
Chapter 6:

SQL (Structured Query

Language)

Contents

1 The COMPANY Database

2 SQL developments: an overview

3 DDL: Create, Alter, Drop

4 DML: select, insert, update, delete

5 DCL: commit, rollback, grant, revoke

2

The COMPANY Database

3

Contents

1 The COMPANY Database

2 SQL developments: an overview

3 DDL: Create, Alter, Drop

4 DML: select, insert, update, delete

5 DCL: commit, rollback, grant, revoke

4

SQL developments: an overview

 In 1986, ANSI and ISO published an initial

standard for SQL: SQL-86 or SQL1

 In 1992, first major revision to ISO standard

occurred, referred to as SQL2 or SQL-92

 In 1999, SQL-99 (SQL3) was released with

support for object-oriented data management

 In late 2003, SQL-2003 was released

 Now: SQL-2006 was published

5

SQL developments: an overview
(http://en.wikipedia.org/wiki/SQL)

6

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO in 1987

1989 SQL-89 Minor revision

1992 SQL-92 SQL2 Major revision (ISO 9075)

1999 SQL:1999 SQL3 Added regular expression matching, recursive queries, triggers, non-

scalar types and some object-oriented features. (The last two are

somewhat controversial and not yet widely supported)

2003 SQL:2003 Introduced XML-related features, window functions, standardized

sequences and columns with auto-generated values (including identity-

columns)

2006 SQL:2006 ISO/IEC 9075-14:2006 defines ways in which SQL can be used in

conjunction with XML. It defines ways of importing and storing XML data

in an SQL database, manipulating it within the database and publishing

both XML and conventional SQL-data in XML form. In addition, it provides

facilities that permit applications to integrate into their SQL code the use of

XQuery, the XML Query Language published by the World Wide Web

Consortium (W3C), to concurrently access ordinary SQL-data and XML

documents

Basic SQL

 DDL: Data Definition Language
 Create, Alter, Drop

 DML: Data Manipulation Language
 Select, Insert, Update, Delete

 DCL: Data Control Language
 Commit, Rollback, Grant, Revoke

7

Basic SQL

 SQL

 Structured Query Language

 Statements for data definitions, queries, and

updates (both DDL and DML)

 Core specification

 Plus specialized extensions

8

Contents

1 The COMPANY Database

2 SQL developments: an overview

3 DDL: Create, Alter, Drop

4 DML: select, insert, update, delete

5 DCL: commit, rollback, grant, revoke

9

DDL: Create, Alter, Drop
CREATE SCHEMA

 SQL schema

 Identified by a schema name

 Includes an authorization identifier and

descriptors for each element

 Schema elements include

 Tables, constraints, views, domains, and other

constructs

 Catalog

 Named collection of schemas in an SQL

environment

10

DDL: Create, Alter, Drop
CREATE SCHEMA

 CREATE SCHEMA SchemaName

AUTHORIZATION AuthorizationIdentifier;

 To create a relational database schema:

started with SQL-92

CREATE SCHEMA Company AUTHORIZATION

JSmith;

 Homework: SCHEMA in ORACLE

11

DDL: Create, Alter, Drop
CREATE TABLE

 CREATE TABLE SchemaName.TableName

…

or

 CREATE TABLE TableName …

12

DDL: Create, Alter, Drop
CREATE TABLE

CREATE TABLE TableName
{(colName dataType [NOT NULL] [UNIQUE]

[DEFAULT defaultOption]

[CHECK searchCondition] [,...]}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),] […,]}

{[FOREIGN KEY (listOfFKColumns)

REFERENCES ParentTableName [(listOfCKColumns)],

[ON UPDATE referentialAction]

[ON DELETE referentialAction]] [,…]}

{[CHECK (searchCondition)] [,…] })

13

DDL: Create, Alter, Drop
CREATE TABLE

 Base tables (base relations)

 Relation and its tuples are actually created and

stored as a file by the DBMS.

 Virtual relations

 Created through the CREATE VIEW statement.

