
Chapter 7:

Functional Dependencies &

Normalization for Relational DBs

Jan - 2014

Contents

2

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Contents

3

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Mini-world

Requirements

Conceptual schema

E1

E2

R

Relation schemas

Top-Down Database Design

4

Introduction

 Each relation schema consists of a number of

attributes and the relational database schema

consists of a number of relation schemas.

 Attributes are grouped to form a relation

schema.

 Need some formal measure of why one

grouping of attributes into a relation schema

may be better than another.

5

Introduction

 “Goodness” measures:

 Redundant information in tuples.

 Update anomalies: modification, deletion,

insertion.

 Reducing the NULL values in tuples.

 Disallowing the possibility of generating spurious

tuples.

6

Redundant information

 The attribute values pertaining to a particular

department (DNUMBER, DNAME, DMGRSSN)

are repeated for every employee who works for

that department.

7

Update anomalies

 Update anomalies: modification, deletion,

insertion

 Modification

 As the manager of a dept. changes we have to update many

values according to employees working for that dept.

 Easy to make the DB inconsistent.

8

Update anomalies

 Update anomalies: modification, deletion,

insertion

 Deletion: if Borg James E. leaves, we delete his tuple

and lose the existing of dept. 1, the name of dept. 1,

and who is the manager of dept. 1.

9

Update anomalies

 Update anomalies: modification, deletion,

insertion

 Insertion:

 How can we create a department before any employees

are assigned to it ?

10

Reducing NULL values

 Employees not assigned to any dept.: waste the

storage space.

 Other difficulties: aggregation operations (e.g.,

COUNT, SUM) and joins.

11

Generation spurious tuples

 Disallowing the possibility of generating spurious
tuples.
EMP_PROJ(SSN, PNUMBER, HOURS, ENAME,

PNAME, PLOCATION)

EMP_LOCS(ENAME, PLOCATION)

EMP_PROJ1(SSN, PNUMBER, HOURS, PNAME,
PLOCATION)

 Generation of invalid and spurious data during JOINS:
PLOCATION is the attribute that relates EMP_LOCS and
EMP_PROJ1, and PLOCATION is neither a primary key
nor a foreign key in either EMP_LOCS or EMP_PROJ1 .

12

Generation spurious tuples

13

Generation spurious tuples

14

Generation spurious tuples

15

Summary of Design Guidelines

 “Goodness” measures:
 Redundant information in tuples

 Update anomalies: modification, deletion, insertion

 Reducing the NULL values in tuples

 Disallowing the possibility of generating spurious tuples

 Normalization

 It helps DB designers determine the best relation
schemas.
 A formal framework for analyzing relation schemas based on their

keys and on the functional dependencies among their attributes.

 A series of normal form tests that can be carried out on individual
relation schemas so that the relational database can be
normalized to any desired degree.

 It is based on the concept of normal form 1NF, 2NF,
3NF, BCNF, 4NF, 5 NF.

16

Contents

17

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

18

Definition of Functional dependencies

 Functional dependencies (FDs) are used to
specify formal measures of the "goodness"
of relational designs.

 FDs and keys are used to define normal
forms for relations.

 FDs are constraints that are derived from
the meaning and interrelationships of the
data attributes.

 A set of attributes X functionally determines
a set of attributes Y if the value of X
determines a unique value for Y.

19

Definition of Functional dependencies

 X -> Y holds if whenever two tuples have the same value
for X, they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R):
If t1[X]=t2[X], then t1[Y]=t2[Y]

 X -> Y in R specifies a constraint on all relation
instances r(R)

 Examples:
 social security number determines employee name:

SSN -> ENAME

 project number determines project name and location:
PNUMBER -> {PNAME, PLOCATION}

 employee ssn and project number determines the hours
per week that the employee works on the project:

{SSN, PNUMBER} -> HOURS

20

Definition of Functional dependencies

 If K is a key of R, then K functionally

determines all attributes in R (since we never

have two distinct tuples with t1[K]=t2[K]).

