Chapter 7:
Functional Dependencies &
Normalization for Relational DBs

an - 2014

Contents

Introduction
Functional dependencies (FDs)

Normalization

Relational database dchema design algorithms

oo B~ W N B

Key finding algorithms

Contents

Introduction
Functional dependencies (FDs)

Normalization

Relational database dchema design algorithms

oo B~ W N B

Key finding algorithms

‘ Top-Down Database Design

Mini-world

Introduction

Each relation schema consists of a number of
attributes and the relational database schema
consists of a number of relation schemas.

Attributes are grouped to form a relation
schema.

Need some formal measure of why one
grouping of attributes into a relation schema
may be better than another.

Introduction

“Goodness” measures:
o Redundant information in tuples.

o Update anomalies: modification, deletion,
Insertion.

o Reducing the NULL values in tuples.

o Disallowing the possibility of generating spurious
tuples.

‘ Redundant information

= The afttribute values pertaining to a particular

department (DNUMBER, DNAME, DMGRSSN)
are repeated for every employee who works for
that department.

Redundancy
EMP_DEPT |
Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn

Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. |666884444 | 1962-09-15 | 975 FireOak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555

7

‘ Update anomalies

= Update anomalies: modification, deletion,
Insertion

o Modification

= As the manager of a dept. changes we have to update many
values according to employees working for that dept.

= Easyto make the DB inconsistent.

EMP_DEPT
Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn

Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. |987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. |666884444 | 1962-09-15 | 975 FireOak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 887987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555

‘ Update anomalies

= Update anomalies: modification, deletion,
Insertion
o Deletion: if Borg James E. leaves, we delete his tuple

and lose the existing of dept. 1, the name of dept. 1,
and who is the manager of dept. 1.

EMP_DEPT
Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn

Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. 1987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. |666884444| 1962-09-15 | 975 FireOak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555

‘ Update anomalies

= Update anomalies: modification, deletion,
Insertion

o Insertion:

= How can we create a department before any employees
are assigned to it ?

EMP_DEPT
Ename Ssn Bdate Address Dnumber Dname Dmgr_ssn

Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. 1987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. |666884444| 1962-09-15 | 975 FireOak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555

10

Reducing NULL values

Employees not assigned to any dept.: waste the
storage space.

Other difficulties: aggregation operations (e.gd.,
COUNT, SUM) and joins.

11

Generation spurious tuples

Disallowing the possibility of generating spurious
tuples.

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME,
PNAME, PLOCATION)

EMP_LOCS(ENAME, PLOCATION)

EMP_PROJ1(SSN, PNUMBER, HOURS, PNAME,
PLOCATION)

Generation of invalid and spurious data during JOINS:

PLOCATION is the attribute that relates EMP_LOCS and
EMP_PROJ1, and PLOCATION is neither a primary key
nor a foreign key in either EMP_LOCS or EMP_PROJ1 .

12

‘ Generation spurious tuples

(b)
EMP_LOCS
Ename Plocation
Smith, John B. Bellaire
Smith, John B. Sugarland

—> | Narayan, Ramesh K. | Houston
English, Joyce A. Bellaire
English, Joyce A. Sugarland
Wong, Franklin T. Sugarland
Wong, Franklin T. Houston
| Wong, Franklin T. _ | Stafford _ |
Zelaya, Alicia J. Stafford
Jabbar, Ahmad V. Stafford
Wallace, Jennifer S. | Stafford
Wallace, Jennifer S. | Houston

Borg, James E. Houston

‘ Generation spurious tuples

EMP_PROJ1
Ssn Pnumber | Hours Pname Plocation

123456789 1 32.5 ProductX Bellaire
123456789 2 7.5 ProductY Sugarland
666884444 3 40.0 ProductZ Houston
453453453 1 20.0 ProductX Bellaire
453453453 2 20.0 ProductY Sugarland
3334455b5 2 10.0 ProductY Sugarland
333445555 3 10.0 ProductZ Houston
333445555 10 10.0 Computerization Stafford
333445555 20 10.0 Reorganization Houston

900887777 | 30 | 300 | Newbenefits | Stafford
999887777 10 10.0 Computerization Stafford
087987087 10 35.0 Computerization Stafford
987987987 30 9.0 Newbenefits Stafford
087654321 30 20.0 Newbenefits Stafford
987654321 20 15.0 Reorganization Houston
888665555 20 NULL Reorganization Houston

14

Ssn Pnumber Hours Pname Plocation Ename

123456789 1 32.5 ProductX Bellaire Smith, John B.

