Chapter 8:
Data Storage, Indexing
Structures for Files

Jan - 2014

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Overview of Database Design Process

REQUIREMENTS

COLLECTION AND
/ ANALYSIS

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS | | CONCEPTUAL DESIGN

High-Level Transaction Conceptual Schema
Specification (In a high-level data model)

v

LOGICAL DESIGN
(DATA MODEL MAPPING)

v

Logical (Conceptual) Schema

APPLICATION PROGRAM (In the data model of a specific DBMS)
|
v

DESIGN
PHYSICAL DESIGN

l ;

TRANSACTION - Internal Schema
IMPLEMENTATION

— v

Application Programs

T DBMS-independent

l DBMS-specific

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk Storage Devices

Preferred secondary storage device for high
storage capacity and low cost.

Data stored as magnetized areas on
magnetic disk surfaces.

A disk pack contains several magnetic disks
connected to a rotating spindle.

Disks are divided into concentric circular
tracks on each disk surface .

o Track capacities vary typically from 4 to 50
Kbytes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Disk Storage Devices (cont.)

(a) Track Sector (arc of track)

(b)

— Three sectors
— i
Two sectors
— One sector

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Disk Storage Devices (cont.)

Y
(©)

ooooooooooooooooo

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk Storage Devices (cont.)

A track Is divided into smaller blocks or
sectors.

o because a track usually contains a large amount
of information .

A track is divided into blocks.

o The block size B is fixed for each system.

Typical block sizes range from B=512 bytes to
B=4096 bytes.

o Whole blocks are transferred between disk and
main memory for processing.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk Storage Devices (cont.)

A read-write head moves to the track that contains the
block to be transferred.

o Disk rotation moves the block under the read-write head for
reading or writing.
A physical disk block (hardware) address consists of:

o acylinder number (imaginary collection of tracks of same
radius from all recorded surfaces)

o the track number or surface number (within the cylinder)
o and block number (within track).

Reading or writing a disk block Is time consuming
because of the seek time s and rotational delay (latency)
rd.

Double buffering can be used to speed up the transfer of
contiguous disk blocks.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Read/write
Actuator Arm head Spindle Disk rotation

|

(b)

Cylinder
— of tracks
(imaginary)

Actuator movement

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

2.4 Indexes in Oracle

11

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Records

~i1xed and variable length records.

Records contain fields which have values of a
particular type.

o E.g., amount, date, time, age.

Fields themselves may be fixed length or
variable length.

Variable length fields can be mixed into one
record:

o Separator characters or length fields are needed
so that the record can be “parsed”.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 12

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Records (cont.)

(a)
Name Ssn Salary Job_code Department Hire_ciate
1 31 40 44 48 68
(b)
Name Ssn Salary Job code Department
Smith, John J] 123456789 | XXXX | XXXX Computer | J Separator Characters
1 12 21 25 29

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

13

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Blocking

Blocking: refers to storing a number of
records in one block on the disk.

Blocking factor (bfr): refers to the number
of records per block.

There may be empty space in a block if an
iIntegral number of records do not fit in one
block.

Spanned Records: refer to records that
exceed the size of one or more blocks and
hence span a number of blocks.

14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Blocking (cont.)

(a)

(b)

Block i

Block i + 1

Block i

Block i + 1

Record 1 Record 2 Record 3
Record 4 Record 5 Record 6
Record 1 Record 2 Record 3 Record4 | P
Record 4 (rest) Record 5 Record 6 Record 7 P

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Files of Records

A file Is a sequence of records, where each record is
a collection of data values (or data items).

A file descriptor (or file header) includes information
that describes the file, such as the field names and

their data types, and the addresses of the file blocks
on disk.

Records are stored on disk blocks.

The blocking factor bfr for a file is the (average)
number of file records stored in a disk block.

A file can have fixed-length records or variable-
length records.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Files of Records (cont.)

File records can be unspanned or spanned:
o Unspanned: no record can span two blocks
o Spanned: a record can be stored in more than one block

The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

In a file of fixed-length records, all records have the
same format. Usually, unspanned blocking is used with
such files.

Files of variable-length records require additional

Information to be stored in each record, such as
separator characters and field types.

o Usually spanned blocking is used with such files.

17

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

2.4 Indexes in Oracle

18

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Operation on Files

Typical file operations include:

OPEN: Reads the file for access, and associates a
pointer that will refer to a current file record at each point
In time.

FIND: Searches for the first file record that satisfies
a certain condition, and makes it the current file record.

