> *root;

};
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 17
Khoa Công nghệ Thông tin

Cây nhị phân tìm kiếm – Binary
search tree (BST)

Một cây nhị phân tìm kiếm (BST) là một cây nhị
phân rỗng hoặc mỗi node của cây này có các
đặc tính sau:

1. Khóa của node gốc lớn (hay nhỏ) hơn khóa của
tất cả các node của cây con bên trái (hay bên phải)

2. Các cây con (bên trái, phải) là BST

Tính chất:

Chỉ cần đặc tính 1 là đủ

Duyệt inorder sẽ được danh sách có thứ tự

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 18
Khoa Công nghệ Thông tin

Ví dụ BST

25

10

3

1 6

5

18

12 20

13

37

29

35

32

50

41

Duyệt inorder: 1 3 5 6 10 12 13 18 20 25 29 32 35 37 41 50

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 19
Khoa Công nghệ Thông tin

Các tính chất khác của BST

Node cực trái (hay phải):

Xuất phát từ node gốc

Đi sang trái (hay phải) đến khi không đi được nữa

Khóa của node cực trái (hay phải) là nhỏ nhất
(hay lớn nhất) trong BST

BST là cây nhị phân có tính chất:

Khóa của node gốc lớn (hay nhỏ) hơn khóa của
node cực trái (hay cực phải)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 20
Khoa Công nghệ Thông tin

Thiết kế BST

template <class Record>
class Search_tree: public Binary_tree<Record> {
public:

//Viết lại phương thức chèn vào, loại bỏ để đảm bảo vẫn là BST
Error_code insert(const Record &new_data);
Error_code remove(const Record &old_data);

//Thêm phương thức tìm kiếm dựa vào một khóa
Error_code tree_search(Record &target) const;

private:
// Add auxiliary function prototypes here.

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 21
Khoa Công nghệ Thông tin

Tìm kiếm trên BST

Chọn hướng tìm theo tính chất của BST:

So sánh với node gốc, nếu đúng thì tìm thấy

Tìm bên nhánh trái (hay phải) nếu khóa cần tìm nhỏ
hơn (hay lớn hơn) khóa của node gốc

Giống phương pháp tìm kiếm nhị phân

Thời gian tìm kiếm

Tốt nhất và trung bình: O(lg n)

Tệ nhất: O(n)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 22
Khoa Công nghệ Thông tin

Giải thuật tìm kiếm trên BST

Algorithm BST_search
Input: subroot là node gốc và target là khóa cần tìm
Output: node tìm thấy

1. if (cây rỗng)
1.1. return not_found

2. if (target trùng khóa với subroot)
2.1. return subroot

3. if (target có khóa nhỏ hơn khóa của subroot)
3.1. Tìm bên nhánh trái của subroot

4. else
4.1. Tìm bên nhánh phải của subroot

End BST_search

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 23
Khoa Công nghệ Thông tin

Mã C++ tìm kiếm trên BST

template <class Record>
Binary_node<Record> *Search_tree<Record> :: search_for_node

(Binary_node<Record>* sub_root, const Record &target) const {

if (sub_root == NULL || sub_root->data == target)
return sub_root;

else if (sub_root->data < target)
return search_for_node(sub_root->right, target);

else return search_for_node(sub_root->left, target);
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 24
Khoa Công nghệ Thông tin

Mã C++ tìm kiếm trên BST
(không đệ qui)

template <class Record>
Binary_node<Record> *Search_tree<Record> :: search_for_node

(Binary_node<Record>* sub_root, const Record &target) const {

while (sub_root != NULL && sub_root->data != target)
if (sub_root->data < target) sub_root = sub_root->right;
else sub_root = sub_root->left;

return sub_root;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 25
Khoa Công nghệ Thông tin

template <class Record>
Error_code Search_tree<Record> :: tree_search(Record &target) const {

Error_code result = success;
Binary_node<Record> *found = search_for_node(root, target);
if (found == NULL)

result = not_present;
else

target = found->data;
return result;

}

Phương thức tree_search

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 26
Khoa Công nghệ Thông tin

Ví dụ tìm kiếm trên BST

25

10

3

1 6

5

18

12 20

13

37

29

35

32

50

41

Tìm kiếm 13

Khác nhauGiống nhauNode gốc nhỏ hơnNode gốc lớn hơn

Tìm thấy
Số node duyệt: 5
Số lần so sánh: 9

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 27
Khoa Công nghệ Thông tin