123456789 32.5 | ProductX Bellaire English, Joyce A.

123456789 2 7.5 ProductY Sugarland Smith, John B.

123456789 2 7.5 ProductY Sugarland English, Joyce A.

123456789 2 7.5 ProductY Sugarland Wong, Franklin T.

666884444 3 40.0 | ProductZ Houston Narayan, Ramesh K. ——
666884444 3 40.0 | ProductZ Houston Wong, Franklin T.

453453453 1 20.0 ProductX Bellaire Smith, John B.

453453453 1 20.0 | ProductX Bellaire English, Joyce A.

453453453 2 20.0 | ProductY Sugarland Smith, John B.

453453453 2 20.0 | ProductY Sugarland English, Joyce A.

453453453 2 20.0 | ProductY Sugarland Wong, Franklin T.

333445555 2 10.0 | ProductY Sugarland Smith, John B.

333445555 2 10.0 | ProductY Sugarland English, Joyce A.

333445555 2 10.0 | ProductY Sugarland Wong, Franklin T.

333445555 3 10.0 | ProductZ Houston Narayan, Ramesh K. f——
333445555 3 10.0 | ProductZ Houston Wong, Franklin T.

333445555 10 10.0 | Computerization | Stafford Wong, Franklin T.

333445555 20 10.0 | Reorganization Houston Narayan, Ramesh K. {g—
333445555 20 10.0 | Reorganization Houston Wong, Franklin T.

15

Summary ot Design Guidelines

“Goodness” measures:

Redundant information in tuples

Update anomalies: modification, deletion, insertion
Reducing the NULL values in tuples

Disallowing the possibility of generating spurious tuples

= Normalization

It helps DB designers determine the best relation
schemas.

o Aformal framework for analyzing relation schemas based on their
keys and on the functional dependencies among their attributes.

o A series of normal form tests that can be carried out on individual
relation schemas so that the relational database can be
normalized to any desired degree.

It is based on the concept of normal form 1NF, 2NF,
3NF, BCNF, 4NF, 5 NF.

o 0O 0 O

16

Contents

Introduction

Functional dependencies (FDs)
Normalization

Relational database dchema design algorithms

o B~ W N =

Key finding algorithms

17

Functional Dependencies (FDs)

Definition of FD

Direct, indirect, partial dependencies
nference Rules for FDs
Equivalence of Sets of FDs

Minimal Sets of FDs

18

Detinition ot Functional dependencies

Functional dependencies (FDs) are used to
specify formal measures of the "goodness”
of relational designs.

FDs and keys are used to define normal
forms for relations.

FDs are constraints that are derived from
the meaning and interrelationships of the
data attributes.

A set of attributes X functionally determines
a set of attributes Y if the value of X
determines a unique value for Y.

19

Detfinition of Functional dependencies

X ->Y holds if whenever two tuples have the same value
for X, they must have the same value for Y

For any two tuples t1 and t2 in any relation instance r(R):
If t1[X]=t2[X], then t1[Y]=t2[Y]
X ->Y In R specifies a constraint on all relation
Instances r(R)
Examples:
o social security number determines employee name:

SSN -> ENAME

o project number determines project name and location:
PNUMBER -> {PNAME, PLOCATION}

o employee ssn and project number determines the hours
per week that the employee works on the project:

{SSN, PNUMBER} -> HOURS

20

Detfinition of Functional dependencies
If K is a key of R, then K functionally

determines all attributes in R (since we never
have two distinct tuples with t1[K]=t2[K]).

21

Functional Dependencies (FDs)

Direct, indirect, partial dependencies
Inference Rules for FDs
Equivalence of Sets of FDs

Minimal Sets of FDs

22

Direct, indirect, partial dependencies

Direct dependency (fully functional
dependency): All attributes in a R must be fully
functionally dependent on the primary key (or
the PK is a determinant of all attributes in R).

