
Chapter 6 (cont.):

Trigger, Store Procedure, 

Function & Cursor in Oracle

Jan - 2014 CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Contents

2

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Contents

3

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Trigger Overview

 A trigger is a procedure which is executed 

implicitly whenever the triggering event 

happens.

 Executing a trigger is to “fire” the trigger.

 Triggering Events are:

 DML Commands: INSERT, UPDATE, DELETE

 DDL Commands : CREATE, ALTER, DROP

 Database Events: SERVERERROR, 

LOGON, LOGOFF, STARTUP, SHUTDOWN

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Trigger Overview

 Uses for triggers:

 Automatically generate derived column values.

 Maintain complex integrity constraints.

 Enforce complex business rules.

 Record auditing information about database 

changes.

 Invoke a program when database changes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Simple DML Trigger Syntax

CREATE [OR REPLACE] TRIGGER schema.trigger_name

BEFORE | AFTER | INSTEAD OF

DELETE | INSERT | UPDATE [OF columns list ] [OR …]

ON schema.table_name

[REFERENCING  OLD [AS] <old_name> | NEW [AS] 

<new_name>]

[FOR EACH ROW]

[WHEN (condition)]

BEGIN

PL/SQL_block | call_procedure_statement;

END trigger_name;

6CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Types of Triggers

Category Values Comments

DML Insert Type of DML which makes the 

trigger fire.Update

Delete

Timing Before When the trigger fires.

After

Instead of

Level Row Row level triggers fire for each 

affected row.
Identified by keywords FOR EACH 

ROW

Statement Statement level triggers  fire once 

per DML Statement
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Trigger Firing Order

1.  Before statement triggers fire.

2.  For Each Row:

A) Before row triggers fire.

B) Execute the Insert/Update/Delete.

C) After row triggers fire.

3.  After statement triggers fire.

8CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


 When row-triggers fire, there are 2 pseudo-

records created called new and old. 
new table_name%ROWTYPE;

old table_name%ROWTYPE;

 old and new are of datatype ROWTYPE from 

the affected table. Use dot notation to 

reference columns from old and new.

 old is undefined for insert statements.

 new is undefined for delete statements.

9

REFERCING Clause: Old and New 

Data

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


 Instead of a REFERENCING clause, Oracle 

assumes that new tuples are referred to as 

“new” and old tuples by “old.”

 Also, for statement-level triggers: “newtable” 

and “oldtable”.

 In actions, but not in conditions, you must 

prefix “new,” etc., by a colon

 :new

 :old

10

REFERCING Clause: Old and New 

Data

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Example: Row Level Trigger

CREATE TRIGGER    NoLowerPrices

AFTER UPDATE OF  price  ON Product

FOR EACH ROW

WHEN (old.price > new.price)

BEGIN

UPDATE  Product

SET  price = :old.price

WHERE  p_name = :new.p_name;

END;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Bad Things Can Happen

CREATE TRIGGER  Bad_trigger

AFTER UPDATE OF price ON Product

FOR EACH ROW

WHEN   (new.price > 50)

BEGIN

UPDATE  Product

SET  price = :new.price * 2

WHERE  p_name = :new.p_name;

END;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Contents

13

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Database Stored Procedures

 Stored procedures

 Program modules stored by the DBMS at the 

database server

 Can be functions or procedures

 Persistent stored modules 

 Stored persistently by the DBMS

14CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Useful:

 When database program is needed by several 

applications

 To reduce data transfer and communication cost 

between client and server in certain situations

 To enhance modeling power provided by views

15CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Declaring stored procedures:
CREATE [OR REPLACE] PROCEDURE 

procedure_name

[(parameter_name [IN | OUT | IN OUT] 

datatype )]

{IS | AS}

BEGIN

procedure_body

END procedure_name;

16CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Parameter: 

 Data type: one of the SQL data types.

 Parameter mode: IN, OUT, or IN OUT

 IN: you must supply a value for the parameter when 

calling the procedure.

 OUT: procedure passes a value for this parameter back 

to its calling environment after execution.

 IN OUT: you must supply a value for the parameter

when calling the procedure and that the procedure 

passes a value back to its calling environment after 

execution.

 Defaults: IN.

17CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions
 Example of store procedure:

18

CREATE OR REPLACE PROCEDURE update_salary

(p_emp_id IN EMPLOYEE.SSN%type,

p_factor IN NUMBER)

AS

v_emp_count INTEGER;

BEGIN

SELECT COUNT(*) INTO v_emp_count

FROM employee

WHERE SSN = p_emp_id;

IF v_emp_count = 1 THEN

UPDATE employee

SET salary = salary * p_factor

WHERE SSN = p_emp_id;

COMMIT;

END IF;

END update_salary;CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Calling a store procedure:

 EXECUTE  update_salary (‘123456789’, 1.5);

 BEGIN 

update_salary (‘123456789’, 1.5);

END;

19CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Declaring function:
CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] 

datatype )]

RETURN datatype

{IS | AS}

BEGIN

function_body

END function_name;

20CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Example of Function:

21

CREATE OR REPLACE FUNCTION get_salary 

(p_emp_id IN EMPLOYEE.SSN%TYPE)

RETURN NUMBER

AS

v_sal NUMBER;

BEGIN

SELECT salary into v_sal

FROM EMPLOYEE

WHERE SSN = p_emp_id;

RETURN v_sal;

END get_salary;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Stored Procedures & Functions

 Calling a function:

 SELECT * FROM EMPLOYEE 

WHERE salary = get_salary (‘123456789’);

 SELECT get_salary (‘123456789’) FROM dual;

22CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Contents

23

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Database Access Using Cursors

 When the result of an SQL query (select

statement) consists of more than one row, 

the simple select into statement can not be 

used. 