Ví dụ tìm kiếm trên BST

25

10

3

1 6

5

18

12 20

13

37

29

35

32

50

41

Tìm kiếm 14

Khác nhauNode gốc nhỏ hơnNode gốc lớn hơn

Không tìm thấy
Số node duyệt: 5
Số lần so sánh: 10

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 28
Khoa Công nghệ Thông tin

Thêm vào BST

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 29
Khoa Công nghệ Thông tin

Giải thuật thêm vào BST

Algorithm BST_insert
Input: subroot là node gốc và new_data là dữ liệu cần thêm vào
Output: BST sau khi thêm vào

1. if (cây rỗng)
1.1. Thêm vào tại vị trí này

2. if (target trùng khóa với subroot)
2.1. return duplicate_error

3. if (new_data có khóa nhỏ hơn khóa của subroot)
3.1. Thêm vào bên nhánh trái của subroot

4. else
4.1. Thêm vào bên nhánh phải của subroot

End BST_insert

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 30
Khoa Công nghệ Thông tin

Mã C++ thêm vào BST

template <class Record>
Error_code Search_tree<Record> :: search_and_insert

(Binary_node<Record> * &sub_root, const Record &new_data) {

if (sub_root == NULL) {
sub_root = new Binary_node<Record>(new_data);
return success;

}
else if (new_data < sub_root->data)

return search_and_insert(sub_root->left, new_data);
else if (new_data > sub_root->data)

return search_and_insert(sub_root->right, new_data);
else return duplicate_error;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 31
Khoa Công nghệ Thông tin

Giải thuật thêm vào BST
(không đệ qui)

Algorithm BST_insert
Input: subroot là node gốc và new_data là dữ liệu cần thêm vào
Output: BST sau khi thêm vào

1. parent là rỗng và left_or_right là “left”
2. while (subroot không rỗng)

2.1. if (target trùng khóa với subroot)
2.1.1. return duplicate_error

2.2. if (new_data có khóa nhỏ hơn khóa của subroot)
2.2.2. parent là subroot và left_or_right là “left”
2.2.1. Chuyển subroot sang nhánh trái của subroot

2.3. else
2.3.2. parent là subroot và left_or_right là “right”
2.3.1. Chuyển subroot sang nhánh phải của subroot

3. if (subroot là rỗng) //Thêm vào tại vị trí này
3.1. if (parent là rỗng)

3.1.1. Tạo node gốc của cây
3.2. else

3.2.1. Tạo node bên trái hay phải parent tùy theo left_or_right

End BST_insert
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 32
Khoa Công nghệ Thông tin

Xóa một node lá khỏi BST

1. Xóa node này
2. Gán liên kết từ cha của nó
thành rỗng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 33
Khoa Công nghệ Thông tin

Xóa một node chỉ có một con

1. Gán liên kết từ cha của nó
xuống con duy nhất của nó
2. Xóa node này

u

x

v

u

v

A. Đường dẫn đến các node của
cây con v có dạng:

… u x v …
B. Không còn node nào trong cây
có đường đẫn có dạng như vậy.
C. Sau khi xóa node x, đường
dẫn đến các node của cây con v
có dạng:

… u v …
D. Đường dẫn của các node khác
trong cây không đổi.
E. Trước đó, các node của cây
con v nằm trong nhánh con của x
là bên trái (bên phải) của u và bây
giờ cũng nằm bên trái (bên phải)
của u nên vẫn thỏa mãn BST

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 34
Khoa Công nghệ Thông tin

Xóa một node có đủ 2 nhánh con
A. Đường dẫn đến các node của cây con v và z có
dạng:

… u x v …
… u x z …

B. Nếu xóa node x thì đường dẫn đến các node của
cây con v và z có dạng:

… u v …
… u z …

D. Điều này chỉ xảy ra khi cây con u và v nằm về 2
phía của u => không còn là BST.

E. Giải pháp là thay giá trị x bằng giá trị w thuộc cây
này sao cho:

w lớn hơn tất cả khóa của các node của cây con v
w nhỏ hơn tất cả khóa của các node của cây con z

u

v z

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 35
Khoa Công nghệ Thông tin

Xóa một node có đủ 2 nhánh con (tt.)