Performer-

Performer-id name

Performer-
type

Performer-
location

23

Direct, indirect, partial dependencies

Indirect dependency (transitive dependency):
Value of an attribute is not determined directly
by the primary key.

Performer-

Performer-id name

Performer- —p Foo
type

Performer-
location

24

Direct, indirect, partial dependencies

Partial dependency

o Composite determinant: more than one value is required to
determine the value of another attribute, the combination of
values is called a composite determinant.

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME, PNAME, PLOCATION)
{SSN, PNUMBER} -> HOURS

o Partial dependency: if the value of an attribute does not depend
on an entire composite determinant, but only part of it, the
relationship is known as the partial dependency.

SSN -> ENAME
PNUMBER -> {PNAME, PLOCATION}

25

Direct, indirect, partial dependencies

Partial dependency

: Performer-name
Performer-id ’\ >
i Performer-type
Performer-location
-

Fee

Agent-id » Agent-name

N Agent-location

Functional Dependencies (FDs)

Inference Rules for FDs
Equivalence of Sets of FDs
Minimal Sets of FDs

27

Inference Rules for FDs

Given a set of FDs F, we can infer additional
FDs that hold whenever the FDs in F hold.

Armstrong's inference rules:

IR1. (Reflexive) If Y = X, then X -> Y.

IR2. (Augmentation) If X -> Y, then XZ -> YZ.
(Notation: XZ stands for X U 2Z)

IR3. (Transitive) f X -> Yand Y -> Z, then X ->
Z.

28

Inference Rules for FDs

Some additional inference rules that are
useful:

(Decomposition) If X -> YZ, then X -> Yand X -> Z
(Union) If X -> Yand X -> Z, then X -> YZ
(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

The last three inference rules, as well as any
other inference rules, can be deduced from IR1,
IR2, and IR3 (completeness property).

29

Inference Rules for FDs

Closure of a set F of FDs Is the set F* of
all FDs that can be inferred from F.

Closure of a set of attributes X with
respect to F Is the set X * of all attributes
that are functionally determined by X.

X * can be calculated by repeatedly
applying IR1, IR2, IR3 using the FDs In F.

Inference Rules for FDs

Algorithm 16.1. Determining X*, the Closure of X under F

Input: A set F of FDs on a relation schema R, and a set of
attributes X, which is a subset of R.
X =X;
repeat

oldX* := X*;

for each functional dependency Y — Zin F do

If X* 2 Y then X* .= X* U Z

until (X* = oldX");

31

Inference Rules for FDs

Consider a relation R(A, B, C, D, E) with the
following dependencies F.

(1) AB > C,
(2) CD > E,
(3) DE > B
Find {A,B}* ?

32

Functional Dependencies (FDs)

Definition of i D

Direct, Indirect, parilal depencdencies
Jmerer ce Rules for i Ds
Equivalence of Sets of FDs

Minimal Sets of FDs

33

Equivalence of Sets of FDs

Two sets of FDs F and G are equivalent if
F+=G*

Definition: F covers G if Gt & F* F and G are
equivalent if F covers G and G covers F.

There is an algorithm for checking equivalence
of sets of FDs.

34

Functional Dependencies (FDs)

Definition of D

Minimal Sets of FDs

35

Minimal Sets of FDs

A set of FDs Is minimal if it satisfies the
following conditions:

1) Every dependency in F has a single attribute for its
right-hand side.

20 We cannot remove any dependency from F and have
a set of dependencies that is equivalent to F.

3) We cannot replace any dependency X -> Ain F with a
dependency Y -> A, where Y proper-subset-of X (Y
subset-of X) and still have a set of dependencies that
IS equivalent to F.

36

Minimal Sets of FDs

Algorithm 16.2. Finding a Minimal Cover F for a Set of
Functional Dependencies E

Input: A set of functional dependencies E.
1. SetF = E.

2. Replace each functional dependency X—{Al, A2, ..., An}in F
by the n functional dependencies X—Al, X—A2, ..., X—An,

3. For each functional dependency X—A in F
for each attribute B that is an element of X
if {{F -{X—>A}}u{(X-{B})—A}}is equivalent to F
then replace X—A with (X -{B}) —AIn F.
4. For each remaining functional dependency X—A in F
If {F — {X—A}}is equivalent to F,
then remove X—A from F.