 Some foreign keys may cause errors

 Specified either via:

• Circular references

• Or because they refer to a table that has not yet been

created

14

Attribute Data Types and Domains in

SQL

 Basic data types

 Numeric data types

• Integer numbers: INTEGER, INT, and SMALLINT

• Floating-point (real) numbers: FLOAT or REAL, and

DOUBLE PRECISION

 Character-string data types

• Fixed length: CHAR(n), CHARACTER(n)

• Varying length: VARCHAR(n), CHAR VARYING(n),

CHARACTER VARYING(n)

Attribute Data Types and Domains in

SQL
 Bit-string data types

• Fixed length: BIT(n)

• Varying length: BIT VARYING(n)

• Ex: B’1001’

 Boolean data type

• Values of TRUE or FALSE or NULL

 DATE data type

• Ten positions

• Components are YEAR, MONTH, and DAY in the form

YYYY-MM-DD

Attribute Data Types and Domains in

SQL

 Additional data types

 Timestamp data type (TIMESTAMP)

• Includes the DATE and TIME fields

• Plus a minimum of six positions for decimal fractions of

seconds

• Optional WITH TIME ZONE qualifier

 INTERVAL data type

• Specifies a relative value that can be used to increment

or decrement an absolute value of a date, time, or

timestamp

Attribute Data Types and Domains in

SQL

 Domain

 Name used with the attribute specification

 Makes it easier to change the data type for a

domain that is used by numerous attributes

 Improves schema readability

 CREATE DOMAIN DomainName AS

DataType [CHECK conditions];

 Example:

• CREATE DOMAIN SSN_TYPE AS CHAR(9);

Do create tables

& constraints !!

CREATE TABLE TableName

{(colName dataType [NOT NULL]

[UNIQUE]

[DEFAULT defaultOption]

[CHECK searchCondition] [,...]}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),] […,]}

{[FOREIGN KEY (listOfFKColumns)

REFERENCES ParentTableName

[(listOfCKColumns)],

[ON UPDATE referentialAction]

[ON DELETE referentialAction]]

[,…]}

{[CHECK (searchCondition)] [,…] })

19

The COMPANY Database

,

20

Defining the COMPANY DB schema (1)

21

Defining the COMPANY DB schema (2)

Specifying Constraints in SQL

 Basic constraints:

 Key and referential integrity constraints

 Restrictions on attribute domains and NULLs

 Constraints on individual tuples within a relation

22

Specifying Attribute Constraints and

Attribute Defaults
 NOT NULL

 NULL is not permitted for a particular attribute

 Default values
 DEFAULT <value> can be specified for an attribute

 If no default clause is specified, the default value is NULL for
attributes that do not have the NOT NULL constraint
 If NOT NULL option is specified on attribute A and no value is

specified as inserting a tupe r(…A…) ?

 CHECK clause:
DNUMBER INT NOT NULL CHECK (DNUMBER>0 AND

DNUMBER<21);

 CREATE DOMAIN can also be used in conjunction with the
CHECK clause:

CREATE DOMAIN D_NUM AS INTEGER CHECK (D_NUM>0 AND
D_NUM<21);

23

24

Specifying Key and Referential

Integrity Constraints
 PRIMARY KEY clause

 Specifies one or more attributes that make up the

primary key of a relation.

 Dnumber INT PRIMARY KEY;

 UNIQUE clause

 Specifies alternate (secondary) keys.

 Dname VARCHAR(15) UNIQUE;

Specifying Key and Referential

Integrity Constraints (cont’d.)
 FOREIGN KEY clause

 Default operation: reject update on violation

 Attach referential triggered action clause

• Options include SET NULL, CASCADE, and SET

DEFAULT

• An option must be qualified with either ON DELETE or

ON UPDATE

An example

27

Specifying Constraints in SQL

 Giving names to constraints

 This is optional.

 Keyword CONSTRAINT

 The name is unique within a particular DB

schema.

 Used to identify a particular constraint in case it

must be dropped later and replaced with another

one.