FINDNEXT: Searches for the next file record (from the
current record) that satisfies a certain condition, and
makes it the current file record.

READ: Reads the current file record into a program
variable.
INSERT: Inserts a new record into the file, and

makes it the current file record.

19

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Operation on Files (cont.)

DELETE: Removes the current file record
from the file, usually by marking the record to
Indicate that it is no longer valid.

MODIFY: Changes the values of some fields
of the current file record.
CLOSE: Terminates access to the file.

REORGANIZE: Reorganizes the file records. For
example, the records marked deleted are physically
removed from the file or a new organization of the
file records Is created.

READ_ ORDERED: Read the file blocks in order of
a specific field of the file.

20

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees

2.4 Indexes in Oracle

21

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Unordered Files

Also called a heap or a pile file.
New records are inserted at the end of the file.
A linear search through the file records is

necessary to search for a record.

o This requires reading and searching half the file
blocks on the average, and is hence quite expensive.

Record insertion is quite efficient.

Reading the records in order of a particular field
requires sorting the file records.

22

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Ordered Files

Also called a sequential file.

File records are kept sorted by the values of an ordering
field.

Insertion is expensive: records must be inserted in the
correct order.

o Itis common to keep a separate unordered overflow (or
transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

A binary search can be used to search for a record on
Its ordering field value.

o This requires reading and searching log, of the file blocks on the
average, an improvement over linear search.

Reading the records in order of the ordering field is quite
efficient.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 23

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

block 1

block 2

Ordered Files

(cont.)

CuubDuongThanCong.com

block 3

block n -1

block n

NAME

SSN BIRTHDATE JOB SALARY SEX

Aaron, Ed

Abbott, Diane

Acosta, Marc

Adams, John

Adams, Robin

Akers, Jan

Alexander, Ed

Alfred, Bob

Allen, Sam

Wong, James

Wood, Donald

Woods, Manny

Wright, Pam

Wyatt, Charles

o0

Zimmer, Byron

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Average Access Times

The following table shows the average access time
to access a specific record for a given type of file:

Table 17.2 Average Access Times for a File of b Blocks under Basic File Organizations

Average Blocks to Access

Type of Organization Access/Search Method a Specific Record
Heap (unordered) Sequential scan (linear search) b/2
Ordered Sequential scan b/2
Ordered Binary search log, b

CuuDuongThanCong.com https://fb.com/tailieudientucntt 25

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files

Hashing for disk files is called External Hashing.

The file blocks are divided into M equal-sized buckets,
numbered bucket,, bucket,, ..., bucket,, ;.

o Typically, a bucket corresponds to one (or a fixed number of) disk
block.

One of the file fields is designated to be the hash key of
the file.

The record with hash key value K is stored in bucket |,
where i1=h(K), and h is the hashing function.

Search is very efficient on the hash key.

Collisions occur when a new record hashes to a bucket
that is already full.

o An overflow file is kept for storing such records.

o Overflow records that hash to each bucket can be linked together

26

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

'Hashed Files (cont.)

Number Block address on disk

0 = i

|
\\

27

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files (cont.)

There are numerous methods for collision resolution,
Including the following:

o Open addressing: Proceeding from the occupied position specified by
the hash address, the program checks the subsequent positions in
order until an unused (empty) position is found.

O 1 2 3 4 5 6

o h(K)=Kmod7

1 3 11 6
o Insert 8 1 8 3 11 6
o Insert 15 1 8 3 11 15 6

o Insert 13 131 8 3 11 15 6

CuuDuongThanCong.com https://fb.com/tailieudientucntt 28

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files (cont.)

There are numerous methods for collision resolution,
Including the following:
o Chaining:
Various overflow locations are kept: extending the array with a number
of overflow positions.
A pointer field is added to each record location.

A collision is resolved by placing the new record in an unused overflow
location and setting the pointer of the occupied hash address location
to the address of that overflow location.

o Multiple hashing:

The program applies a second hash function if the first results in a
collision.

If another collision results, the program uses open addressing or
applies a third hash function and then uses open addressing if
necessary.

29

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Hashed Files (cont.) - Overtlow handling

Main buckets

Bucket 0 | 340
460
Record pointer
1 NULL
Overflow buckets
Bucket 1 | 321 981 Record pointer
761 Record pointer 1 NULL
91 —»|182 Record pointer
Record pointer
Bucket 2 22 L 652 Record pointer
79 Record pointer _jt_— NULL
529 Record pointer
Record pointer |——
1 (Pointers are to records within the overflow blocks)
Bucket9 | 399
89
Figure 17.10
Record pointer 1 Handling overflow for buckets
= NULL by chaining.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files (cont.)