21

Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

22

Direct, indirect, partial dependencies

 Direct dependency (fully functional

dependency): All attributes in a R must be fully

functionally dependent on the primary key (or

the PK is a determinant of all attributes in R).

Performer-id
Performer-

name

Performer-

type

Performer-

location

23

Direct, indirect, partial dependencies

 Indirect dependency (transitive dependency):

Value of an attribute is not determined directly

by the primary key.

Performer-id
Performer-
name

Performer-
type

Performer-
location

Fee

24

Direct, indirect, partial dependencies

 Partial dependency
 Composite determinant: more than one value is required to

determine the value of another attribute, the combination of
values is called a composite determinant.

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION)

{SSN, PNUMBER} -> HOURS

 Partial dependency: if the value of an attribute does not depend
on an entire composite determinant, but only part of it, the
relationship is known as the partial dependency.

SSN -> ENAME

PNUMBER -> {PNAME, PLOCATION}

25

Direct, indirect, partial dependencies

 Partial dependency

Performer-id
Performer-name

Performer-type

Performer-location

Fee

Agent-id Agent-name

Agent-location

26

Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

27

Inference Rules for FDs

 Given a set of FDs F, we can infer additional

FDs that hold whenever the FDs in F hold.

Armstrong's inference rules:

IR1. (Reflexive) If Y X, then X -> Y.

IR2. (Augmentation) If X -> Y, then XZ -> YZ.

(Notation: XZ stands for X U Z)

IR3. (Transitive) If X -> Y and Y -> Z, then X ->
Z.

28



Inference Rules for FDs

 Some additional inference rules that are

useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z

(Union) If X -> Y and X -> Z, then X -> YZ

(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

 The last three inference rules, as well as any

other inference rules, can be deduced from IR1,

IR2, and IR3 (completeness property).

29

Inference Rules for FDs

 Closure of a set F of FDs is the set F+ of

all FDs that can be inferred from F.

 Closure of a set of attributes X with

respect to F is the set X + of all attributes

that are functionally determined by X.

 X + can be calculated by repeatedly

applying IR1, IR2, IR3 using the FDs in F.

30

Inference Rules for FDs

31

Algorithm 16.1. Determining X+, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of

attributes X, which is a subset of R.

X+ := X;

repeat

oldX+ := X+;

for each functional dependency Y → Z in F do

if X+ ⊇ Y then X+ := X+ ∪ Z;

until (X+ = oldX+);

Inference Rules for FDs

 Consider a relation R(A, B, C, D, E) with the

following dependencies F:

 (1) AB  C,

 (2) CD  E,

 (3) DE  B

 Find {A,B}+ ?

32

Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

33

Equivalence of Sets of FDs

 Two sets of FDs F and G are equivalent if

F+ = G+.

 Definition: F covers G if G+ F+. F and G are

equivalent if F covers G and G covers F.

 There is an algorithm for checking equivalence

of sets of FDs.

34



Functional Dependencies (FDs)

 Definition of FD

 Direct, indirect, partial dependencies

 Inference Rules for FDs

 Equivalence of Sets of FDs

 Minimal Sets of FDs

35

Minimal Sets of FDs

 A set of FDs is minimal if it satisfies the

following conditions:

(1) Every dependency in F has a single attribute for its

right-hand side.

(2) We cannot remove any dependency from F and have

a set of dependencies that is equivalent to F.

(3) We cannot replace any dependency X -> A in F with a

dependency Y -> A, where Y proper-subset-of X (Y

subset-of X) and still have a set of dependencies that

is equivalent to F.

36

Minimal Sets of FDs

Algorithm 16.2. Finding a Minimal Cover F for a Set of

Functional Dependencies E

Input: A set of functional dependencies E.

1. Set F := E.

2. Replace each functional dependency X→{A1, A2, ..., An} in F

by the n functional dependencies X→A1, X→A2, ..., X→An.

3. For each functional dependency X→A in F

for each attribute B that is an element of X

if { {F – {X→A} } ∪ { (X – {B}) →A} } is equivalent to F

then replace X→A with (X – {B}) →A in F.