28

Specifying Constraints in SQL

 Specifying constraints on tuples using

CHECK

 Affected on each tuple individually as being

inserted or modified (tuple-based constraints)

 Department create date must be earlier than the

manager’s start date:

CHECK (DEPT_CREATE_DATE < MGRSTARTDATE);

 More general constraints: CREATE ASSERTION

29

DDL: Create, Alter, Drop
DROP Command

 Used to drop named schema elements:

tables, domains, constraints, and the schema

itself

 Drop behavior options:

 CASCADE and RESTRICT

DROP SCHEMA Company CASCADE;

or

DROP SCHEMA Company RESTRICT;

30

DDL: Create, Alter, Drop
DROP Command

 Drop a table:

DROP TABLE Dependent CASCADE | RESTRICT;

 RESTRICT option: dropped on if it is not
referenced in any constraints or views.

 CASCADE option: all such constraints and views
that reference the table are dropped
automatically from the schema along with the
table itself.

 Similarly, we can drop constraints & domains.

31

DDL: Create, Alter, Drop
ALTER Command

 Base tables: adding or dropping a column or

constraints, changing a column definition
ALTER TABLE Company.Employee ADD Job VARCHAR(15);

 Job value for each tuple: default clause or UPDATE

command

 What value does each tuple take wrt. the attribute Job if:

ALTER TABLE Company.Employee ADD Job VARCHAR(15) NOT

NULL;

32

DDL: Create, Alter, Drop
ALTER Command

 Drop a column: similarly to drop a table,

CASCADE or RESTRICT option must be

specified

 CASCADE option: all constraints and views referencing the

column are dropped along with the column

 RESTRICT option: successful only if no constraints and

views are referencing the column

ALTER TABLE Company.Employee DROP Address

CASCADE;

33

Contents

1 The COMPANY Database

2 SQL developments: an overview

3 DDL: Create, Alter, Drop

4 DML: select, insert, update, delete

5 DCL: commit, rollback, grant, revoke

34

DML: Select, Insert, Update, Delete
SELECT

 SQL has one basic statement for retrieving information
from a database: the SELECT statement.

 This is not the same as the SELECT operation of the
relational algebra.

 Important distinction between SQL and the formal
relational model; SQL allows a table (relation) to have two
or more tuples that are identical in all their attribute
values.

 Hence, an SQL relation (table) is a multi-set (sometimes
called a bag) of tuples; it is not a set of tuples.

 SQL relations can be constrained to be sets by specifying
PRIMARY KEY or UNIQUE attributes, or by using the
DISTINCT option in a query.

35

DML: Select, Insert, Update, Delete
SELECT

 Basic form of the SQL SELECT statement is called a
mapping or a SELECT-FROM-WHERE block

SELECT <attribute list>

FROM <table list>

WHERE <condition>

 <attribute list> is a list of attribute names whose values are to be
retrieved by the query

 <table list> is a list of the relation names required to process the
query

 <condition> is a conditional (Boolean) expression that identifies
the tuples to be retrieved by the query

36

DML: Select, Insert, Update, Delete
SELECT

 Logical comparison operators

 =, <, <=, >, >=, and <>

 Projection attributes

 Attributes whose values are to be retrieved

 Selection condition

 Boolean condition that must be true for any

retrieved tuple

37

DML: Select, Insert, Update, Delete
SELECT

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList]

[HAVING condition]

[ORDER BY columnList]

38

DML: Select, Insert, Update, Delete
SELECT

 SELECT Specifies which columns are to appear
in output

 FROM Specifies table(s) to be used

 WHERE Filters rows

 GROUP BY Forms groups of rows with same
column value

 HAVING Filters groups subject to some
condition

 ORDER BY Specifies the order of the output

39

40

The COMPANY Database

DML: Select, Insert, Update, Delete
SELECT

 Basic SQL queries correspond to using the SELECT,
PROJECT, and JOIN operations of the relational algebra

 Query 0: Retrieve the birthdate and address of the
employee whose name is 'John B. Smith'.

Q0: SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND MINIT='B‟ AND

LNAME='Smith‟;

 Similar to a SELECT-PROJECT pair of relational algebra
operations; the SELECT-clause specifies the projection attributes
and the WHERE-clause specifies the selection condition.

 However, the result of the query may contain duplicate tuples.