To reduce overflow records, a hash file is typically
kept 70-80% full.

The hash function h should distribute the records
uniformly among the buckets; otherwise, search
time will be increased because many overflow
records will exist.

Main disadvantages of static external hashing:

o Fixed number of buckets M is a problem if the number of
records in the file grows or shrinks.

o Ordered access on the hash key is quite inefficient
(requires sorting the records).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

31

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

32

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Parallelizing Disk Access using RAID
Technology.

Secondary storage technology must take steps to
keep up Iin performance and reliability with
processor technology.

A major advance in secondary storage technology is
represented by the development of RAID, which
originally stood for Redundant Arrays of
Inexpensive Disks.

The main goal of RAID is to even out the widely
different rates of performance improvement of disks
against those in memory and microprocessors.

33

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

RAID Technology (cont.)

A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.

A concept called data striping Is used, which utilizes
parallelism to improve disk performance.

Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

pame———— Disk O Disk 1 Disk 2 Disk 3

~—_

CuubDuongThanCong.com

https://fb.com/tailieudientucntt 34

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

RAID Technology (cont.)

Different raid organizations were defined based on different
combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.

Raid level 0 has no redundant data and hence has the best write
performance.

a

Raid level 1 uses mirrored disks.

Raid level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components.
Level 2 includes both error detection and correction.

RAID O
argas
AL A2
A3 A
AS 4 NAG
AT A8
S~ ~—

Disk O Disk 1

RAID 1
argas
AL AL
A2 A2
A3 1 NAS
AL LAY
P

Disk O Disk 1

CuubDuongThanCong.com

RAID 2

/_1\

M~
"
|_B1

Ll g

D1

-

Disk O

—T—

M~
w
B2 _

_C2

D2 |

—
Disk 1

Disk 2

Disk 3

Disk 4

https://fb.com/tailieudientucntt

Disk 5

Disk &

35

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

RAID Technology (cont.)

o Raid level 3 uses a single parity disk relying on the disk controller to
figure out which disk has failed.

o Raid levels 4 and 5 use block-level data striping, with level 5 distributing
data and parity information across all disks.

RAID 3

S >

A] |

~—

RAID 4 Disk 0 Disk 1 Disk 2 Disk 3 RAID 5

> dy > b > >
AL e AT e Al CASS Al e
Bl 4 B2 4 N B3 4 K Be 4 Bl 4 B2 4 KB 4 N B3
N CL 4 N C2 4 NG 4 NG O NG 4 N C2 g N C3
D1 4 D2 4 D3 (DPr Dp 4 P14 (D2 4 (D3
S~ ~— ~— S~ S~ S~ S~ S~
Disk O Disk 1 Disk 2 Disk 3 Disk O Disk 1 Disk 2 Disk 35

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

'RAID Technology (cont.)

o Raid level 6 applies the so-called P + Q redundancy scheme using
Reed-Soloman codes to protect against up to two disk failures by using
just two redundant disks.

Disk O Disk 1 Disk 2 Disk 3 Disk 4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Use ot RAID Technology (cont.)

Different raid organizations are being used under different
situations:

o Raid level 1 (mirrored disks)is the easiest for rebuild of a disk from other
disks

It is used for critical applications like logs.

o Raid level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components.
Level 2 includes both error detection and correction.

o Raid level 3 (single parity disks relying on the disk controller to figure
out which disk has failed) and level 5 (block-level data striping) are
preferred for large volume storage, with level 3 giving higher transfer
rates.

o Most popular uses of the RAID technology currently are: Level 0 (with
striping), Level 1 (with mirroring) and Level 5 with an extra drive for
parity.

o Design decisions for RAID include — level of RAID, number of disks,
choice of parity schemes, and grouping of disks for block-level striping.

38

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Storage Area Networks

The demand for higher storage has risen
considerably in recent times.

Organizations have a need to move from a static
fixed data center oriented operation to a more
flexible and dynamic infrastructure for information
processing.

Thus they are moving to a concept of Storage Area
Networks (SANS).
o In a SAN, online storage peripherals are configured as

nodes on a high-speed network and can be attached and
detached from servers in a very flexible manner.

This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

39

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Storage Area Networks (contd.)

Advantages of SANs are:

o Flexible many-to-many connectivity among servers and
storage devices using fiber channel hubs and switches.

o Up to 10km separation between a server and a storage
system using appropriate fiber optic cables.

o Better isolation capabilities allowing nondisruptive addition
of new peripherals and servers.