4. For each remaining functional dependency X→A in F

if {F – {X→A} } is equivalent to F,

then remove X→A from F.

37

Minimal Sets of FDs

 Every set of FDs has an equivalent minimal set.

 There can be several equivalent minimal sets.

 There is no simple algorithm for computing a

minimal set of FDs that is equivalent to a set F of

FDs.

 To synthesize a set of relations, we assume that

we start with a set of dependencies that is a

minimal set.

38

Contents

39

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Normalization

 Normalization: The process of decomposing
unsatisfactory "bad" relations by breaking up their
attributes into smaller relations.

 Normal form: Using keys and FDs of a relation to certify
whether a relation schema is in a particular normal form.

 Normalization is carried out in practice so that the
resulting designs are of high quality and meet the
desirable properties.

 The database designers need not normalize to the
highest possible normal form (3NF, BCNF or 4NF).

40

Normalization

 There are two important properties of
decompositions:

(a) non-additive or losslessness of the
corresponding join.

(b) preservation of the functional dependencies.

 Note that property (a) is extremely important
and cannot be sacrificed. Property (b) is less
stringent and may be sacrificed (see chapter
16).

41

Normalization

 Superkey of R: A set of attributes SK of R
such that no two tuples in any valid relation
instance r(R) will have the same value for
SK. That is, for any distinct tuples t1 and t2
in r(R), t1[SK] ≠ t2[SK].

 Key of R: A "minimal" superkey; that is, a
superkey K such that removal of any attribute
from K results in a set of attributes that is not
a superkey.

 If K is a key of R, then K functionally
determines all attributes in R.

42

Normalization

 Two new concepts:

 A Prime attribute must be a member of some

candidate key.

 A Nonprime attribute is not a prime attribute: it is

not a member of any candidate key.

43

Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations

44

1NF

 First normal form (1NF): there is only one

value at the intersection of each row and

column of a relation - no set valued attributes

in 1 NF  Disallows composite attributes,

multivalued attributes, and nested relations.

 The only attribute values permitted by 1NF

are single atomic (or indivisible) values.

45

1NF

46

1NF

47

1NF

48

Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations

49

2NF

 Second normal form (2NF) - all attributes must

be fully functionally dependent on the primary

key.

 2NF solves partial dependency problem in 1NF.

 2NF normalized: Decompose and set up a new

relation for each partial key with its dependent

attribute(s).Make sure to keep a relation with the

original primary key and any attributes that are

fully functionally dependent on it.

50

2NF

51

Performer-

id

Performer-

name

Performer-

location

Performer-

type
Fee

Problem with 2NF:

- Insertion

- Modification

- Deletion

52

2NF

Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations

53

3NF

 A relation schema R is in third normal form
(3NF) if it is in 2NF and no non-prime attribute A
in R is transitively dependent on the primary key.

 NOTE:

 In X -> Y and Y -> Z, with X as the primary key, we
consider this a problem only if Y is not a candidate
key. When Y is a candidate key, there is no problem
with the transitive dependency .

 E.g., Consider EMP (SSN, Emp#, Salary).

 Here, SSN  Emp#. Emp#  Salary and Emp# is a
candidate key.

54

3NF

 3NF solves indirect (transitive) dependencies

problem in 1NF and 2NF.

 3NF normalized: identify all transitive

dependencies and each transitive

dependency will form a new relation.

55

3NF

56

3NF

 LOCATION (city, street, zip-code)

 F = { city, street -> zip-code,

zip-code -> city

Key1 : city, street (primary key)

Key2 : street, zip-code

57

city street zip-code

NY 55th 484

NY 56th 484

LA 55th 473

LA 56th 473

LA 57th 474

SUMMARY OF NORMAL FORMS

based on Primary Keys

58

 The above definitions consider the primary

key only.

 The following more general definitions take

into account relations with multiple candidate

keys.

59

General Normal Form Definitions

 A relation schema R is in second normal form (2NF) if

every non-prime attribute A in R is not partially

functionally dependent on any key of R.