41

DML: Select, Insert, Update, Delete
SELECT

 Query 1: Retrieve the name and address of all
employees who work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO;

 Similar to a SELECT-PROJECT-JOIN sequence of relational
algebra operations.

 (DNAME='Research') is a selection condition (corresponds to a
SELECT operation in relational algebra).

 (DNUMBER=DNO) is a join condition (corresponds to a JOIN
operation in relational algebra).

42

DML: Select, Insert, Update, Delete
SELECT

 Query 2: For every project located in 'Stafford', list the

project number, the controlling department number, and

the department manager's last name, address, and

birthdate

43

DML: Select, Insert, Update, Delete
SELECT

Q2: SELECT PNUMBER, DNUM, LNAME,

BDATE,ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND PLOCATION='Stafford„;

 There are 2 join conditions:

 The join condition DNUM=DNUMBER relates a project to its

controlling department

 The join condition MGRSSN=SSN relates the controlling

department to the employee who manages that department

44

Ambiguous Attribute Names

 In SQL, we can use the same name for attributes as long

as the attributes are in different relations. Query referring

to attributes with the same name must qualify the

attribute name with the relation name by prefixing the

relation name to the attribute name

 Examples:

DEPARTMENT.DNUMBER, DEPT_LOCATIONS.DNUMBER

45

Aliases

 Some queries need to refer to the same relation twice:
aliases are given to the relation name

 Query 3: For each employee, retrieve the employee's
name, and the name of his or her immediate supervisor.

Q3: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.SUPERSSN=S.SSN;

 The alternate relation names E and S are called aliases or tuple
variables for the EMPLOYEE relation

 We can think of E and S as two different copies of EMPLOYEE;
E represents employees in role of supervisees and S represents
employees in role of supervisors

46

Aliases

 Aliases can also be used in any SQL query
for convenience. Can also use the AS
keyword to specify aliases

Q4: SELECT E.FNAME, E.LNAME, S.FNAME,
S.LNAME

FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN;

 Renaming using aliases:
EMPLOYEE AS E(FN, MI, LN, SSN, BD, ADDR, SEX,

SAL, SSSN, DNO)

(in the FROM clause)

47

Unspecified WHERE-clause

 A missing WHERE-clause indicates no condition;

hence, all tuples of the relations in the FROM-clause are

selected.

 This is equivalent to the condition WHERE TRUE.

 Query 5: Retrieve the SSN values for all employees.

Q5: SELECT SSN

FROM EMPLOYEE;

48

Unspecified WHERE-clause

 If more than one relation is specified in the FROM-clause
and there is no join condition, then the CARTESIAN
PRODUCT of tuples is selected.

 Example:

Q6: SELECT SSN, DNAME
FROM EMPLOYEE, DEPARTMENT;

 It is extremely important not to overlook specifying any
selection and join conditions in the WHERE-clause;
otherwise, incorrect and very large relations may result.

49

Use of ASTERISK (*)

 An asterisk (*) stands for all the attributes.

 Examples:

Q7: SELECT *
FROM EMPLOYEE
WHERE DNO=5;

Q8: SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNO=DNUMBER;

50

USE OF DISTINCT

 SQL does not treat a relation as a set: duplicate tuples
can appear in a query result. To eliminate duplicate
tuples, use the keyword DISTINCT.

 For example, the result of Q9 may have duplicate
SALARY values, but Q9A’s

Q9: SELECT SALARY
FROM EMPLOYEE;

Q9A: SELECT DISTINCT SALARY
FROM EMPLOYEE;

51

Set Operations

 Set union (UNION), set difference (EXCEPT) and set

intersection (INTERSECT) operations.

 The resulting relations of these set operations are sets of

tuples: duplicate tuples are eliminated from the

result.

 The set operations apply only to union compatible

relations.

 UNION ALL, EXCEPT ALL, INTERSECT ALL ??

52

Set Operations

 Query 10: Make a list of all project numbers for projects
that involve an employee whose last name is 'Smith' as a
worker or as a manager of the department that controls
the project.