SANSs face the problem of combining storage

options from multiple vendors and dealing with

evolving standards of storage management software

and hardware.

40

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage
1.1 Disk Storage Devices
1.2 Files of Records
1.3 Operations on Files
1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology

Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

41

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Indexes as Access Paths

A single-level index is an auxiliary file that

makes

It more efficient to search for a record In

the data file.

The index Is usually specified on one field of the
file (although it could be specified on several

fields)

One form of an index Is a file of entries <field

value,
fleld va

The Inc

CuuDuongThanCong.com https://fb.com/tailieudientucntt

nointer to record>, which is ordered by
ue

ex Is called an access path on the field.

42

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Indexes as Access Paths (cont.)

The index file usually occupies considerably less
disk blocks than the data file because its entries
are much smaller.

A binary search on the index yields a pointer to
the file record.

Indexes can also be characterized as dense or
sparse:

o A dense index has an index entry for every search key
value (and hence every record) in the data file.

o Asparse (or nondense) index, on the other hand, has
Index entries for only some of the search values

43

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Types of Single-level Ordered Indexes

= Primary Indexes
= Clustering Indexes

= Secondary Indexes

CuuDuongThanCong.com https://fb.com/tailieudientucntt

44

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Primary Index

Defined on an ordered data file.
o The data file is ordered on a key field.

One index entry for each block in the data file
o First record in the block, which is called the block anchor

A similar scheme can use the last record Iin a block.

45

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

lPrimary key field

ID Name | DoB | Salary | Sex

Index file
(<K(i), P()> entries)
Primary Block
key value | pointer,
;
1 /L
4 ~ 7
pmm—
8 9
12 \\ 10
12
13

15

46

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Primary Index

Number of iIndex entries?
o Number of blocks In data file.

Dense or Nondense?
o Nondense

Search/ Insert/ Update/ Delete?

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

47

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Clustering Index

Defined on an ordered data file.
o The data file is ordered on a non-key field.

One index entry each distinct value of the field.

o The index entry points to the first data block that
contains records with that field value

CuuDuongThanCong.com https://fb.com/tailieudientucntt

48

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Index file
(<K(i), P()> entries)

Clustering Block
field value pointey’
1 ‘/
2 /
4 ~ _
5 \
\\

CuuDuongThanCong.com

lCIustering field

Dept_No

Name DoB

Salary

Sex

1

1

2

https://fb.com/tailieudientucntt

49

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Clustering fieldi Dept No | Name | DoB | Salary | Sex
1
1
2
: 2
Index file -
(<K(i), P(i)> entries)
S 2
Clustering Block >
field value pointef
1 / /
2 /
4 —
= A
5 ~ ;

CuuDuongThanCong.com

50

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Clustering Index

Number of index entries?
o Number of distinct indexing field values in data file.

Dense or Nondense?
o Nondense

Search/ Insert/ Update/ Delete?

At most one primary index or one clustering
Index but not both.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

51

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index

A secondary index provides a secondary means of
accessing a file.

o The data file is unordered on indexing field.

Indexing field:
o secondary key (unique value)
o nonkey (duplicate values)

The index is an ordered file with two fields.
o The first field: indexing field.
o The second field: block pointer or record pointer.

There can be many secondary indexes for the same file.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 52

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Index file

Secondary
(<K(i), P(i)> entries) key field
Index field Block 5
value pointer 13
S ~ _ 8
kS \
5 A 6
6 15
8 4 3
9 9
11 21
13 EEE 11
15
18 a 4
21 23
23 18

Secondary index on key field

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

53

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on key tield

Number of iIndex entries?
2 Number of record in data file

Dense or Nondense?
o Dense

Search/ Insert/ Update/ Delete?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

54

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on non-key field

Discussion: Structure of Secondary index on non-
key field?

Option 1: include duplicate index entries with the
same K(i) value - one for each record.

Option 2: keep a list of pointers <P(i, 1), ..., P(i, k)>
In the index entry for K(i).

Option 3:
2 more commonly used.

o one entry for each distinct index field value + an extra
level of indirection to handle the multiple pointers.