37

Minimal Sets of FDs

Every set of FDs has an equivalent minimal set.
There can be several equivalent minimal sets.

There is no simple algorithm for computing a
minimal set of FDs that is equivalent to a set F of

FDs.

To synthesize a set of relations, we assume that
we start with a set of dependencies that is a
minimal set.

38

Contents

Introduction

Functional dependencies (FDs)
Normalization

Relational database dchema design algorithms

o b~ W N

Key finding algorithms

39

Normalization

Normalization: The process of decomposing
unsatisfactory "bad" relations by breaking up their
attributes into smaller relations.

Normal form: Using keys and FDs of a relation to certify
whether a relation schema is in a particular normal form.

Normalization is carried out in practice so that the
resulting designs are of high quality and meet the
desirable properties.

The database designers need not normalize to the
highest possible normal form (3NF, BCNF or 4NF).

40

Normalization

There are two important properties of
decompositions:

@ non-additive or losslessness of the
corresponding join.
) preservation of the functional dependencies.

Note that property (a) is extremely important
and cannot be sacrificed. Property (b) is less
stringent and may be sacrificed (see chapter

16).

41

Normalization

Superkey of R: A set of attributes SK of R
such that no two tuples in any valid relation
iInstance r(R) will have the same value for
SK. That s, for any distinct tuples t1 and t2
in r(R), t1[SK] # t2[SK].

Key of R: A"minimal" superkey; that is, a
superkey K such that removal of any attribute
from K results in a set of attributes that is not
a superkey.

If K is a key of R, then K functionally
determines all attributes in R.

42

Normalization

Two new concepts:

o A Prime attribute must be a member of some
candidate key.

o A Nonprime attribute is not a prime attribute: it is
not a member of any candidate key.

43

Normalization

1NF and dependency problems
2NF — solves partial dependency
3NF — solves indirect dependency
BCNF — well-normalized relations

44

INF

First normal form (1NF): there Is only one
value at the intersection of each row and
column of a relation - no set valued attributes
In 1 NF - Disallows composite attributes,
multivalued attributes, and nested relations.

The only attribute values permitted by 1NF
are single atomic (or indivisible) values.

45

(a)

INF

DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocations
T | T !
(b)
DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocations
Research 5 333445555 | {Bellaire, Sugarland, Houston}
Administration 4 087654321 | {Stafford}
Headquarters 1 888665555 | {Houston}
(©)
DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocation
Research 5 333445555 | Bellaire
Research 5 333445555 | Sugarland
Research 5 333445555 | Houston
Administration 4 987654321 | Stafford
Headquarters 1 888665555 | Houston

46

INE

(a)
EMP PROJ

Projs
Ssn Ename | Pnumber | Hours
(b)
EMP_PROJ
Ssn Ename Pnumber Hours
123456789 Smith, John B. 1 32.5
2 7.5
666884444 | Narayan, RameshK.| 3 | . 400
453453453 | English, Joyce A. | 1 | 200
2 200____________
333445555 Wong, Franklin T. 2 10.0
3 10.0
10 10.0
______________________________ 20 | 100

INE

(c)
EMP PROJ1

Ssn

Ename

EMP_PROJ2

Ssn

Pnumber

Hours

48

Normalization

2NF — solves partial dependency
3NF — solves indirect dependency
BCNF — well-normalized relations

49

2NF

Second normal form (2NF) - all attributes must
be fully functionally dependent on the primary
key.

2NF solves partial dependency problem in 1NF.

2NF normalized: Decompose and set up a new
relation for each partial key with its dependent
attribute(s).Make sure to keep a relation with the
original primary key and any attributes that are
fully functionally dependent on it.