Q10:(SELECT DISTINCT PNUMBER
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND LNAME='Smith')
UNION

(SELECT DISTINCT PNUMBER
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND ESSN=SSN AND

LNAME='Smith');

53

 Two reserved characters: % and _

Q11: SELECT *

FROM Employee

WHERE Address LIKE „%HCMC%‟;

Q12: SELECT *

FROM Employee

WHERE BDate LIKE „_ _8_ _ _ _ _ _ _‟;

54

Substring pattern matching and arithmetic

operators

Substring pattern matching and arithmetic

operators
 Standard arithmetic operators: +, -, *, /

 Query 13: show the resulting salaries if every
employee working on “ProductX” is given 10%
raise

Q13: SELECT FNAME, LNAME, 1.1*Salary AS INC_SAL

FROM Employee, Works_on, Project

WHERE SSN=ESSN AND PNO=PNUMBER AND
PNAME=„ProductX‟;

55

NULL & 3-valued logic

SELECT * FROM Employee WHERE SuperSSN IS NULL;

SELECT * FROM Employee WHERE SuperSSN IS NOT NULL;

56

AND True False Unknown

True T F U

False F F F

Unknown U F U

OR True False Unknown

True T T T

False T F U

Unknown T U U

NOT

True F

False T

Unknown U

Nested Queries

 Complete select-from-where blocks within WHERE
clause of another query.

 Comparison operator IN
 Compares value v with a set (or multiset) of values V

 Evaluates to TRUE if v is one of the elements in V

 Query 14: Retrieve the name and address of all
employees who work for the 'Research' department

Q14:SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME='Research');

57

Correlated Nested Queries

 If a condition in the WHERE-clause of a nested query
references an attribute of a relation declared in the outer
query , the two queries are said to be correlated.

 Query 15: Retrieve the name of each employee who has
a dependent with the same first name as the employee.



Q15: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT
WHERE ESSN=E.SSN AND

E.FNAME=DEPENDENT_NAME);

58

Correlated Nested Queries

 A query written with nested SELECT... FROM...

WHERE... blocks and using IN comparison operator can

always be expressed as a single block query For

example, Q15 may be written as in Q15A:

Q15A: SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME;

59

Nested Query Exercises

 Query 16: Retrieve the SSNs of all employees who work
the same (project, hours) combination on some project
that employee John Smith (SSN=123456789) works on
(using a nested query)

Q16: SELECT DISTINCT ESSN
FROM Works_on
WHERE (PNO, HOURS) IN

(SELECT PNO, HOURS
FROM Works_on
WHERE ESSN=„123456789‟);

60

More Comparison Operators
 Use other comparison operators to compare a single

value v

 = ANY (or = SOME) operator

 Returns TRUE if the value v is equal to some value in the set V

and is hence equivalent to IN

 Other operators that can be combined with ANY (or

SOME), ALL: >, >=, <, <=, and <>

 Query 17: Retrieve all employees whose salary is

greater than the salary of all employees in dept. 5

Q17: SELECT *

FROM Employee

WHERE Salary > ALL (SELECT Salary

FROM Employee

WHERE DNO=5);

61

The EXISTS and UNIQUE Functions

in SQL
 EXISTS function

 Check whether the result of a correlated nested

query is empty or not.

 EXISTS and NOT EXISTS

 Typically used in conjunction with a correlated

nested query.

 SQL function UNIQUE(Q)

 Returns TRUE if there are no duplicate tuples in

the result of query Q.

62

The EXISTS Function

 Query 15: Retrieve the name of each employee who has
a dependent with the same first name as the employee.

Q15B: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN AND
FNAME=DEPENDENT_NAME);

63

The EXISTS Function

 Query 18: Retrieve the names of employees who have
no dependents

Q18: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN);

 In Q18, the correlated nested query retrieves all DEPENDENT
tuples related to an EMPLOYEE tuple. If none exist , the
EMPLOYEE tuple is selected.

 EXISTS is necessary for the expressive power of SQL.

64

Enumerated Sets

 It is also possible to use an explicit (enumerated) set

of values in the WHERE-clause rather than a nested

query

 Query 19: Retrieve the SSNs of all employees who work

on project numbers 1, 2, or 3.

