Chapter 6 (cont.):
Trigger, Store Procedure,
Function & Cursor in Oracle

Jan - 2014

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trigger Overview

A trigger Is a procedure which Is executed
implicitly whenever the triggering event
happens.

Executing a trigger is to “fire” the trigger.

Triggering Events are:
o DML Commands: INSERT, UPDATE, DELETE
o DDL Commands : CREATE, ALTER, DROP

o Database Events: SERVERERROR,
_OGON, LOGOFF, STARTUP, SHUTDOWN

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trigger Overview

Uses for triggers:
o Automatically generate derived column values.
o Maintain complex integrity constraints.
o Enforce complex business rules.

o Record auditing information about database
changes.

o Invoke a program when database changes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Simple DML Trigger Syntax

CREATE [OR REPLACE] TRIGGER schema.trigger_name
BEFORE | AFTER | INSTEAD OF

DELETE | INSERT | UPDATE [OF columns list] [OR ...]
ON schema.table _name

[REFERENCING OLD [AS] <old_name> | NEW [AS]
<new_nhame>]

[FOR EACH ROW]
[WHEN (condition)]
BEGIN
PL/SQL_block | call procedure_ statement;
END trigger_name;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types ot Triggers

Category |Values Comments

DML Insert Type of DML which makes the
Update trigger fire.
Delete

Timing Before When the trigger fires.
After

Instead of

Level Row Row level triggers fire for each
affected row.

ldentified by keywords FOR EACH
ROW

Statement Statement level triggers fire once
per DML Statement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trigger Firing Order

1. Before statement triggers fire.

2. For Each Row:

A) Before row triggers fire.
B) Execute the Insert/Update/Delete.
C) After row triggers fire.

3. After statement triggers fire.

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

REFERCING Clause: Old and New
Data

When row-triggers fire, there are 2 pseudo-
records created called new and old.
new table name%ROWTYPE;

old table nameTROWTYPE,

old and new are of datatype ROWTYPE from
the affected table. Use dot notation to
reference columns from old and new.

old i1s undefined for insert statements.
new IS undefined for delete statements.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

REFERCING Clause: Old and New

Data

Instead of a REFERENCING clause, Oracle
assumes that new tuples are referred to as
“new” and old tuples by “old.”

Also, for statement-level triggers: "newtable”
and “oldtable”.

In actions, but not in conditions, you must
prefix “new,” etc., by a colon

a .new
o :old

10

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example: Row Level Trigger

CR

EATE TRIGGER NolLowerPrices

AFTER UPDATE OF price ON Product

FO

R EACH ROW

W

EN (old.price > new.price)

BEGIN
UPDATE Product

S

ET price = :old.price

WHERE p name = :new.p_name;
END;

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bad Things Can Happen

CREATE TRIGGER Bad trigger
AFTER UPDATE OF price ON Product
FOR EACH ROW
WHEN (new.price > 50)
BEGIN

UPDATE Product

SET price = :new.price * 2

WHERE p _name = :new.p_name,
END;

ccccccccccccccccc

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

13

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Database Stored Procedures

Stored procedures

o Program modules stored by the DBMS at the
database server

o Can be functions or procedures

Persistent stored modules
o Stored persistently by the DBMS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Useful:

o When database program is needed by several
applications

o To reduce data transfer and communication cost
between client and server in certain situations

o To enhance modeling power provided by views

15

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Declaring stored procedures:

CREATE [OR REPLACE] PROCEDURE
procedure name

[(parameter name [IN | OUT | IN OUT]
datatype)]

{IS | AS}
BEGIN

procedure body
END procedure name;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Parameter:

o Data type: one of the SQL data types.

o Parameter mode: IN, OUT, or IN OUT
IN: you must supply a value for the parameter when
calling the procedure.

OUT: procedure passes a value for this parameter back
to its calling environment after execution.

IN OUT: you must supply a value for the parameter
when calling the procedure and that the procedure

passes a value back to its calling environment after
execution.

Defaults: IN.

17

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Example of store procedure:

CREATE OR REPLACE PROCEDURE update salary
(p_emp 1d IN EMPLOYEE.SSNStype,

p factor IN NUMBER)
AS
v_emp count INTEGER;
BEGIN
SELECT COUNT (*) INTO v _emp count
FROM employee
WHERE SSN = p emp 1d;
IF v _emp count = 1 THEN
UPDATE employee
SET salary = salary * p factor
WHERE SSN = p emp 1d;
COMMIT;
END IF;
ENDoypodete salary; hitpss /b comtailieucientucrt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Calling a store procedure:
o EXECUTE update_salary (‘1234567/89’, 1.5);

o BEGIN

update_salary (‘1234567/89’°, 1.5);
END;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

19

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Declaring function:
CREATE [OR REPLACE] FUNCTION function name

[(parameter name [IN | OUT | IN OUT]
datatype)]

RETURN datatype
{IS | AS}
BEGIN

function body

END function_name;

20

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Example of Function:

CREATE OR REPLACE FUNCTION get salary
(p_emp 1d IN EMPLOYEE.SSNSTYPE)

RETURN NUMBER

AS
v _sal NUMBER;

BEGIN
SELECT salary into v sal
FROM EMPLOYEE
WHERE SSN = p emp 1id;
RETURN v sal;

END get salary;

= Tl " "
cttotong T ancongTconT APS7rorcomrtarTretarentacntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Stored Procedures & Functions

Calling a function:
o SELECT * FROM EMPLOYEE
WHERE salary = get_salary (‘123456789’);

o SELECT get_salary (‘123456789’) FROM dual;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

23

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Database Access Using Cursors

When the result of an SQL query (select
statement) consists of more than one row,
the simple select into statement can not be
used.