55

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Data file

(Indexing field)
Dapt_number | Name | Ssn | Job | Birth_date
. 3
Blocks of - 5
poiniars - 1
. ==
= Secondary s -2
- 3
Index on wdextie | L] T
k (<K(D), P())> entries) ;
non-key fd Bk T N
1 . ® 8
fleld: 1 | HE T —
2 e '_ - "
. 3 P ;I_l
option 3 T
5 '——|-.. - 6
6 - I - 5
) . f JC || - 2
I ?
. - 5
ne -1
: 1 - 5
4 . r h‘ 3
- 6
- 3
- B
CuuDuongThanCong.com —mm&nawn cntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on nonkey field

Number of index entries?
o Number of records in data file
2 Number of distinct index field values

Dense or Nondense?
o Dense/ nondense

Search/ Insert/ Update/ Delete?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

57

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Summary of Single-level indexes

Ordered file on indexing field?
o Primary index

o Clustering index

Indexing field is Key?

o Primary index

o Secondary index

Indexing field is not Key?
o Clustering index
o Secondary index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

58

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Summary of Single-level indexes

Dense index?
0 Secondary index

Nondense index?
o Primary index

o Clustering index
o Secondary index

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

59

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Summary ot Single-level indexes

Table 18.2 Properties of Index Types

Type of Index

Primary
Clustering
Secondary (key)

Secondary (nonkey)

Number of (First-level)
Index Entries

Number of blocks in
data file
Number of distinct

index field values

Number of records in

data file

Number of records® or
number of distinct index
field values®©

Dense or Nondense
(Sparse)

Nondense

Nondense

Dense

Dense or Nondense

Block Anchoring
on the Data File

Yes

Yes/no?

No

No

%¥es if every distinct value of the ordering field starts a new block; no otherwise.

°For option 1.
“For options 2 and 3.

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

60

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage
1.1 Disk Storage Devices
1.2 Files of Records
1.3 Operations on Files
1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology
2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

61

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Multi-Level Indexes

Because a single-level index is an ordered file, we

can create a primary index to the index itself.

o The original index file is called the first-level index and the
Index to the index is called the second-level index.

We can repeat the process, creating a third, fourth,

..., top level until all entries of the top level fit in

one disk block.

A multi-level index can be created for any type of
first-level index (primary, secondary, clustering) as
long as the first-level index consists of more than
one disk block.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

62

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Two-level index Data file

First (basa) Prmary
beverl kiry Tabd
- 2 L 2
8 - 5
15 .
24 . 8
12
— 15
4|
- 24
Second (top) 29
el
2 * 35 L — 35
an -——I_— 30 - 38
55 44
85 | o 51 | ! 3’3]
B 44
48
— 51
62
o[56 | o—=[55 A two-level primary
= j——l o : | index resembling
80 = ISAM (Indexed
Sequential Access
[il
- Method)
- organization.
- 85 | .__L ™
CuuDi > ilieudi 03
uuDuong IEanCong.com ag h‘tps//fb.comltaulleudlmtucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Multi-Level Indexes

Such a multi-level index i1s a form of search
tree.

However, insertion and deletion of new index
entries Is a severe problem because every
level of the Index I1s an ordered file.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 04

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ A Node in a Search Tree with

Pointers to Subtrees below It

X<K, K_i<X<K, Kg-1<X

65

uongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A search tree of order p=23

Tree node pointer

|:| Null tree pointer

/

e R

VAN

N

.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage
1.1 Disk Storage Devices
1.2 Files of Records
1.3 Operations on Files
1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology
2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

67

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion

problem.

o This leaves space in each tree node (disk block) to allow
for new index entries

These data structures are variations of search trees
that allow efficient insertion and deletion of new
search values.

In B-Tree and B+-Tree data structures, each node
corresponds to a disk block.

Each node is kept between half-full and completely
full.

68

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

An insertion into a node that is not full is quite
efficient.

o If a node is full, the insertion causes a split into
two nodes.

Splitting may propagate to other tree levels.

A deletion is quite efficient if a node does not
pecome less than half full.

f a deletion causes a node to become less than

nalf full, it must be merged with neighboring
nodes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 69

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Difference between B-tree and B+-tree

In a B-Tree, pointers to data records exist at
all levels of the tree.

In a B*-Tree, all pointers to data records exist
at the leaf-level nodes.

A B*-Tree can have less levels (or higher
capacity of search values) than the
corresponding B-tree.

