Relational Algebra

Truong Tuan Anh CSE-HCMUT

Contents

1 Unary Relational Operations

- 2 Relational Algebra Operations from Set Theory
- 3 Binary Relational Operations

Relational Algebra Overview

- Relational algebra is the **basic set** of operations for the relational model
 - These operations enable a user to specify basic retrieval requests (or queries)
- The result of an operation is a new relation, which may have been formed from one or more input relations
 - This property makes the algebra "closed" (all objects in relational algebra are relations)
- A sequence of relational algebra operations forms a relational algebra expression

Relational Algebra Overview

- Unary Relational Operations:
 - SELECT (symbol: σ (sigma))
 - PROJECT (symbol: π (pi))
 - RENAME (symbol: ρ (rho))
- Relational Algebra Operations from Set Theory:
 - UNION (∪), INTERSECTION (∩), DIFFERENCE (or MINUS, –)
 - CARTESIAN PRODUCT (x)
- Binary Relational Operations:
 - JOIN (several variations of JOIN exist)
 DIVISION
- Additional Relational Operations:
 - OUTER JOINS, OUTER UNION
 - AGGREGATE FUNCTIONS (SUM, COUNT, AVG, MIN, MAX)

Example

One possible database state for the COMPANY relational database schema

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	A	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
3334455555	2	10.0
3334455555	3	10.0
3334455555	10	10.0
3334455555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