 A relation schema R is in third normal form (3NF) if

whenever a FD X  A holds in R, then either:

(a) X is a superkey of R, or

(b) A is a prime attribute of R

60

General Normal Form Definitions

General Normal Form Example

61

The LOTS relation with its functional dependencies.

General Normal Form Example

62

Decomposing into

the 2NF relations

General Normal Form Example

63

Decomposing LOTS1

into the 3NF relations

Normalization

 1NF and dependency problems

 2NF – solves partial dependency

 3NF – solves indirect dependency

 BCNF – well-normalized relations

64

BCNF

 A relation schema R is in Boyce-Codd

Normal Form (BCNF) if whenever an FD

X -> A holds in R, then X is a superkey of

R.

65

BCNF normalization of LOTS1A with the functional
dependency FD2 being lost in the decomposition.

66

BCNF

BCNF

 TEACH (Student, Course, Instructor)

 FD1: {Student, Course} → Instructor

 FD2: Instructor → Course

67

BCNF

 Three possible pairs:

1. {Student, Instructor} and {Student, Course}

2. {Course, Instructor} and {Course, Student}

3. {Instructor, Course} and {Instructor, Student}

 All three decompositions lose the functional

dependency FD1. The desirable decomposition

of those just shown is 3 because it will not

generate spurious tuples after a join.

68

Notes & Suggestions

 [1], chapter 15:

 4NF: based on multivalued dependency (MVD)

 5NF: based on join dependency

 Such a dependency is very difficult to detect in practice

and therefore, normalization into 5NF is considered very

rarely in practice

 Other normal forms & algorithms

 ER modeling: top-down database design

 Bottom-up database design ??

 [1], chapter 16: Properties of Relational

Decompositions

69

Contents

70

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Dependency-Preserving Decomposition

into 3NF Schemas
Algorithm 16.4. Relational Synthesis into 3NF with Dependency

Preservation

Input: A universal relation R and a set of functional

dependencies F on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2);

2. For each left-hand-side X of a functional dependency that

appears in G, create a relation schema in D with attributes {X ∪
{A1} ∪ {A2} ... ∪ {Ak} }, where X→A1, X→A2, ..., X→Ak are the

only dependencies in G with X as the left-hand-side (X is the key

of this relation);

3. Place any remaining attributes (that have not been placed in

any relation) in a single relation schema to ensure the attribute

preservation property.

71

Nonadditive Join Decomposition into

BCNF Schemas
Algorithm 16.5. Relational Decomposition into BCNF with

Nonadditive Join Property

Input: A universal relation R and a set of functional

dependencies F on the attributes of R.

1. Set D := {R} ;

2. While there is a relation schema Q in D that is not in BCNF

do

{

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X→Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q – Y) and (X ∪
Y);

} ; 72

Dependency-Preserving and Nonadditive

(Lossless) Join Decomposition into 3NF Schemas
Algorithm 16.6. Relational Synthesis into 3NF with Dependency

Preservation and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on

the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2).

2. For each left-hand-side X of a functional dependency that appears in

G, create a relation schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪
{Ak} }, where X→A1, X→A2, ..., X→Ak are the only dependencies in G

with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create

one more relation schema in D that contains attributes that form a key

of R.

4. Eliminate redundant relations from the resulting set of relations in the

relational database schema. A relation R is considered redundant if R

is a projection of another relation S in the schema; alternately, R is

subsumed by S
73

Dependency-Preserving and Nonadditive

(Lossless) Join Decomposition into 3NF Schemas

 Algorithm 16.6:

 Preserves dependencies.

 Has the nonadditive join property.

 Is such that each resulting relation schema in the

decomposition is in 3NF.

 It is preferred over Algorithm 16.4.

74

Contents

75

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

Key-finding algorithm (1)

Algorithm 16.2(a). Finding a Key K for R Given a
set F of Functional Dependencies

Input: A relation R and a set of functional
dependencies F on the attributes of R.