70

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ B-tree Structures

(a) - P1 J':“."1 .P-r‘l :?9 SR Kj—l ..P‘rﬁ—l * P.l K:' 'Pf,- T KQ“" uP'r"J‘—' Pﬁ‘ .
Tree Tree
Y Y pointer Y Y pointer
T”?e Data Data Data Data
pointer pointer ' pointer pointer pointer
Tree
pointer
X<K, K_ < X<K, Ky <X
(b) o||5 |0 T B |of |e * | Tree node pointer
o | Data pointer
Null tree pointer
Y Yy L
1|0 3 |o 6 |o 7 |o 9 |o 120

Figure 18.10
B-tree structures. (a) A node in a B-free with g — 1 search values. (b) A B-tree
of order p =dubheowaloesawere inserted in the order 8,5, 1,7, 3, 12,9, 6. nitpssfo.comtailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ The Nodes of a B™-Tree

(a) P, | K | ... | KiyloP,

P

’ L il A g1 qe
Tree Tree Tree
pointer pointer pointer
X X X
X<K, K <X<K Kyt <X
(b) Pointer to
K, .P“ K, 4“}‘:’1’2 | K _F’r,— - K- -Prq—1 P . | > ot loaf
node in
Y Y | tree
Data Data Data Data
pointer pointer pointer pointer
Figure 18.11
The nodes of a B*-tree. (a) Internal node of a B™-tree with g — 1 search values.
(b) Leaf node of a B*-tree with g — 1 search values and g — 1 data pointers.
72

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-T'ree

Tree node pointer

[]
0| Data pointer

P=3andp;=2

Null tree pointer

Insertion Sequence: 1,7,3,12,9,6

Insert 1: overflow (new level)

5 |ofl 80)

73

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

Tree node pointer

[]
0| Data pointer

Null tree pointer

Insert 7

Insertion Sequence: 7,3,12,9,6

74

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

Tree node pointer

[]
0| Data pointer

Null tree pointer

Insert 3: overflow (split)

Insertion Sequence: 3,12,9,6

75

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

¢ | Tree node pointet
0| Data pointer

Null tree pointer

Insert 12: overflow (split, propagates,

/ new level)

1 lo|| 3 |o|je—>{| 5 |0| o'—>7080|

Insertion Sequence: 12,9, 6

CuuDuongThanCong.com https://fb.com/tailieudientucntt 76

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

Tree node pointer

]
0| Data pointer s 5 ‘T

Null tree pointer

o 3 ‘- ? 8 L
l \ Insert 9:
Y 4
1 [o|| 3 |of|le—={[5 |0 o[7 0|l 8 [o]le—>{[12]0
Insertion Sequence: 9,6

CuuDuongThanCong.com https://fb.com/tailieudientucntt 77

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

Tree node pointer

[]
0| Data pointer

5
Null tree pointer ‘ \\
o 3 |e 8 e
Insert 6: overflow
(split, propagates})/
Y Y

Insertion Sequence:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of insertion in B™-Tree (cont.)

.
0

Tree node pointer
Data pointer

Null tree pointer

Y

6

0

7

+

8 0| o>

12

Insertion Sequence:

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

79

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B"-Tree: Delete entry

Start at root, find leaf L where entry belongs.

Remove the entry.
o If L 1s at least half-full, done!

o If L has fewer entries than it should,

Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L).

If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to
L or sibling) from parent of L.

Merge could propagate to root, decreasing
height.

80

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Example of deletion from B*-Tree

Tree node pointer

P=3andpe, = 2.

Lo |

Data pointer

Null tree pointer Deletion sequence: 5, 12,9

|
L]
-]
y.

I 1

@D || 1— @

! <
§ =

Delete 5 f

0(|9 20

1|0 o—» 5

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of deletion from B™-Tree (cont.)

Tree node pointer p — 3 and pleaf = 2.

0| Data pointer _
— Deletion sequence: 5, 12,9

N

Null tree pointer

| N
0 o—»| 6 |0 o —»| 7 |0 o—i 8 0 [ig—a-

0|9 12 [o

Delete 12: underflow /
(redistribute)

82

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

.
0

Tree node pointer

Data pointer

Null tree pointer

"

|

p

Example of deletion from B™-Tree (cont.)

= 3 and p,; = 2.

Deletion sequence: 9

N

N

o 8l

o

6

0

o

7

o

8 o H-»gn

Delete 9:

J

Underflow (merge with left, redistribute)

CuuDuongThanCong.com

83

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

.
0

Tree node pointer
Data pointer

Null tree pointer

Example of deletion from B™-Tree (cont.)

P= 3 and pleaf = 2.