1. Tìm w là node trước node x trên phép duyệt cây inorder
(chính là node cực phải của cây con bên trái của x)
2. Thay x bằng w
3. Xóa node w cũ (giống trường hợp 1 hoặc 2 đã xét)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 36
Khoa Công nghệ Thông tin

Giải thuật xóa một node

Algorithm BST_remove_root
Input: subroot là node gốc cần phải xóa
Output: BST sau khi xóa xong subroot

1. if (trường hợp 1 hoặc 2) //subroot là node lá hoặc có một con
1.1. Gán liên kết cha đến rỗng hoặc nhánh con duy nhất của subroot
1.2. Xóa subroot

2. else //trường hợp 3: có 2 nhánh con
//Tìm node cực phải của cây con trái
2.1. to_delete là node con trái của subroot
2.2. while (nhánh phải của to_delete không rỗng)

2.2.1. di chuyển to_delete sang node con phải
2.2. Thay dữ liệu của subroot bằng dữ liệu của to_delete
2.4. Call BST_remove_root với to_delete

End BST_remove_root

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 37
Khoa Công nghệ Thông tin

Mã C++ xóa một node
template <class Record>
Error_code Search_tree<Record> :: remove_root

(Binary_node<Record> * &sub_root) {
if (sub_root == NULL) return not_present;
Binary_node<Record> *to_delete = sub_root;
if (sub_root->right == NULL) sub_root = sub_root->left;
else if (sub_root->left == NULL) sub_root = sub_root->right;
else { to_delete = sub_root->left;

Binary_node<Record> *parent = sub_root;
while (to_delete->right != NULL) {

parent = to_delete;
to_delete = to_delete->right; }

sub_root->data = to_delete->data;
if (parent == sub_root) sub_root->left = to_delete->left;
else parent->right = to_delete->left; }

delete to_delete;
return success; }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 38
Khoa Công nghệ Thông tin

Cây cân bằng chiều cao - AVL

Cây cân bằng hoàn toàn:
Số node của nhánh trái và nhánh phải chênh nhau
không quá 1.

ĐN cây AVL:
BST

Tại node bất kỳ, chiều cao nhánh trái và nhánh phải
chênh nhau không quá 1.

Ký hiệu cho mỗi node của cây AVL:
Node cân bằng: ‘-’

Nhánh trái cao hơn: ‘/’

Nhánh phải cao hơn: ‘\’

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 39
Khoa Công nghệ Thông tin

Ví dụ cây AVL

Cây AVL

Không phải cây AVL

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 40
Khoa Công nghệ Thông tin

Khai báo cây AVL
enum Balance_factor { left_higher, equal_height, right_higher };
template <class Record>
struct AVL_node: public Binary_node<Record> {

// additional data member:
Balance_factor balance;
AVL_node();
AVL_node(const Record &x);
void set_balance(Balance_factor b);
Balance_factor get_balance() const;

};
template <class Record>
class AVL_tree: public Search_tree<Record> {
public:

Error_code insert(const Record &new data);
Error_code remove(const Record &old data);

private:
// Add auxiliary function prototypes here.

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 41
Khoa Công nghệ Thông tin

Ví dụ 1 thêm vào cây AVL

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 42
Khoa Công nghệ Thông tin

Ví dụ 2 thêm vào cây AVL

(1)

\\

– \

\–

–

m

k t

p u

v

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 43
Khoa Công nghệ Thông tin

Ví dụ 2 thêm vào cây AVL (tt.)

\\

– \

\–

–

m

k t

p u

v

(2)

Viết gọn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 44
Khoa Công nghệ Thông tin

Các trạng thái khi thêm vào
–

\

Chiều cao cây tăng

/

Chiều cao cây không đổi

–

Thêm vào bên phải và
làm bên phải cao lên

Thêm vào bên phải và
làm bên phải cao lên

\

Mất cân bằng bên phải

Thêm vào bên phải và
làm bên phải cao lên

\\

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 45
Khoa Công nghệ Thông tin

Cân bằng cây AVL – Quay đơn

Binary_node<Record> *right_tree = root->right;
root->right = right_tree->left;
right_tree->left = root;
root = right_tree;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 46
Khoa Công nghệ Thông tin