50

‘ (a)

2NF

EMP_PROJ

Ssn | Pnumber | Hours | Ename | Pname | Plocation
FD1 | b A A
FD2

FD3 l

2NF Normalization

EP1 EP2

Ssn | Pnumber | Hours Ssn | Ename
FD1\ \ i FD2 A

EP3

Pnumber Pname Plocation
_FDS\ i A

51

‘ 2NF

Performer- >

id

Performer-

name

Performer-

location

»Problem with 2NF:

- Insertion

- MOd|f|Cat|On“/,
- Deletion

.
.
.
.
\d
\J
.
.
\d
A
.
.
\d
\J
<

P-name P- type Fee P-loc’n
101 Baron Singer 75 York
105 Steed Dancer 60 Berlin
108 Jones Actor 85 Bombay
112 Eagles Actor 85 Leeds
118 Markov Dancer 60 Moscow
126 Stokes Comedian 920 Athens
129 Chong Actor 85 Beijing
134 Brass Singer 75 London
138 Ng Singer 75 Penang
140 Strong Magician 72 Rome
141 Gomez Musician 92 Lisbon
143 Tan Singer 75 Chicago
147 Qureshi Actor 85 London
149 Tan Actor 85 Taipei
150 Pointer Magician 72 Paris
152 Peel Dancer 60 London 52

Normalization

3NF — solves indirect dependency
BCNF — well-normalized relations

53

SNF

A relation schema R is in third normal form
(3NF) if it is in 2NF and no non-prime attribute A
INn R Is transitively dependent on the primary key.

NOTE:

o InX->YandY ->Z, with X as the primary key, we
consider this a problem only if Y is not a candidate
key. When Y is a candidate key, there is no problem
with the transitive dependency .

o E.g., Consider EMP (SSN, Emp#, Salary).

o Here, SSN - Emp#. Emp# - Salary and Emp# is a
candidate key.

54

SNF

3NF solves indirect (transitive) dependencies
problem in INF and 2NF.

3NF normalized: identify all transitive
dependencies and each transitive
dependency will form a new relation.

55

3NE

(b)
EMP_DEPT

Ename

Address

Dnumber

Dname

Dmgr_ssn

A

Ssn | Bdate
|

A

A

A

3NF Normalization

|

|

ED1

Ename Ssn Bdate | Address | Dnumber
ED2

Dnumber | Dname | Dmgr_ssn

A

A

56

SNF

= LOCATION (city, street, zip-code)
= F ={city, street -> zip-code,
Zip-code -> city
Key, : city, street (primary key)
Key, : street, zip-code

city street Zip-code
NY 55th 484
NY 56th 484
LA 55th 473
LA 56th 473
LA 57th 474

'SUMMARY OF NORMAI FORMS
based on Primary Keys

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form
First (INF)

Test

Relation should have no multivalued
attributes or nested relations.

Remedy (Normalization)

Form new relations for each multi-
valued attribute or nested relation.

Second (2NF)

For relations where primary key con-
tains multiple attributes, no nonkey
attribute should be functionally
dependent on a part of the primary key.

Decompose and set up a new relation
for each partial key with its dependent
attribute(s). Make sure to keep a rela-
tion with the original primary key and
any attributes that are fully function-
ally dependent on it.

Third (3NF)

Relation should not have a nonkey
attribute functionally determined by
another nonkey attribute (or by a set of
nonkey attributes). That is, there should
be no transitive dependency of a non-
key attribute on the primary key.

Decompose and set up a relation that
includes the nonkey attribute(s) that
functionally determine(s) other non-
key attribute(s).

58

General Normal Form Definitions

The above definitions consider the primary
key only.

The following more general definitions take

Into account relations with multiple candidate
keys.

59

General Normal Form Definitions

A relation schema R is in second normal form (2NF) if
every non-prime attribute A in R is not partially
functionally dependent on any key of R.

A relation schema R is in third normal form (3NF) if
whenever a FD X - A holds in R, then either:

(a) X is a superkey of R, or
(b) A is a prime attribute of R

60

General Normal Form Example

Candidate Key
(a) |
LOTS | |
Property_id# | County_name Lot# | Area | Price | Tax_rate
D1) b 1 A A
0, A ")
FD3 u

FD4 u

The LOTS relation with its functional dependencies.

61

‘ General Normal Form Example

(b)

LOTSH
Property_id# County_name Lot# | Area | Price
D) '
o2} 3 g
FD4 b
LOTS2
County_name Tax_rate Decomposing into

FD3 ? the 2NF relations

62

‘ General Normal Form Example

(c)

LOTS1A
Property_id# [County_name Lot# | Area
FD1 4 4 .
o2 4 | | 4
LOTS1B .
Area | Price Decomposing LOTS1

FD4 | |

Into the 3NF relations

63

Normalization

m TN and dependency proolems

m 2N —solves partizal dependency
m SN — solves incdirect dleoendericy

= BCNF — well-normalized relations

64

BCNF

A relation schema R is in Boyce-Codd
Normal Form (BCNF) if whenever an FD
X -> A holds in R, then X Is a superkey of
R.

