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Introduction

 Each relation schema consists of a number of 

attributes and the relational database schema

consists of a number of relation schemas.

 Attributes are grouped to form a relation 

schema.

 Need some formal measure of why one 

grouping of attributes into a relation schema 

may be better than another.
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Introduction

 “Goodness” measures:

 Redundant information in tuples.

 Update anomalies: modification, deletion, 

insertion.

 Reducing the NULL values in tuples.

 Disallowing the possibility of generating spurious 

tuples.
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Redundant information

 The attribute values pertaining to a particular 

department (DNUMBER, DNAME, DMGRSSN) 

are repeated for every employee who works for 

that department.
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Update anomalies

 Update anomalies: modification, deletion, 

insertion

 Modification

 As the manager of a dept. changes we have to update many 

values according to employees working for that dept.

 Easy to make the DB inconsistent.
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Update anomalies

 Update anomalies: modification, deletion, 

insertion

 Deletion: if Borg James E. leaves, we delete his tuple 

and lose the existing of dept. 1, the name of dept. 1, 

and who is the manager of dept. 1.
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Update anomalies

 Update anomalies: modification, deletion, 

insertion

 Insertion:

 How can we create a department before any employees 

are assigned to it ?
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Reducing NULL values

 Employees not assigned to any dept.: waste the 

storage space.

 Other difficulties: aggregation operations (e.g., 

COUNT, SUM) and joins.
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Generation spurious tuples

 Disallowing the possibility of generating spurious 
tuples.
EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, 

PNAME, PLOCATION)

EMP_LOCS(ENAME, PLOCATION)

EMP_PROJ1(SSN, PNUMBER, HOURS, PNAME, 
PLOCATION)

 Generation of invalid and spurious data during JOINS: 
PLOCATION is the attribute that relates EMP_LOCS and 
EMP_PROJ1, and PLOCATION is neither a primary key 
nor a foreign key in either EMP_LOCS or EMP_PROJ1 .
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Generation spurious tuples

13



Generation spurious tuples
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Generation spurious tuples
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Summary of Design Guidelines

 “Goodness” measures:
 Redundant information in tuples

 Update anomalies: modification, deletion, insertion

 Reducing the NULL values in tuples

 Disallowing the possibility of generating spurious tuples

 Normalization

 It helps DB designers determine the best relation 
schemas.
 A formal framework for analyzing relation schemas based on their 

keys and on the functional dependencies among their attributes.

 A series of normal form tests that can be carried out on individual 
relation schemas so that the relational database can be 
normalized to any desired degree.

 It is based on the concept of normal form 1NF, 2NF, 
3NF, BCNF, 4NF, 5 NF.
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Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs
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Definition of Functional dependencies 

 Functional dependencies (FDs) are used to 
specify formal measures of the "goodness" 
of relational designs.

 FDs and keys are used to define normal 
forms for relations.

 FDs are constraints that are derived from 
the meaning and interrelationships of the 
data attributes.

 A set of attributes X functionally determines
a set of attributes Y if the value of X 
determines a unique value for Y.
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Definition of Functional dependencies 

 X -> Y holds if whenever two tuples have the same value 
for X, they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R): 
If t1[X]=t2[X], then t1[Y]=t2[Y]

 X -> Y in R specifies a constraint on all relation 
instances r(R)

 Examples:
 social security number determines employee name: 

SSN -> ENAME

 project number determines project name and location: 
PNUMBER -> {PNAME, PLOCATION}

 employee ssn and project number determines the hours 
per week that the employee works on the project: 

{SSN, PNUMBER} -> HOURS
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Definition of Functional dependencies 

 If K is a key of R, then K functionally 

determines all attributes in R (since we never 

have two distinct tuples with t1[K]=t2[K]).
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Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

22



Direct, indirect, partial dependencies

 Direct dependency (fully functional 

dependency): All attributes in a R must be fully 

functionally dependent on the primary key (or 

the PK is a determinant of all attributes in R).