Cân bằng cây AVL – Quay kép

Binary_node<Record> *right_tree = root->right;
Binary_node<Record> *sub_tree = right_tree->left;
root->right = sub_tree->left;
right_tree->left = sub_tree->right;
sub_tree->left = root;
sub_tree->right = right_tree;
root = sub_tree;

Hoặc:

rotate_right(right_tree);
rotate_left(root);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 47
Khoa Công nghệ Thông tin

Các trạng thái khi xóa node

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 48
Khoa Công nghệ Thông tin

Các trạng thái khi xóa node (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 49
Khoa Công nghệ Thông tin

Các trạng thái khi xóa node (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 50
Khoa Công nghệ Thông tin

Ví dụ xóa node của cây AVL

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 51
Khoa Công nghệ Thông tin

Ví dụ xóa node của cây AVL (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 10. Cây nhị phân 52
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A

B

C

D

F

G

E

H

K

CẤU TRÚC DỮ LIỆU VÀ
GIẢI THUẬT (501040)

Chương 11: Cây đa phân

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 2
Khoa Công nghệ Thông tin

Định nghĩa

Cây đa phân

Cây rỗng

Hoặc có một node gọi là gốc (root) và nhiều cây con.

Biểu diễn:

Mỗi node gồm có nhiều nhánh con

Mỗi node có 2 liên kết first_child và next_sibling

Dùng cây nhị phân

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 3
Khoa Công nghệ Thông tin

Biểu diễn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 4
Khoa Công nghệ Thông tin

Biểu diễn dạng nhị phân

Nhị phân:
left = black
right = color

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 5
Khoa Công nghệ Thông tin

Cây từ điển: Trie

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 6
Khoa Công nghệ Thông tin

Thiết kế Trie

class Trie {
public: // Add method prototypes here.
private: // data members

Trie_node *root;
};

const int num chars = 28;

struct Trie_node {
// data members
Record *data;
Trie_node *branch[num_chars];
// constructors
Trie_node();

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 7
Khoa Công nghệ Thông tin

Giải thuật tìm kiếm trên Trie

Algorithm trie_search
Input: target là khóa cần tìm
Output: mẫu tin tìm thấy

1. Bắt đầu tìm từ node root với ký tự đầu tiên của target
2. while (còn node để tìm và chưa xét hết chuỗi target)

2.1. Nhảy đến node con tương ứng tùy theo ký tự từ target
2.2. Xét ký tự kế tiếp trong chuỗi target

3. if (có node và dữ liệu của nó khác rỗng)
3.1. return dữ liệu của node này

4. return not_present

End trie_search

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 8
Khoa Công nghệ Thông tin

Mã C++ tìm kiếm trên Trie

Error_code Trie :: trie_search(const Key &target, Record &x) const {
int position = 0;
char next_char;
Trie_node *location = root;
while (location != NULL &&

(next_char = target.key_letter(position)) !=‘ ’) {
location = location->branch[alphabetic order(next char)];
position++;

}
if (location != NULL && location->data != NULL) {

x = *(location->data);
return success;

}
else

return not present;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 9
Khoa Công nghệ Thông tin

Giải thuật thêm vào Trie
Algorithm trie_insert

Input: new_entry là dữ liệu cần thêm vào
Output: cây sau khi thêm vào dữ liệu mới

1. if (cây rỗng)
1.1. Thêm node mới vào đây
1.2. Kết thúc

2. Bắt đầu từ node root và ký tự đầu tiên trong khóa của new_entry
3. while (vẫn chưa xét hết chuỗi của khóa của new_entry)

3.1. next_char là ký tự hiện tại trên khóa
3.2. if (node con tại vị trí next_char không có)

//Tìm và thêm các node trung gian không có dữ liệu vào
3.2.1. Thêm một node có dữ liệu rỗng vào đây

3.3. Nhảy đến node con tương ứng với vị trí của next_char
3.4. Xét ký tự kế tiếp của khóa

4. Thêm dữ liệu vào node hiện tại

End trie_insert
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 10
Khoa Công nghệ Thông tin

Mã C++ thêm vào Trie

Error_code Trie :: insert(const Record &new_entry) {
Error_code result = success;
if (root == NULL) root = new Trie_node;
int position = 0;
char next_char;
Trie_node *location = root;
while ((next char = new entry.key letter(position)) != ‘ ’) {

int next_position = alphabetic_order(next_char);
if (location->branch[next_position] == NULL)

location->branch[next_position] = new Trie_node;
location = location->branch[next_position];
position++; }

if (location->data != NULL) result = duplicate_error;
else location->data = new Record(new_entry);

return result;
}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 11
Khoa Công nghệ Thông tin