Q19:SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE PNO IN (1, 2, 3);

65

Joined Relations Feature in SQL2

 Can specify a "joined relation" in the FROM-

clause

 Allows the user to specify different types of

joins (EQUIJOIN, NATURAL JOIN, LEFT

OUTER JOIN, RIGHT OUTER JOIN)

66

Joined Tables in SQL and Outer Joins

 Joined table

 Permits users to specify a table resulting from a

join operation in the FROM clause of a query

 The FROM clause in Q1A

 Contains a single joined table

67

Joined Tables in SQL and Outer Joins

 Specify different types of join

 NATURAL JOIN

 Various types of OUTER JOIN

 NATURAL JOIN on two relations R and S

 No join condition specified

 Implicit EQUIJOIN condition for each pair of

attributes with same name from R and S

68

Joined Tables in SQL and Outer Joins

 Inner join

 Default type of join in a joined table

 Tuple is included in the result only if a matching

tuple exists in the other relation

 LEFT OUTER JOIN

 Every tuple in left table must appear in result

 If no matching tuple

• Padded with NULL values for attributes of right table

69

Joined Tables in SQL and Outer Joins

 RIGHT OUTER JOIN

 Every tuple in right table must appear in result

 If no matching tuple

• Padded with NULL values for the attributes of left table

 FULL OUTER JOIN

 Can nest join specifications

70

Joined Relations Feature in SQL2

 Examples:

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.SUPERSSN=S.SSN;

can be written as:

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM (EMPLOYEE E LEFT OUTER JOIN

EMPLOYEE S ON E.SUPERSSN=S.SSN);

 Any differences ??

71

Joined Relations Feature in SQL2

 Examples:
SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO;

could be written as:
SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT ON

DNUMBER=DNO)
WHERE DNAME='Research‟;

or as:
SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN (DEPARTMENT

AS DEPT(DNAME, DNO, MSSN, MSDATE)))
WHERE DNAME='Research‟;

72

Joined Relations Feature in SQL2

 Query 2: For every project located in 'Stafford', list the
project number, the controlling department number, and
the department manager's last name, address, and
birthdate

 Q2 could be written as follows; this illustrates multiple
joins in the joined tables

SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS
FROM ((PROJECT JOIN DEPARTMENT ON DNUM=

DNUMBER) JOIN EMPLOYEE ON
MGRSSN=SSN))

WHERE PLOCATION='Stafford‟;

73

Aggregate functions

 COUNT, SUM, MAX, MIN, AVG

 Query 20: Find the max, min, & average

salary among all employees

Q20:SELECT MAX(SALARY), MIN(SALARY),

AVG(SALARY)

FROM EMPLOYEE;

74

Aggregate functions

 Queries 21 and 22: Retrieve the total number of
employees in the company (Q17), and the number of
employees in the 'Research' department (Q18)

Q21:SELECT COUNT (*)
FROM EMPLOYEE;

Q22:SELECT COUNT (*)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND

DNAME='Research‟;

 Note: NULL values are discarded wrt. aggregate
functions as applied to a particular column

75

Grouping

 In many cases, we want to apply the aggregate functions
to subgroups of tuples in a relation.

 Each subgroup of tuples consists of the set of tuples that
have the same value for the grouping attribute(s).

 The function is applied to each subgroup independently.

 SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in the
SELECT-clause.

 If NULLs exist in grouping attribute

 Separate group created for all tuples with a NULL

value in grouping attribute

76

Grouping

 Query 23: For each department, retrieve the department number,
the number of employees in the department, and their average
salary.

Q23: SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO;

 In Q23, the EMPLOYEE tuples are divided into groups, each
group having the same value for the grouping attribute DNO.

 The COUNT and AVG functions are applied to each such group
of tuples separately.

 The SELECT-clause includes only the grouping attribute and
the functions to be applied on each group of tuples.

 A join condition can be used in conjunction with grouping.

77

78

Grouping: Q23 result

Grouping: the having-clause

 Sometimes we want to retrieve the values of

these functions for only those groups that

satisfy certain conditions.

 The HAVING-clause is used for specifying a

selection condition on groups (rather than on

individual tuples).