Performer-id
Performer-

name

Performer-

type

Performer-

location
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Direct, indirect, partial dependencies

 Indirect dependency (transitive dependency): 

Value of an attribute is not determined directly 

by the primary key.

Performer-id
Performer-
name

Performer-
type

Performer-
location

Fee
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Direct, indirect, partial dependencies

 Partial dependency
 Composite determinant: more than one value is required to 

determine the value of another attribute, the combination of 
values is called a composite determinant.

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION)

{SSN, PNUMBER} -> HOURS

 Partial dependency: if the value of an attribute does not depend 
on an entire composite determinant, but only part of it, the 
relationship is known as the partial dependency.

SSN -> ENAME 

PNUMBER -> {PNAME, PLOCATION}
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Direct, indirect, partial dependencies

 Partial dependency

Performer-id
Performer-name

Performer-type

Performer-location

Fee

Agent-id Agent-name

Agent-location
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Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs
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Inference Rules for FDs

 Given a set of FDs F, we can infer additional 

FDs that hold whenever the FDs in F hold.

Armstrong's inference rules:

IR1. (Reflexive) If Y     X, then X -> Y.

IR2. (Augmentation) If X -> Y, then XZ -> YZ.

(Notation: XZ stands for X U Z)

IR3. (Transitive) If X -> Y and Y -> Z, then X -> 
Z.
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Inference Rules for FDs

 Some additional inference rules that are 

useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z

(Union) If X -> Y and X -> Z, then X -> YZ

(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

 The last three inference rules, as well as any 

other inference rules, can be deduced from IR1, 

IR2, and IR3 (completeness property).
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Inference Rules for FDs

 Closure of a set F of FDs is the set F+ of 

all FDs that can be inferred from F.

 Closure of a set of attributes X with 

respect to F is the set X + of all attributes 

that are functionally determined by X.

 X + can be calculated by repeatedly 

applying IR1, IR2, IR3 using the FDs in F.
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Inference Rules for FDs

31

Algorithm 16.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of  

attributes X, which is a subset of R.

X+ := X;

repeat

oldX+ := X+;

for each functional dependency Y → Z in F do

if X+ ⊇ Y then X+ := X+ ∪ Z;

until (X+ = oldX+);



Inference Rules for FDs

 Consider a relation R(A, B, C, D, E) with the 

following dependencies F: 

 (1) AB  C, 

 (2) CD  E, 

 (3) DE  B

 Find {A,B}+ ?
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Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

33



Equivalence of Sets of FDs

 Two sets of FDs F and G are equivalent if 

F+ = G+.

 Definition: F covers G if G+ F+. F and G are 

equivalent if F covers G and G covers F.

 There is an algorithm for checking equivalence 

of sets of FDs.
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Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs
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Minimal Sets of FDs

 A set of FDs is minimal if it satisfies the 

following conditions:

(1) Every dependency in F has a single attribute for its 

right-hand side.

(2) We cannot remove any dependency from F and have 

a set of dependencies that is equivalent to F.

(3) We cannot replace any dependency X -> A in F with a 

dependency Y -> A, where Y proper-subset-of X ( Y 

subset-of X) and still have a set of dependencies that 

is equivalent to F.
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Minimal Sets of FDs

Algorithm 16.2. Finding a Minimal Cover F for a Set of 

Functional Dependencies E

Input: A set of functional dependencies E.

1. Set F := E.

2. Replace each functional dependency X→{A1, A2, ..., An} in F 

by the n functional dependencies X→A1, X→A2, ..., X→An.

3. For each functional dependency X→A in F

for each attribute B that is an element of X

if { {F – {X→A} } ∪ { (X – {B} ) →A} } is equivalent to F

then replace X→A with (X – {B} ) →A in F.