Đánh giá trie

Tìm kiếm: Lần so sánh = chiều dài khóa

Từ điển tiếng Anh 100.000 từ, chiều dài tối đa
15 ký tự:

Trie: Số lần so sánh tối đa = 15

Tìm nhị phân = k*lg (100.000) = 17k (k: chiều dài
trung bình của từ tiếng Anh)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 12
Khoa Công nghệ Thông tin

Cây đa phân tìm kiếm

Cây đa phân tìm kiếm
bậc m: mỗi node có tối đa
m nhánh con

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 13
Khoa Công nghệ Thông tin

Cây đa phân cân bằng (B-tree)

Một B-tree bậc m là một cây đa phân tìm kiếm
bậc m:

1. Tất cả các node lá ở cùng một mức.

2. Tất cả các node trung gian trừ node gốc có tối đa
m nhánh con và tối thiểu m/2 nhánh con (khác rỗng).

3. Số khóa của mỗi node trung gian ít hơn một so với
số nhánh con và phân chia các khóa trong các nhánh
con theo cách của cây tìm kiếm.

4. Node gốc có tối đa m nhánh con, tối thiểu là 2
nhánh con khi node gốc không là node lá hoặc không
có nhánh con khi cây chỉ có node gốc.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 14
Khoa Công nghệ Thông tin

Ví dụ B-tree

B-tree bậc 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 15
Khoa Công nghệ Thông tin

Thiết kế B-tree
template <class Record, int order>
class B_tree {
public: // Add public methods.
private: // data members

B_node<Record, order> *root;
// Add private auxiliary functions here.

};
template <class Record, int order>
struct B_node {

// data members:
int count;
Record data[order − 1];
B_node<Record, order> *branch[order];
// constructor:
B_node();

};

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 16
Khoa Công nghệ Thông tin

Giải thuật tìm kiếm trên B-tree
Algorithm search_B_tree

Input: subroot là gốc của cây và target là khóa cần tìm
Output: dữ liệu tìm thấy

1. if (cây rỗng)
1.1. return not_present

2. else
2.1. Tìm target trên dữ liệu của subroot
2.2. if (tìm thấy)

2.2.1. return dữ liệu tìm thấy
2.3. else

//Tìm không thấy sẽ ngừng tại vị trí có khóa vừa lớn hơn khóa cần
//tìm, ở đó có liên kết đến nhánh con gồm các khóa nhỏ hơn nó.
2.3.1. Nhảy đến nhánh con của vị trí không tìm thấy
2.3.1. Call search_B_tree với nhánh con mới

End search_B_tree

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 17
Khoa Công nghệ Thông tin

Mã C++ tìm kiếm trên B-tree
template <class Record, int order>
Error_code B_tree<Record, order> :: recursive_search_tree

(B_node<Record, order> *current, Record &target) {
Error_code result = not_present;
int position = 0;
if (current != NULL) {

while (position < current->count && target > current->data[position])
position++;

if (position < current->count && target == current->data[position])
result = success;

if (result == not_present)
result =recursive_search_tree(current->branch[position], target);

else
target = current->data[position];

}
return result;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 18
Khoa Công nghệ Thông tin

Thêm vào B-tree

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 19
Khoa Công nghệ Thông tin

Thêm vào B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 20
Khoa Công nghệ Thông tin

Thêm vào B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 21
Khoa Công nghệ Thông tin

Thêm vào B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 22
Khoa Công nghệ Thông tin

Xóa giá trị trên B-tree

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 23
Khoa Công nghệ Thông tin

Xóa giá trị trên B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 24
Khoa Công nghệ Thông tin

Xóa giá trị trên B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 25
Khoa Công nghệ Thông tin

Xóa giá trị trên B-tree (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ĐH Bách Khoa Tp.HCM Chương 11. Cây đa phân 26
Khoa Công nghệ Thông tin

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

	gioi_thieu.ppt
	ch01.ppt
	ch02.ppt
	ch03.ppt
	ch04.ppt
	ch05.ppt
	ch06.ppt
	ch07.ppt
	ch08.ppt
	ch09.ppt
	ch10.ppt
	ch11.ppt