65

BCNF

LOTS1A
Property_id# | County_name |Lot# | Area
D1 | + §
FD2 + | | +
FD5 A |
BCNF Normalization
Y
LOTS1AX LOTS1AY
Property_id# | Area |Lot# Area | County_name

BCNF normalization of LOTS1A with the functional
dependency FD2 being lost in the decomposition.

66

BCNF

TEACH (Student, Course, Instructor)
FD1: {Student, Course} — Instructor
FD2: Instructor — Course

TEACH

Student Course Instructor
Narayan | Database Mark
Smith Database Navathe
Smith Operating Systems [Ammar
Smith Theory Schulman
Wallace | Database Mark
Wallace | Operating Systems | Ahamad
Wong Database Omiecinski
Zelaya Database Navathe

Narayan | Operating Systems [Ammar

BCNF

Three possible pairs:

1. {Student, Instructor} and {Student, Course}
2. {Course, Instructor} and {Course, Student}

3. {Instructor, Course} and {Instructor, Student}

All three decompositions lose the functional
dependency FD1. The desirable decomposition
of those just shown is 3 because it will not
generate spurious tuples after a join.

68

Notes & Suggestions

[1], chapter 15:

o 4NF: based on multivalued dependency (MVD)

o 5NF: based on join dependency
Such a dependency is very difficult to detect in practice
and therefore, normalization into 5NF is considered very
rarely in practice

o Other normal forms & algorithms

o ER modeling: top-down database design
Bottom-up database design ??

[1], chapter 16: Properties of Relational
Decompositions

69

Contents

Introduction

Functional dependencies (FDs)
Normalization

Relational database dchema design algorithms

o b~ W N

Key finding algorithms

70

Dependency-Preserving Decomposition
into 3NF Schemas

Algorithm 16.4. Relational Synthesis into 3NF with Dependency
Preservation

Input: A universal relation R and a set of functional
dependencies F on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2);

2. For each left-hand-side X of a functional dependency that
appears in G, create a relation schema in D with attributes {X U
{AJU{A} ... U{A} }, where X—A,, X—A,, ..., X—A, are the
only dependencies in G with X as the left-hand-side (X is the key
of this relation);

3. Place any remaining attributes (that have not been placed in
any relation) in a single relation schema to ensure the attribute
preservation property.

71

Nonadditive Join Decomposition into
BCNF Schemas

Algorithm 16.5. Relational Decomposition into BCNF with
Nonadditive Join Property

Input: A universal relation R and a set of functional
dependencies F on the attributes of R.

1. Set D :={R};

2. While there is a relation schema Q in D that is not in BCNF
do

{
choose a relation schema Q in D that is not in BCNF;
find a functional dependency X—Y in Q that violates BCNF,;

replace Q in D by two relation schemas (Q — Y) and (X U
Y)

Dependency-Preserving and Nonadditive

(Lossless) Join Decomposition into 3NF Schemas

Algorithm 16.6. Relational Synthesis into 3NF with Dependency
Preservation and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on
the attributes of R.

1. Find a minimal cover G for F (use Algorithm 16.2).

2. For each left-hand-side X of a functional dependency that appears in
G, create a relation schema in D with attributes {X U {A;} U {A,} ... U
{A} }, where X—A,, X—A,, ..., X—A, are the only dependencies in G
with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create
one more relation schema in D that contains attributes that form a key
of R.

4. Eliminate redundant relations from the resulting set of relations in the
relational database schema. A relation R is considered redundant if R
IS a projection of another relation S in the schema; alternately, R is
subsumed by S

73

Dependency-Preserving and Nonadditive
(Lossless) Join Decomposition into 3NF Schemas

Algorithm 16.6:
o Preserves dependencies.
o Has the nonadditive join property.

o Is such that each resulting relation schema in the
decomposition is in 3NF.

It is preferred over Algorithm 16.4.