 A PL/SQL cursor allows the program to fetch 

and process information from the database 

into the PL/SQL program, one row at a time. 

24CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Explicit Cursor

25

 Explicit cursor: used for processing a query 
resulting in more than one row. 

 Implicit cursor: is automatically defined by 
PL/SQL for the select into statements, which 
result in one or fewer rows. 

 Syntax of explicit cursor:

cursor <cname>  [return-spec]  

is <select-statement>; 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Cursor Example

cursor c1 return customers%rowtype is

select * from customers;

cursor c2 is

select pno, pname, price*markdown sale_price

from parts;

26

has return clause

Use PL/SQL variable 

markdown

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Process cursor

27

 One a cursor has been declared, it can be 

processed using the open, fetch, and close

statements. 

open <cname>;

fetch <cname> into <Record-or-VariableList>;

close <cname>;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Explicit Cursor Attributes

28

 Obtain status information about a cursor.

%FOUND

Returns TRUE if the last fetch returned a row, 

or FALSE if the last fetch failed to return a 

row.

%NOTFOUND The logical opposite of %FOUND.

%ROWCOUNT

Before the first fetch, returns 0. 

When a cursor is opened, %ROWCOUNT is 

zeroed. 

Thereafter, returns the number of rows 

fetched so far. The number is incremented if 

the latest fetch returned a row.

%ISOPEN
If a cursor is  open, returns TRUE; otherwise, 

it returns FALSE.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Explicit Cursor Attributes example

29

IF c1%ISOPEN THEN

FETCH c1 INTO v_ename, v_sal, 

v_hiredate;

ELSE

OPEN c1;

END IF;

LOOP

FETCH c1 INTO v_ename, v_sal, 

v_hiredate;

EXIT WHEN c1%ROWCOUNT > 10;

END LOOP;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


DECLARE

cursor c is select * from sailors;

sailorData sailors%ROWTYPE;

BEGIN

open c;

fetch c into sailorData;

sailorData is a 
variable that 
can hold a 
ROW from 
the sailors 
table

Here the 
first row of 
sailors is 
inserted into 
sailorData

Cursor Example

30CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Cursor Example

31

DECLARE

Pi constant NUMBER(8,7) := 3.1415926;

area NUMBER(14,2);

cursor rad_cursor is select * from RAD_VALS;

rad_val rad_cursor%ROWTYPE;

BEGIN

open rad_cursor;

fetch rad_cursor into rad_val;

area:=pi*power(rad_val.radius,2);

insert into AREAS values (rad_val.radius, 
area);

close rad_cursor;

END;

/

radius

3

6

8

Rad_cursor

f
e
t
c
h

Rad_val

Radius Area
AREAS

3 28.27

RAD_VALS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Cursor FOR LOOP statement

 This loop is very useful when all rows of the 
cursors are to be processed.

 <record_index> is a record variable that is 
implicitly declared by PL/SQL. Its scope is the 
for loop, and it can not be accessed outside the 
for loop. 

32

for <record_index> in <cursor name> 

loop

<loop-body>;

end loop;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Cursor FOR LOOP statement

 The loop terminates automatically when all 

rows of the cursor have been fetched. 

 There is no need to open, fetch, or close the 

cursor, and there is no need to declare the 

record into which the cursor rows are to be 

fetched. 

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Cursor FOR LOOP example

declare

cursor c1 is

select cno, cname, city

from customers, zipcodes

where customers.zip = zipcodes.zip;

begin

for c1_rec in c1 loop

dbms_output.put_line(‘Row number ’ || 
c1%rowcount || ‘> ‘ || c1_rec.cno || ‘ 
‘ || c1_rec.cname || ‘ ‘ || c1_rec.city);

end loop

end;

34

c1_rec

No declare for the record into 

which the cursor rows are to be 

fetchedCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Another controlling Cursor Example

35

OPEN c_1;

LOOP

-- fetch from cursor variable

FETCH c_1 INTO a, b, c; 

-- exit when last row is fetched

EXIT WHEN c_1%NOTFOUND;

-- process data record

END LOOP;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Contents

36

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


37Jan - 2014 CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Exercise

38CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


1. Write a trigger for ensuring that the employee’s

ages must be between18 and 60.

2. Write a trigger to enforce that when an

employee has a new project, his or her salary

will be increased by 10% * number of hours per

week working on that project.

3. Write a store procedure to read an employee’s

id and print the names of his/her dependents.

4. Write a function to read a project’s id and return

the total number of employees who work for

that project.

39CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