A PL/SQL cursor allows the program to fetch
and process information from the database
into the PL/SQL program, one row at a time.

24

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Explicit Cursor

Explicit cursor: used for processing a query
resulting in more than one row.

Implicit cursor: Is automatically defined by
PL/SQL for the select into statements, which
result in one or fewer rows.

Syntax of explicit cursor:

cursor <cname> [return-spec]
18 <select-statement>;

25

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Cursor Example

cursor cl return customers%rowtype Is
select * from customers:
has return clause

cursor c2 is
select pno, pname, price*markdown sale price
from parts; \

Use PL/SQL variable
markdown

26

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Process cursor

One a cursor has been declared, it can be
processed using the open, fetch, and close
statements.

open <chame>=;

fetch <cname> into <Record-or-VariableList>;
close <chame>;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

27

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Explicit Cursor Attributes

ODbtain status information about a cursor.

%FOUND

Returns TRUE if the last fetch returned a row,
or FALSE If the last fetch failed to return a
rOw.

%NOTFOUND

The logical opposite of %FOUND.

%ROWCOUNT

Before the first fetch, returns O.

When a cursor is opened, %ROWCOUNT is
zeroed.

Thereatfter, returns the number of rows
fetched so far. The number is incremented if
the latest fetch returned a row.

%ISOPEN

If a cursor is open, returns TRUE; otherwise,
it returns FALSE.

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

28

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Explicit Cursor Attributes example

IF cl%$ISOPEN THEN
FETCH cl INTO v ename, Vv sal,
v _hiredate;
ELSE
OPEN cl1;
END IF;

LOOP
FETCH cl INTO v ename, Vv sal,

v _hiredate;
EXTIT WHEN cl%ROWCOUNT > 10;

END LOOP;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

29

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Cursor Example

sailorData is a
variable that

DECLARE can hold a

cursor c is select * from sailors; ROW from
— | the sailors

sailorData sailors%ROWTYPE:—" | | 140l

BEGIN
open C; Here the
fetch c into sailorDatas first row of

sailors is
inserted into
sailorData

30

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Cursor Example

RAD_VALS

DECLARE
Pi constant NUMBER(8,7) := 3.1415926;

cursor rad_cursor is select * from RAD _VALS;
3 rad_val rad _cursor%eROWTYPE;

radius area NUMBER(14,2);
Rad_cur'so>

6 BEGIN
open rad_cursor;
g fetch rad_cursor into rad_val,

area:=pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius,

<n-|-m-h

Rad_val area);
close rad_cursor;
END;
AREAS /
Radius Area

3 CtluDuongT@18r2@)7 https://fb.com/tailieudientucntt 31

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Cursor FOR LOOP statement

This loop is very useful when all rows of the
cursors are to be processed.

for <record_index> in <Ccursor name>
loop

<loop—-body>;
end loop;

<record index> IS arecord variable that is

iImplicitly declared by PL/SQL. Its scope iIs the
for loop, and it can not be accessed outside the

for loop.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

32

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Cursor FOR LOOP statement

The loop terminates automatically when all
rows of the cursor have been fetched.

There Is no need to open, fetch, or close the
cursor, and there i1s no need to declare the

record into which the cursor rows are to be
fetched.

33

ccccccccccccccccc

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘Cursor FOR LOOP example

declare
cursor cl 1s
select cno, cname, city
from customers, zipcodes
where customers.zlip = zlpcodes.zlp;
begin
for cl rec 1n cl loop

dbms output.put line(‘Row number " ||
clsrowcount || ‘> Y || ¢l rec.cno ||
‘' || ¢l rec.cname || Y 'Y || cl rec.city);

end loop \\\\\\\\\
end; cl rec

No declare for the record into
which the cursor rows are to be —
CuuDuongThanCong.com fetc h e d https://fb.com/tailieudientucntt 34

\

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Another controlling Cursor Example

OPEN c 1;

LOOP
—— fetch from cursor wvariable
FETCH ¢ duuldNdHg than bongcC;
—-— ex1t when last row 1s fetched
EXIT WHEN C_l%NOTFOUND;

—— process data record

END LOOP;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

35

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Trigger

2 Store Procedure & Function

3 Cursor

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

36

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Jan - 2014

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

37

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Exercise

EMPLOYEE

Fname | Minit | Lname | Ssh | Bdate Address | Sex | Salary | Super_ssn | Dno

DEPARTMENT TTT*

Dname | Dnumber | Mgr_ssn | Mgr_start_date

i
DEPT_LOCATIONS

Dnumber Dlocation
|

PROJECT
Pname | Pnumber | Plocation Dnum
T
WORKS_ON

Essn Pno Hours
| I
DEPENDENT

Essn | Dependent name | Sex | Bdate | Relationship
|

Coubuor MTI T CoNg-conT https://fb.com/tai lieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Write a trigger for ensuring that the employee’s
ages must be betweenl8 and 60.

Write a trigger to enforce that when an
employee has a new project, his or her salary
will be increased by 10% * number of hours per
week working on that project.

Write a store procedure to read an employee’s
Id and print the names of his/her dependents.

Write a function to read a project’s id and return
the total number of employees who work for
that project.

39

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