74

Contents

Introduction

Functional dependencies (FDs)
Normalization

Relational database dchema design algorithms

a B W N =

Key finding algorithms

75

Key-finding algorithm (1)

By ElImasri and Navathe

Algorithm 16.2(a). Finding a Key K for R Given a
set F of Functional Dependencies

Input: A relation R and a set of functional
dependencies F on the attributes of R.

1. SetK =R.

2. For each attribute A in K
{compute (K — A)* with respect to F;
If (K- A)* contains all the attributes in R,
then set K := K — {A}

%

76

Key-finding algorithm (1)

By ElImasri and Navathe

In algorithm (1), we start by setting K to all
the attributes of R; we then remove one
attribute at a time and check whether the
remaining attributes still form a superkey.

The algorithm (1) determines only one key
out of the possible candidate keys for R; the
key returned depends on the order in which
attributes are removed from R In step 2.

77

Key-finding algorithm (2)
By Hossein Saiedian and Thomas Spencer

Input: A relation R and a set of functional dependencies F
on the attributes of R.

Output: all candidate keys of R

Let;
U contain all attributes of R.

U, contain attributes of R that occur only on the left-
hand side of FDs in F.

Ui contain attributes of R that occur only on the right-
hand side of FDs in F.

Uy contain attributes of R that occur on both sides of
FDs in F.

78

Key-finding algorithm (2)
By Hossein Saiedian and Thomas Spencer

Note:
UNUg=0¢,U NUg=¢and U, N Ug = ¢
U UUgUUg =U
For every attribute A € U, if A € U, then A
must be part of every candidate key of R.

For every attribute A € U, if A € Ug, then A
will not be part of any candidate key of R.

79

Key-finding algorithm (2)
By Hossein Saiedian and Thomas Spencer

Input: A relation R and a set of functional dependencies F on
the attributes of R.

Output: all candidate keys of R

Determine U, U, and Ug

If U i = U under F, then U, forms the only key of R and
the algorithm stops here.

Else: movetostep 3// U, " # U under F
Consider every subsets Ug; of Ug: Ug; € Ug

For each Ug;, if (U, U Ug)* = U under F, then K, = (U, U
Ug;) Is a candidate key of R (*)

(*) If K, = (U_ U Ug,) Is a candidate key of R, then we need not
to check Ug; © Ug where Ug; © Ug;

80

Key-finding algorithm (2)

By Hossein Saiedian and Thomas Spencer

A simple categorization of attributes into the
sets U, U, and U, allows to distinguish
between those attributes that will participate
In the candidate keys of a relational database
schema and those that do not.

The algorithm (2) finds all candidate keys.

81

Contents

Introduction
Functional dependencies (FDs)

Normalization

Relational database dchema design algorithms

oo B~ W N B

Key finding algorithms

82

Exercise 1

Consider the universal relation R = {A, B, C, D,
E, F} and the set of functional dependencies:

A > B
C,D2>A
B,C->D
AJE>F
C,E->D
What is the key for R?

84

Exercise 2

Consider the universal relation R = {A, B, C, D,
E, F} and the set of functional dependencies:

A D->B
A B->E
C->D
B->C
A, C>F

What is the key for R? Decompose R into 2NF,
3NF, and BCNF relations.

85

Exercise 3

Consider the universal relation R = {A, B, C, D,
E, F} and the set of functional dependencies:

A > B
C—>AD
AJF>C,E

What is the key for R? Decompose R into 2NF,
3NF, and BCNF relations.

86

Exercise 4

Consider

the universal relation R = {A, B, C, D,

E, F, G, H, |, J} and the set of functional

depend

encies:

A B->C
B,D2>E,F
A D->G,H

A= |
H->]
What is t

ne key for R? Decompose R into 2NF,

3NF, anc

BCNF relations.

87

Review questions

Define first, second, and third normal forms when
only primary keys are considered. How do the
general definitions of 2NF and 3NF, which consider
all keys of a relation, differ from those that consider
only primary keys?

Define Boyce-Codd normal form. How does it differ
from 3NF? Why is it considered a stronger form of
3NF?

What is a minimal set of functional dependencies?
Does every set of dependencies have a minimal
equivalent set? Is it always unique?

88