79

Grouping: the having-clause

 Query 24: For each project on which more than two

employees work , retrieve the project number, project

name, and the number of employees who work on that

project.

Q24: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2;

80

Order by

 The ORDER BY clause is used to sort the tuples in a
query result based on the values of some attribute(s)

 Query 25: Retrieve a list of employees and the projects
each works in, ordered by the employee's department,
and within each department ordered alphabetically by
employee last name.

Q25: SELECT DNAME, LNAME, FNAME, PNAME
FROM DEPARTMENT, EMPLOYEE, WORKS_ON,

PROJECT
WHERE DNUMBER=DNO AND SSN=ESSN AND

PNO=PNUMBER
ORDER BY DNAME, LNAME [DESC|ASC];

81

SELECT – summarization

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList]

82

DML: Select, Insert, Update, Delete
INSERT

 In its simplest form, it is used to add one or

more tuples to a relation.

 Attribute values should be listed in the same

order as the attributes were specified in the

CREATE TABLE command.

 INSERT INTO <table name> [(<list of columns>)]

VALUES (<list of expressions>);

 INSERT INTO <table name> [(<list of columns>)]

SELECT statement;

83

DML: Select, Insert, Update, Delete
INSERT

 Example:

U1: INSERT INTO EMPLOYEE
VALUES ('Richard','K','Marini', '653298653', '30-DEC-52',
'98 Oak Forest,Katy,TX', 'M', 37000,'987654321', 4);

 An alternate form of INSERT specifies explicitly the attribute names
that correspond to the values in the new tuple, attributes with NULL
values can be left out

 Example: Insert a tuple for a new EMPLOYEE for whom we only
know the FNAME, LNAME, and SSN attributes.

U2: INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)
VALUES ('Richard', 'Marini', '653298653');

84

DML: Select, Insert, Update, Delete
INSERT

 Important note: Only the constraints specified

in the DDL commands are automatically

enforced by the DBMS when updates are

applied to the database.

 Another variation of INSERT allows insertion

of multiple tuples resulting from a query into

a relation.

85

DML: Select, Insert, Update, Delete
INSERT
 Example: Suppose we want to create a temporary table that has the

name, number of employees, and total salaries for each department.
A table DEPTS_INFO is created by U3, and is loaded with the
summary information retrieved from the database by the query in
U3A

U3:CREATE TABLE DEPTS_INFO
(DEPT_NAME VARCHAR(10),
NO_OF_EMPS INTEGER,
TOTAL_SAL INTEGER);

U3A:INSERT INTO DEPTS_INFO (DEPT_NAME, NO_OF_EMPS,
TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM (SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO
GROUP BY DNAME;

86

DML: Select, Insert, Update, Delete
DELETE
 Removes tuples from a relation.

 Includes a WHERE-clause to select the tuples to be
deleted.

 Tuples are deleted from only one table at a time (unless
CASCADE is specified on a referential integrity
constraint).

 A missing WHERE-clause specifies that all tuples in the
relation are to be deleted; the table then becomes an
empty table.

 The number of tuples deleted depends on the number of
tuples in the relation that satisfy the WHERE-clause.

 DELETE [FROM] <table name>

[WHERE <row conditions>];

87

DML: Select, Insert, Update, Delete
DELETE

 Examples:
U4A: DELETE FROM EMPLOYEE

WHERE LNAME='Brown‟;

U4B: DELETE FROM EMPLOYEE
WHERE SSN='123456789‟;

U4C: DELETE FROM EMPLOYEE
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research');

U4D: DELETE FROM EMPLOYEE;

88

DML: Select, Insert, Update, Delete
UPDATE
 Used to modify attribute values of one or more selected

tuples.

 A WHERE-clause selects the tuples to be modified.

 An additional SET-clause specifies the attributes to be

modified and their new values.

 Each command modifies tuples in the same relation.

 Referential integrity should be enforced.

 UPDATE <table name> [<alias>]

SET <column1> = {<expression>, <subquery>}

[, <column2> = {<expression>, <subquery>} …]

[WHERE <row conditions>];

89

DML: Select, Insert, Update, Delete
UPDATE

 Example: Change the location and controlling

department number of project number 10 to

'Bellaire' and 5, respectively.