4. For each remaining functional dependency X→A in F

if {F – {X→A} } is equivalent to F,

then remove X→A from F.
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Minimal Sets of FDs

 Every set of FDs has an equivalent minimal set.

 There can be several equivalent minimal sets.

 There is no simple algorithm for computing a 

minimal set of FDs that is equivalent to a set F of 

FDs.

 To synthesize a set of relations, we assume that 

we start with a set of dependencies that is a 

minimal set.
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Normalization

 Normalization: The process of decomposing 
unsatisfactory "bad" relations by breaking up their 
attributes into smaller relations.

 Normal form: Using keys and FDs of a relation to certify 
whether a relation schema is in a particular normal form.

 Normalization is carried out in practice so that the 
resulting designs are of high quality and meet the 
desirable properties.

 The database designers need not normalize to the 
highest possible normal form (3NF, BCNF or 4NF).
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Normalization

 There are two important properties of 
decompositions: 

(a) non-additive or losslessness of the 
corresponding join.

(b) preservation of the functional dependencies.

 Note that property (a) is extremely important 
and cannot be sacrificed. Property (b) is less 
stringent and may be sacrificed (see chapter 
16).
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Normalization

 Superkey of R: A set of attributes SK of R
such that no two tuples in any valid relation 
instance r(R)  will have the same value for 
SK.  That is, for any distinct tuples t1 and t2 
in r(R), t1[SK] ≠ t2[SK].

 Key of R: A "minimal" superkey; that is, a 
superkey K such that removal of any attribute 
from K results in a set of attributes that is not 
a superkey.

 If K is a key of R, then K functionally 
determines all attributes in R.
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Normalization

 Two new concepts:

 A Prime attribute must be a member of some 

candidate key.

 A Nonprime attribute is not a prime attribute: it is 

not a member of any candidate key.
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Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations
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1NF

 First normal form (1NF): there is only one 

value at the intersection of each row and 

column of a relation - no set valued attributes 

in 1 NF  Disallows composite attributes, 

multivalued attributes, and nested relations.

 The only attribute values permitted by 1NF 

are single atomic (or indivisible) values.
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1NF
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1NF
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1NF
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Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations
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2NF

 Second normal form (2NF) - all attributes must 

be fully functionally dependent on the primary 

key.

 2NF solves partial dependency problem in 1NF.

 2NF normalized: Decompose and set up a new 

relation for each partial key with its dependent 

attribute(s).Make sure to keep a relation with the 

original primary key and any attributes that are 

fully functionally dependent on it.
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2NF
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Performer-

id

Performer-

name

Performer-

location

Performer-

type
Fee

Problem with 2NF:

- Insertion

- Modification

- Deletion
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Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations
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3NF

 A relation schema R is in third normal form 
(3NF) if it is in 2NF and no non-prime attribute A 
in R is transitively dependent on the primary key.

 NOTE:

 In X -> Y and Y -> Z, with X as the primary key, we 
consider this a problem only if Y is not a candidate 
key. When Y is a candidate key, there is no problem 
with the transitive dependency .

 E.g., Consider EMP (SSN, Emp#, Salary).

 Here, SSN  Emp#. Emp#  Salary and Emp# is a 
candidate key.
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3NF

 3NF solves indirect (transitive) dependencies 

problem in 1NF and 2NF.

 3NF normalized: identify all transitive 

dependencies and each transitive 

dependency will form a new relation.
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3NF
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3NF

 LOCATION ( city, street, zip-code )

 F = { city, street -> zip-code, 

zip-code -> city

Key1 : city, street (primary key)

Key2 : street, zip-code

57

city street zip-code

NY 55th 484

NY 56th 484

LA 55th 473

LA 56th 473

LA 57th 474



SUMMARY OF NORMAL FORMS 

based on Primary Keys
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 The above definitions consider the primary 

key only.