Deletion sequence:

- —

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

84

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Contents

1 Data Storage
1.1 Disk Storage Devices
1.2 Files of Records
1.3 Operations on Files
1.4 Unordered Files & Ordered Files & Hashed Files
1.5 RAID Technology
2.1 Types of Single-level Ordered Indexes
2.2 Multilevel Indexes
2.3 Dynamic Multilevel Indexes Using B-Trees and B*-Trees
2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

85

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types of Indexes

B-tree indexes: standard index type

Q

Q

Index-organized tables: the data is itself the index.

Reverse key indexes: the bytes of the index key are
reversed. For example, 103 is stored as 301. The
reversal of bytes spreads out inserts into the index
over many blocks.

Descending indexes: This type of index stores data on
a particular column or columns in descending order.

B-tree cluster indexes: is used to index a table cluster
key. Instead of pointing to a row, the key points to the
block that contains rows related to the cluster key.

86

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types of Indexes (cont.)

Bitmap and bitmap join indexes: an index entry
uses a bitmap to point to multiple rows. A bitmap
join index Is a bitmap index for the join of two or
more tables.

Function-based indexes:

o Includes columns that are either transformed by a
function, such as the UPPER function, or included in
an expression.

o B-tree or bitmap indexes can be function-based.

Application domain indexes: customized index
specific to an application.

87

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Creating Indexes

Simple create index syntax:

CREATE [UNIQUE | BITMAP] INDEX
[schema.] <index_name>

ON [schema.] <table _name> (column [ASC |
DESC][, column [ASC | DESC]]...)

[REVERSE]:

88

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of creating indexes

CREATE INDEX ord_customer_ix ON ORDERS
(customer 1d);

CREATE INDEX emp name dpt 1x ON
HR.EMPLOYEES (last name ASC, department 1d

DESC) ;

CREATE BITMAP INDEX emp gender 1dx
ON EMPLOYEES (Sex);

CREATE BITMAP INDEX emp bm 1dx

ON EMPLOYEES (JOBS.job title)

FROM EMPLOYEES, JOBS

WHERE EMPLOYEES.job 1d = JOBS.job 1d;

89

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of creating indexes (cont.)

Function-Based Indexes:
CREATE INDEX emp fname uppercase 1dx

ON EMPLOYEES (UPPER(first name));
SELECT First name, Lname

FROM Employee WHERE UPPER (Lname)= “SMITH";

4

CREATE INDEX emp total sal idx

ON EMPLOYEES (salary + (salary *
commission pct));

SELECT First name, Lname

FROM Employee

WHERE ((Salary*Commission pct) + Salary)
> 15000,

CuuDuongThanCong.com https://fb.com/tailieudientucntt

90

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Guidelines for creating indexes

Primary and unique keys automatically have
iIndexes, but you might want to create an index on a
foreign key.

Create an index on any column that the query uses
to join tables.

Create an index on any column from which you
search for particular values on a regular basis.

Create an index on columns that are commonly
used in ORDER BY clauses.

Ensure that the disk and update maintenance
overhead an index introduces will not be too high.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

91

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

92

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dynamic And Extendible Hashed Files

Dynamic and Extendible Hashing Techniques

Hashing techniques are adapted to allow the
dynamic growth and shrinking of the number of file
records.

These techniques include the following: dynamic
hashing, extendible hashing, and linear hashing.

Both dynamic and extendible hashing use the binary
representation of the hash value h(K) in order to
access a directory. In dynamic hashing the directory
IS a binary tree. In extendible hashing the directory
is an array of size 29 where d is called the global
depth.

93

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dynamic And Extendible Hashing (cont.)

The directories can be stored on disk, and they
expand or shrink dynamically. Directory entries point
to the disk blocks that contain the stored records.

An insertion in a disk block that is full causes the
block to split into two blocks and the records are
redistributed among the two blocks. The directory Is
updated appropriately.

Dynamic and extendible hashing do not require an
overflow area.

Linear hashing does require an overflow area but
does not use a directory. Blocks are split in linear
order as the file expands.

94

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

DATAFILE BUCKETS

local depth of
Extendible o
Hashing
11 LN
sk

CuuDuongThanCong.com

d'=3

https://fb.com/tailieudientucntt

bucket for records
whose hash values
start with 000

bucket for records
whose hash values
start with 001

bucket for records
whose hash values
start with 01

bucket for records
whose hash values
start with 10

bucket for records
whose hash values
start with 110

bucket for records
whose hash values
start with 111

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example

rl 2657 1 00001

r2 3760 16 10000 d’ = local depth

r3 4692 20 10100 d = global depth
r4 4871 7 00111

5 5659 27 11011

r6 1821 29 11101 ;

(7 1074 18 10010 r1 (00001) |d"=0
r8 2123 11 01011 r2 (10000)

r9 1620 20 10100 d=0

r10 2428 28 11100

r11 3943 7 00111

r12 4750 14 01110

r13 6975 31 11111 Each bucket has
r14 4981 21 10101 maximum 2 records
r15 9208 24 11000

96

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Extendible Hashing — Example(cont.)