1. Set K := R.

2. For each attribute A in K

{compute (K – A)+ with respect to F;

if (K – A)+ contains all the attributes in R,

then set K := K – {A}

};

By Elmasri and Navathe

76

Key-finding algorithm (1)

 In algorithm (1), we start by setting K to all

the attributes of R; we then remove one

attribute at a time and check whether the

remaining attributes still form a superkey.

 The algorithm (1) determines only one key

out of the possible candidate keys for R; the

key returned depends on the order in which

attributes are removed from R in step 2.

By Elmasri and Navathe

77

Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F

on the attributes of R.

Output: all candidate keys of R

Let:

 U contain all attributes of R.

 UL contain attributes of R that occur only on the left-

hand side of FDs in F.

 UR contain attributes of R that occur only on the right-

hand side of FDs in F.

 UB contain attributes of R that occur on both sides of

FDs in F.

By Hossein Saiedian and Thomas Spencer

78

Key-finding algorithm (2)

Note:

 UL∩ UR = ф, UL ∩ UB = ф and UR ∩ UB = ф

 UL ∪ UR ∪ UB = U

 For every attribute A ∈ U, if A ∈ UL, then A

must be part of every candidate key of R.

 For every attribute A ∈ U, if A ∈ UR, then A

will not be part of any candidate key of R.

79

By Hossein Saiedian and Thomas Spencer

Key-finding algorithm (2)

Input: A relation R and a set of functional dependencies F on
the attributes of R.

Output: all candidate keys of R

1. Determine UL, UR and UB

2. If UL‡
+ = U under F, then UL forms the only key of R and

the algorithm stops here.

Else: move to step 3 // UL
+ ≠ U under F

3. Consider every subsets UBi of UB: UBi ⊂ UB

For each UBi, if (UL ∪ UBi)
+ = U under F, then Ki = (UL ∪

UBi) is a candidate key of R (*)

(*) If Ki = (UL ∪ UBi) is a candidate key of R, then we need not
to check UBj ⊂ UB where UBi ⊂ UBj

By Hossein Saiedian and Thomas Spencer

80

Key-finding algorithm (2)

 A simple categorization of attributes into the

sets UL, UL and UL allows to distinguish

between those attributes that will participate

in the candidate keys of a relational database

schema and those that do not.

 The algorithm (2) finds all candidate keys.

By Hossein Saiedian and Thomas Spencer

81

Contents

82

1 Introduction

2 Functional dependencies (FDs)

3 Normalization

4 Relational database dchema design algorithms

5 Key finding algorithms

83

Exercise 1

Consider the universal relation R = {A, B, C, D,

E, F} and the set of functional dependencies:

1) A B

2) C, D A

3) B, C D

4) A, E F

5) C, E D

What is the key for R?

84

Exercise 2

Consider the universal relation R = {A, B, C, D,

E, F} and the set of functional dependencies:

1) A, D B

2) A, B E

3) C  D

4) B C

5) A, C F

What is the key for R? Decompose R into 2NF,

3NF, and BCNF relations.

85

Exercise 3

Consider the universal relation R = {A, B, C, D,

E, F} and the set of functional dependencies:

1) A B

2) C A, D

3) A, F C, E

What is the key for R? Decompose R into 2NF,

3NF, and BCNF relations.

86

Exercise 4

Consider the universal relation R = {A, B, C, D,

E, F, G, H, I, J} and the set of functional

dependencies:

1) A, B C

2) B, D E, F

3) A, D G, H

4) A I

5) H J

What is the key for R? Decompose R into 2NF,

3NF, and BCNF relations.

87

Review questions

1) Define first, second, and third normal forms when

only primary keys are considered. How do the

general definitions of 2NF and 3NF, which consider

all keys of a relation, differ from those that consider

only primary keys?

2) Define Boyce-Codd normal form. How does it differ

from 3NF? Why is it considered a stronger form of

3NF?

3) What is a minimal set of functional dependencies?

Does every set of dependencies have a minimal

equivalent set? Is it always unique?

88