U5: UPDATE PROJECT

SET PLOCATION = 'Bellaire', DNUM = 5

WHERE PNUMBER=10;

90

DML: Select, Insert, Update, Delete
UPDATE

 Example: Give all employees in the

'Research' department a 10% raise in salary.

U6: UPDATE EMPLOYEE

SET SALARY = SALARY *1.1

WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research');

91

 CREATE ASSERTION

 Specify additional types of constraints outside

scope of built-in relational model constraints.

 components include: a constraint name, followed
by CHECK, followed by a condition.

 CREATE TRIGGER

 Specify automatic actions that database system

will perform when certain events and conditions

occur.

92

Advanced DDL: Assertions & Triggers

Advanced DDL: Assertions & Triggers

 CREATE ASSERTION

 Specify a query that selects any tuples that violate

the desired condition.

 Use only in cases where it is not possible to use
CHECK on attributes and domains.

Advanced DDL: Assertions & Triggers

 “The salary of an employee must not be

greater than the salary of the manager of the

department that the employee works for.’’

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D

WHERE E.SALARY>M.SALARY AND E.DNO=D.NUMBER

AND D.MGRSSN=M.SSN));

94

Advanced DDL: Assertions & Triggers

 Triggers: to specify the type of action to be

taken as certain events occur & as certain

conditions are satisfied.

95

VIEWs

 A view is a “virtual” table that is derived

from other tables.

 Allows for limited update operations (since

the table may not physically be stored).

 Allows full query operations.

 A convenience for expressing certain

operations.

96

VIEWs

 SQL command: CREATE VIEW
 a view (table) name

 a possible list of attribute names

 a query to specify the view contents

 Specify a different WORKS_ON table (view)
CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER;

97

VIEWs

 We can specify SQL queries on a newly

create table (view):
SELECT FNAME, LNAME FROM WORKS_ON_NEW

WHERE PNAME=‘Seena’;

 View always up-to-date

 Responsibility of the DBMS and not the user

 When no longer needed, a view can be

dropped:
DROP VIEW WORKS_ON_NEW;

98

View Update and Inline Views

 Update on a view defined on a single table

without any aggregate functions

 Can be mapped to an update on underlying base

table.

 View involving joins

 Often not possible for DBMS to determine which

of the updates is intended.

 More details: 5.3.3

99

View Update and Inline Views

 Clause WITH CHECK OPTION

 Must be added at the end of the view definition if

a view is to be updated

 In-line view

 Defined in the FROM clause of an SQL query

100

Contents

1 The COMPANY Database

2 SQL developments: an overview

3 DDL: Create, Alter, Drop

4 DML: select, insert, update, delete

5 DCL: commit, rollback, grant, revoke

101

DCL: Commit, Rollback, Grant, Revoke

 Chapter 17: Transaction Processing

 Chapter 23: DB security

102

Summary

 SQL developments: an overview

 SQL

 DDL: Create, Alter, Drop

 DML: select, insert, update, delete

 Introduction to advanced DDL (assertions &

triggers), views, DCL (commit, rollback, grant,

revoke)

103

104

Exercise

105

1. For each employee, retrieve the employee’s first name

and last name and the first and last name of his/her

immediate supervisor.

2. Retrieve the names of all employees in the departments

which are located in Houston.

3. List the names of all employees who have a dependent

with the same first name as themselves.

4. For each project, calculate the total number of

employees who work for it, and the total number of

hours that these employees work for the project.

5. Retrieve the average salary of all female employees.

6. For each department whose average employee salary

is more than $30.000, retrieve the department name

and the number of employees work for that department.

106

Review questions

1) How do the relations (tables) in SQL differ from the

relations defined formally in Chapter 4? Discuss

the other differences in terminology.Why does

SQL allow duplicate tuples in a table or in a

query result?

2) List the data types that are allowed for SQL

attributes.

3) How does SQL allow implementation of the

entity integrity and referential integrity

constraints described in Chapter 4? What about

referential triggered actions?

107