	Pname	Pnumber	Plocation	Dnum
	ProductX	1	Bellaire	5
	ProductY	2	Sugarland	5
~	ProductZ	3	Houston	5
~~~~	Computerization	10	Stafford	4
	Reorganization	20	Houston	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
3334455555	Theodore	М	1983-10-25	Son
3334455555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Unary Relational Operations

SELECT

 The SELECT operation (denoted by o (sigma)) is used to select a subset of the tuples from a relation based on a selection condition

• Examples:

 Select the EMPLOYEE tuples whose department number is 4:

 $\sigma_{DNO=4}$ (EMPLOYEE)

Select the employee tuples whose salary is greater than \$30,000:

 $\sigma_{SALARY > 30,000}$ (EMPLOYEE)

SELECT

- In general, the select operation is denoted
 by σ_{<selection condition>}(R) where
 - σ (sigma) is used to denote the select operator.
 - <selection condition> is a Boolean expression specified on the attributes of relation R.
 - Tuples that make the condition true appear in the result of the operation, and tuples that make the condition false are discarded from the result of the operation.

SELECT

SELECT Operation Properties

- The relation S = $\sigma_{\text{<selection condition>}}(R)$ has the same schema (same attributes) as R.
- SELECT σ is **commutative**:

 $\sigma_{<\text{cond1>}}(\sigma_{<\text{cond2>}}(\mathsf{R})) = \sigma_{<\text{cond2>}}(\sigma_{<\text{cond1>}}(\mathsf{R}))$

 Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:

 $\sigma_{\text{cond1>}}(\sigma_{\text{cond2>}}(\sigma_{\text{cond3>}}(R)) = \sigma_{\text{cond2>}}(\sigma_{\text{cond3>}}(\sigma_{\text{cond1>}}(R)))$ $= \sigma_{\text{cond1>}\text{AND}\text{-cond2>}\text{AND}\text{-cond3>}}(R)$

 The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R.

Example

R

Α	В	С	
1	2	3	
4	5	6	10 ar
1	2	7	
8	4	5	

PROJECT

- PROJECT Operation is denoted by π (pi)
- This operation keeps certain columns (attributes) from a relation and discards the other columns
 - PROJECT creates a vertical partitioning: the list of specified columns (attributes) is kept in each tuple, the other attributes in each tuple are discarded.
- Example: To list each employee's first and last name and salary, the following is used:

 $\pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)

PROJECT

The general form of the *project* operation is:

 $\pi_{< \text{attribute list}>}(\mathsf{R})$

- <attribute list> is the desired list of attributes from relation R
- The project operation *removes any* duplicate tuples because the result of the project operation do not allow duplicate elements

PROJECT

PROJECT Operation Properties

- The number of tuples in the result of projection π_{<list>}(R) is always *less than or* equal to the number of tuples in R.
 - If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R.
- PROJECT is not commutative
- $\pi_{<\text{list1>}}(\pi_{<\text{list2>}}(R)) = \pi_{<\text{list1>}}(R) \text{ as long as } </br>

 <$ *list2> contains the attributes in <list1>*

Example

R				$\pi_{AB} R$	
Α	В	С	conto	Α	В
1	2	3	20	1	2
4	5	6		4	5
1	2	v ⁷]	8	4
8	4	5			

Examples: SELECT and PROJECT

Results of SELECT and PROJECT operations. (a) $\sigma_{\text{(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)}}$ (EMPLOYEE). (b) $\pi_{\text{Lname, Fname, Salary}}$ (EMPLOYEE). (c) $\pi_{\text{Sex, Salary}}$ (EMPLOYEE).

(a)

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5

(b)

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

(c)

Sex	Salary
M	30000
М	40000
F	25000
F	43000
М	38000
М	25000
М	55000

Relational Algebra Expressions

- We may want to apply several relational algebra operations one after the other.
 - Either we can write the operations as a single relational algebra expression by nesting the operations, or
 - We can apply one operation at a time and create **intermediate result relations**.
- In the latter case, we must give names to the relations that hold the intermediate results.

Expression

- To retrieve the *first name, last name, and salary* of all employees who work in *department number 5*, we must apply a **select** and a **project** operation.
- We can write a single relational algebra expression as follows:

 $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$

- OR We can explicitly show the sequence of operations, giving a name to each intermediate relation:
 - DEP5_EMPS $\leftarrow \sigma_{DNO=5}(EMPLOYEE)$
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)

RENAME

- The RENAME operator is denoted by ρ (rho)
- In some cases, we may want to rename the attributes of a relation or the relation name or both
 - Useful when a query requires multiple operations.
 - Necessary in some cases (see JOIN operation later).

RENAME

- The general RENAME operation ρ can be expressed by any of the following forms:
 - ρ_{S (B1, B2, ..., Bn)}(R) changes both:
 - the relation name to S, and
 - the column (attribute) names to B1, B1,Bn
 - ρ_S(R) changes:
 - the *relation name* only to S
 - ρ_(B1, B2, ..., Bn)(R) changes:

• the column (attribute) names only to B1, B1,Bn

Relational Algebra Operations from Set Theory

UNION

- Binary operation, denoted by \bigcirc
- The result of R ∪ S, is a relation that includes all tuples that are *either in R or in S or in both R and S.*
- Duplicate tuples are eliminated.
- The two operand relations R and S must be "type compatible" (or UNION compatible):
 - R and S must have <u>same number of attributes</u>.
 - Each pair of corresponding attributes must be *type compatible* (have same or compatible domains).

Example

UNION

 Type Compatibility of operands is required for the binary set operation UNION ∪, (also for INTERSECTION ∩, SET DIFFERENCE –).

 The resulting relation for R1∪R2 (also for R1∩R2, or R1–R2) has the same attribute names as the first operand relation R1 (by convention).

INTERSECTION

- INTERSECTION is denoted by \cap
- The result of the operation R ∩ S, is a relation that includes all tuples that are *in* both R and S.
 - The attribute names in the result will be the same as the attribute names in R.
- The two operand relations R and S must be "type compatible".

SET DIFFERENCE

- SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –
- The result of R S, is a relation that includes all tuples that are *in R but not in* S.
 - The attribute names in the result will be the same as the attribute names in R.
- The two operand relations R and S must be "type compatible".

(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Two union-compatible relations.

(c)	Fn	Ln	
	Susan	Yao	Ć
	Ramesh	Shah	

STUDENT ∩ INSTRUCTOR.

(d)	Fn	Ln
8	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

STUDENT - INSTRUCTOR.

	Fn	Ln
(D)	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
A.	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert
	John	Smith
	Ricardo	Browne
	Francis	Johnson

STUDENT ∪ INSTRUCTOR.

(e)	Fname	Lname
	John	Smith
	Ricardo	Browne
	Francis	Johnson

INSTRUCTOR - STUDENT.

Properties

Both union and intersection are *commutative* operations; that is:

• $R \cup S = S \cup R$, and $R \cap S = S \cap R$

 Both union and intersection can be treated as n-ary operations applicable to any number of relations because both are *associative* operations:

- $(\mathsf{R} \cap \mathsf{S}) \cap \mathsf{T} = \mathsf{R} \cap (\mathsf{S} \cap \mathsf{T})$
- The minus operation is *not commutative*; that is, in general
 - $R S \neq S R$

CARTESIAN PRODUCT

- CARTESIAN (or CROSS) PRODUCT Operation
 - Denoted by R(A1, A2, ..., An) **x** S(B1, B2, ..., Bm)
 - Result is a relation with degree n + m attributes:
 Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.
 - Hence, if R has n_R tuples (denoted as $|R| = n_R$), and S has n_S tuples, then R x S will have $n_R * n_S$ tuples.
 - The two operands do NOT need to be "type compatible".

Example

R

Α	В	С
1	2	3
4	5	6
1	2	7
8	4	5

т

Α	D
1	5
3	7

 $\textbf{R}\times\textbf{T}$

С		R.A	в	∽ c	T.A	D
3		1	2	3	1	5
6		1	2 2	3	3	7
7		4	5	6	1	5
5		4	5	6	3	7
	8	²⁰ 1	2	7	1	5
		1	2	7	3	7
		8	4	5	1	5
		8	4	5	3	7

Binary Relational Operations

JOIN

- JOIN Operation (denoted by ▷)
 - The sequence of CARTESIAN PRODUCT followed by SELECT is used quite commonly to identify and select related tuples from two relations.
 - A special operation, called **JOIN** combines this sequence into a single operation.
 - This operation is very important for any relational database with more than a single relation, because it allows us *combine related tuples* from various relations

JOIN

JOIN Operation (denoted by ⋈)
 The general form of a join operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is:

 $R \bowtie_{<join condition>} S$

 where R and S can be any relations that result from general relational algebra expressions.

JOIN

- Example: Suppose that we want to retrieve the name of the manager of each department.
 - To get the manager's name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose
 SSN value matches the MGRSSN value in the department tuple.

DEPT_MGR←DEPARTMENT ⋈_{MGRSSN=SSN}EMPLOYEE

- MGRSSN = SSN is the join condition
 - Combines each department record with the employee who manages the department.
 - The join condition can also be specified as: DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Example

R

Α	В	С	
1	2	3	
4	5	6	
1	2	7	
8	4	5	
т		5	10
Α	D	C'AT	

 $\mathsf{R} \triangleright \triangleleft_{\mathsf{R},\mathsf{A} > \mathsf{T},\mathsf{A}} \mathsf{T}$

R.A	в	С	T.A	D
4	5	6	1	5
4	5	6	3	7
8.0	4	5	1	5
6,8	4	5	3	7

Α	D
1	5
3	7

One possible database state for the COMPANY relational database schema