 The following more general definitions take 

into account relations with multiple candidate 

keys.
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 A relation schema R is in second normal form (2NF) if 

every non-prime attribute A in R is not partially 

functionally dependent on any key of R.

 A relation schema R is in third normal form (3NF) if 

whenever a FD X  A holds in R, then either: 

(a) X is a superkey of R, or 

(b) A is a prime attribute of R

60
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General Normal Form Example

61

The LOTS relation with its functional dependencies.



General Normal Form Example

62

Decomposing into 

the 2NF relations



General Normal Form Example
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Decomposing LOTS1 

into the 3NF relations



Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations
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BCNF

 A relation schema R is in Boyce-Codd

Normal Form (BCNF) if whenever an FD 

X -> A holds in R, then X is a superkey of 

R.
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BCNF normalization of LOTS1A with the functional 
dependency FD2 being lost in the decomposition.
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BCNF

 TEACH (Student, Course, Instructor)

 FD1: {Student, Course} → Instructor

 FD2: Instructor → Course
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BCNF

 Three possible pairs:

1. {Student, Instructor} and {Student, Course}

2. {Course, Instructor} and {Course, Student}

3. {Instructor, Course} and {Instructor, Student}

 All three decompositions lose the functional 

dependency FD1. The desirable decomposition 

of those just shown is 3 because it will not 

generate spurious tuples after a join.
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Notes & Suggestions

 [1], chapter 15:

 4NF: based on multivalued dependency (MVD)

 5NF: based on join dependency

 Such a dependency is very difficult to detect in practice 

and therefore, normalization into 5NF is considered very 

rarely in practice

 Other normal forms & algorithms

 ER modeling: top-down database design

 Bottom-up database design ??

 [1], chapter 16: Properties of Relational 

Decompositions
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Dependency-Preserving Decomposition

into 3NF Schemas
Algorithm 16.4. Relational Synthesis into 3NF with Dependency 

Preservation

Input: A universal relation R and a set of functional 

dependencies F on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2);

2. For each left-hand-side X of a functional dependency that 

appears in G, create a relation schema in D with attributes {X ∪
{A1} ∪ {A2} ... ∪ {Ak} }, where X→A1, X→A2, ..., X→Ak are the 

only dependencies in G with X as the left-hand-side (X is the key 

of this relation);

3. Place any remaining attributes (that have not been placed in 

any relation) in a single relation schema to ensure the attribute 

preservation property.
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Nonadditive Join Decomposition into 

BCNF Schemas
Algorithm 16.5. Relational Decomposition into BCNF with 

Nonadditive Join Property

Input: A universal relation R and a set of functional 

dependencies F on the attributes of R.

1. Set D := {R} ;

2. While there is a relation schema Q in D that is not in BCNF 

do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X→Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q – Y) and (X ∪
Y);

} ; 72



Dependency-Preserving and Nonadditive 

(Lossless) Join Decomposition into 3NF Schemas
Algorithm 16.6. Relational Synthesis into 3NF with Dependency 

Preservation and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on 

the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2).

2. For each left-hand-side X of a functional dependency that appears in 

G, create a relation schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪
{Ak} }, where X→A1, X→A2, ..., X→Ak are the only dependencies in G 

with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create 

one more relation schema in D that contains attributes that form a key 

of R.

4. Eliminate redundant relations from the resulting set of relations in the 

relational database schema. A relation R is considered redundant if R 

is a projection of another relation S in the schema; alternately, R is 

subsumed by S
73



Dependency-Preserving and Nonadditive 

(Lossless) Join Decomposition into 3NF Schemas

 Algorithm 16.6:

 Preserves dependencies.

 Has the nonadditive join property.

 Is such that each resulting relation schema in the 

decomposition is in 3NF.

 It is preferred over Algorithm 16.4.

74



Contents

75

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms



Key-finding algorithm (1)

Algorithm 16.2(a). Finding a Key K for R Given a 
set F of Functional Dependencies

Input: A relation R and a set of functional 
dependencies F on the attributes of R.