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	3334455555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	А	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
3334455555	2	10.0
3334455555	3	10.0
3334455555	10	10.0
3334455555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
3334455555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Example: Company

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

Result of the JOIN operation

$\mathsf{DEPT}_\mathsf{MGR} \leftarrow \mathsf{DEPARTMENT} \, \widecheck{}_{\mathsf{MGRSSN}=\mathsf{SSN}} \, \, \mathsf{EMPLOYEE}$

Properties

- Consider the following JOIN operation:
 - R(A1, A2, . . ., An) S(B1, B2, . . ., Bm) R.Ai=S.Bj
 - Result is a relation Q with degree n + m attributes:
 - Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order
 - The resulting relation state has one tuple for each combination of tuples - r from R and s from S, but only if they satisfy the join condition r[Ai]=s[Bj].
 - Hence, if R has n_R tuples, and S has n_S tuples, then the join result will generally have *less than* n_R * n_S tuples.
 - Only related tuples (based on the join condition) will appear in the result.

Properties

- The general case of JOIN operation is called a Theta-join: R X
- The join condition is called theta.
- Theta can be any general boolean expression on the attributes of R and S; for example:
 - R.Ai < S.Bj AND (R.Ak = S.BI OR R.Ap < S.Bq)

EQUIJOIN

- A join, where the only comparison operator = is used, is called an EQUIJOIN.
 - In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple.

NATURAL JOIN

NATURAL JOIN Operation

- Another variation of JOIN called NATURAL JOIN, denoted by *, was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.
- The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, *have the same name* in both relations.
- If this is not the case, a *renaming operation* is applied first
- Example: $Q \leftarrow R(A,B,C,D) * S(C,D,E)$
 - The implicit join condition includes each pair of attributes with the same name, "AND" ed together: R.C = S.C AND R.D = S.D
 - Result keeps only one attribute of each such pair:
 - Q(A,B,C,D,E)

Example

R

Α	В	С		Α
1	2	3		1
4	5	6		10
1	2	7		
8	4	5	S S	
т		710	200	
Α	D			
1	5			

R ⊳<	1 T		
A [`]	B	С	D
1	2	3	5
101	2	7	5

Α	D
1	5
3	7

Example

PROJ_DEPT

Pname	<u>Pnumber</u>	Plocation	Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

 $\mathsf{PROJ_DEPT} \leftarrow \mathsf{PROJECT} * \mathsf{DEPT}.$

DEPT_LOCS

Dname	Dnumber	Mgr_ssn	Mgr_start_date	Location
Headquarters	1	888665555	1981-06-19	Houston
Administration	4	987654321	1995-01-01	Stafford
Research	5	333445555	1988-05-22	Bellaire
Research	5	333445555	1988-05-22	Sugarland
Research	5	333445555	1988-05-22	Houston

 $DEPT_LOCS \leftarrow DEPARTMENT * DEPT_LOCATIONS.$

DIVISION

DIVISION Operation

- The division operation is applied to two relations R(Z) ÷ S(X), where Z = X ∪ Y (Y is the set of attributes of R that are not attributes of S).
- The result of DIVISION is a relation T(Y) that includes a tuple t if tuples t_R appear in R with t_R
 [Y] = t, and with

 $t_R [X] = t_s$ for every tuple t_s in S, i.e., for a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S.

The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) $T \leftarrow R \div S$.

(a)

SSN_PNOS

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20
	-

SMITH_PNOS Pno 1 2

SSNS

Ssn 123456789 453453453

(b) R		
Α	В	
a1	b1	
a2	b1	
a3	b1	
a4	b1	
a1	b2	
a3	b2	
a2	b3	
a3	b3	
a4	b3	
a1	b4	
a2	b4	

a3

b4

S

~
a1
a2
a3

I	
В	
b1	
b4	

		I
		. –
-	-	-

Operations of Relational Algebra

Operations of Relational Algebra

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation <i>R</i> .	$\sigma_{\langle \text{selection condition} \rangle}(R)$
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{< \text{attribute list}>}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{<\text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$\begin{array}{c} R_1 \Join_{<\text{join condition}>} R_2, \text{ OR} \\ R_1 \bowtie_{(<\text{join attributes 1>}),} \\ (<\text{join attributes 2>}) R_2 \end{array}$
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$\begin{array}{c} R_1 \star_{<\text{join condition}>} R_2, \\ \text{OR } R_1 \star_{(<\text{join attributes 1>}),} \\ (<\text{join attributes 2>}) R_2 \\ \text{OR } R_1 \star R_2 \end{array}$

Operations of Relational Algebra

Operations	of	Relational	Algebra
------------	----	------------	---------

OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible	$R_1 - R_2$.
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Notation for Query Trees

Query tree

- Represents the input relations of query as leaf nodes of the tree.
- Represents the relational algebra operations as internal nodes.

 Additional operations ... out duone than come