1. Set K := R.

2. For each attribute A in K

{compute (K – A)+ with respect to F;

if (K – A)+ contains all the attributes in R, 

then set K := K – {A} 

};

By Elmasri and Navathe
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Key-finding algorithm (1)

 In algorithm (1), we start by setting K to all 

the attributes of R; we then remove one 

attribute at a time and check whether the 

remaining attributes still form a superkey. 

 The algorithm (1) determines only one key 

out of the possible candidate keys for R; the 

key returned depends on the order in which 

attributes are removed from R in step 2.

By Elmasri and Navathe
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Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F 

on the attributes of R.

Output: all candidate keys of R

Let: 

 U contain all attributes of R.

 UL contain attributes of R that occur only on the left-

hand side of FDs in F.

 UR contain attributes of R that occur only on the right-

hand side of FDs in F.

 UB contain attributes of R that occur on both sides of 

FDs in F.

By Hossein Saiedian and Thomas Spencer
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Key-finding algorithm (2)

Note:

 UL∩ UR = ф, UL ∩ UB = ф and UR ∩ UB = ф 

 UL ∪ UR ∪ UB = U

 For every attribute A ∈ U, if A ∈ UL, then A

must be part of every candidate key of R.

 For every attribute A ∈ U, if A ∈ UR, then A

will not be part of any candidate key of R.

79
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Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F on 
the attributes of R.

Output: all candidate keys of R

1. Determine UL, UR and UB

2. If UL‡
+ = U under F, then UL forms the only key of R and 

the algorithm stops here.

Else: move to step 3 // UL
+ ≠ U under F

3. Consider every subsets UBi  of UB: UBi ⊂ UB

For each UBi, if (UL ∪ UBi)
+ = U under F, then Ki = (UL ∪

UBi) is a candidate key of R (*)

(*) If Ki = (UL ∪ UBi) is a candidate key of R, then we need not 
to check UBj ⊂ UB where UBi ⊂ UBj

By Hossein Saiedian and Thomas Spencer
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Key-finding algorithm (2)

 A simple categorization of attributes into the 

sets UL, UL and UL allows to distinguish 

between those attributes that will participate 

in the candidate keys of a relational database 

schema and those that do not.

 The algorithm (2) finds all candidate keys.

By Hossein Saiedian and Thomas Spencer
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Exercise 1

Consider the universal relation R = {A, B, C, D, 

E, F} and the set of functional dependencies:

1) A B

2) C, D A

3) B, C D

4) A, E F

5) C, E D

What is the key for R? 
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Exercise 2

Consider the universal relation R = {A, B, C, D, 

E, F} and the set of functional dependencies:

1) A, D B

2) A, B E

3) C  D

4) B C

5) A, C F

What is the key for R? Decompose R into 2NF, 

3NF, and BCNF relations.
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Exercise 3

Consider the universal relation R = {A, B, C, D, 

E, F} and the set of functional dependencies:

1) A B

2) C A, D

3) A, F C, E

What is the key for R? Decompose R into 2NF, 

3NF, and BCNF relations.
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Exercise 4

Consider the universal relation R = {A, B, C, D, 

E, F, G, H, I, J} and the set of functional 

dependencies:

1) A, B C

2) B, D E, F

3) A, D G, H

4) A I

5) H J

What is the key for R? Decompose R into 2NF, 

3NF, and BCNF relations.
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Review questions

1) Define first, second, and third normal forms when 

only primary keys are considered. How do the 

general definitions of 2NF and 3NF, which consider 

all keys of a relation, differ from those that consider 

only primary keys?

2) Define Boyce-Codd normal form. How does it differ 

from 3NF? Why is it considered a stronger form of 

3NF?

3) What is a minimal set of functional dependencies? 

Does every set of dependencies have a minimal 

equivalent set? Is it always unique?
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