Directory

r1 (00001)

d =0

r2 (10000)

d=20

=)

Insert r3 (10100) =>
overflow=> splitting

1

—~
0 «//////,

.\

r1 (00001)

d =1

N

Insert r4 (00111

d=1
\\\\\‘r2(10000)

d =1

r3 (10100)

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

97

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Extendible Hashing — Example(cont.)

=)

—

r1 (00001)

r4 (00111)

=)

r2 (10000)

r3 (10100)

Insert r5 (11011) =>
overflow=> splitting

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

98

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Extendible Hashing — Example(cont.)

r1 (00001) |d’ =1

//;;;; r4 (00111)
0 | </ »
01 J

.\

0\

10
11

2 (10000) |d’' =2

r3 (10100)
d=2

r5(11011) |d’ =2

x___ Insertr6 (11101)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Extendible Hashing — Example(cont.)

00
01
10
11

r1 (00001) |d’ =1
//;;;; r4 (00111)
"/
7 »
.\.\\ r2 (10000) |d’ =2
2\ 3 (10100) ™
5 (11011) |d’ =2 Insert r7 (10010) =>

r6 (11101)

overflow=> splitting

CuuDuongThanCong.com

100

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

Insert r8 (01011) =>

000 .1 —=%|r1(00001) |d" =1 / overflow=> splitting
001 .//Z 4 (00111)
010 | «/ ,
o 71 r2 (10000) |d’ =3
o 17 (10010)
101 —t+—1r3(10100) |d =3
110 |
111 — ;
5 (11011) |d’ =2
43 6 (11101)

101

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

000

001
010
011
100
101
110
111

/

r1 (00001)

d =2

r4 (00111)

/

r8 (01011)

d =2

4

r2 (10000)

d =3

7

r7 (10010)

| P

r3 (10100)

d =3

>
</
K

-
.\

T~

d=3

CuuDuongThanCong.com

r5 (11011)

d =2

r6 (11101)

=)

Insert r9 (10100)

./

https://fb.com/tailieudientucntt

102

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

r1 (00001) |d’ =2

r4 (00111)
000 ///' r8 (01011) |d’' =2
001 «///////
010 | ¢
" // | Ar2(10000) [=3 Z>

r7 (10010)
100 | «
101 1 r3(10100) |d’' =3
10 | — r9 (10100)

T Insert r10 (11100) =>

111 — =

r5(11011) |d" =2 /overfl0W=> splitting

4= 3 6 (11101)

CuuDuongThanCong.com https://fb.com/tailieudientucntt 103

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

r1(00001) |d’ =2
r4 (00111) T\ Insertril (00111) =>

000 /// r8 (01011) |d' =2 overflow=> splitting
001 «///////
212 5/ eyt r2 (10000) |d’ =3 Z>
r7 (10010)
100 -
101 1 ——{r3(10100) [d'=3
110 —__ r9 (10100)
111 ~ \\\\‘r5(11011) d' =3

z/

r6 (11101) |d’ =3
r10 (11100)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

104

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashmg Example(cont.)

000

001
010
011
100
101
110
111

r1 (00001)

r4 (00111) |d’ =3
o ///////////”///////////'r11(00111)
o/ /
r8 (01011) |d’ =2
.//7 T\ Insert r12 (01110)
o
. — r2(10000) [d'=3
———{r3(10100) |d'=3 ||r7(10010)
— r9 (10100)
~ \\\\‘r5(11011) d’ =3
d —_ 3\
6 (11101) |d’ =3
r10 (11100)

https://fb.com/tailieudientucntt

105

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

000

001
010
011
100
101
110
111

/////~r1(00001) d’ =3

r4 (00111)

dl

r11 (00111)

g

r9 (10100)

r5(11011) |d’ =3

r6 (11101) |d’ =3
r10 (11100)

:;;;¥r8(01011) d' =2
r12 (01110)

. — |r2(10000) |d

————{r3(10100) |[d’=3 | |r7 (10010)

=)

Insert r13 (11111) =>
‘_/ overflow=> splitting

https://fb.com/tailieudientucntt

106

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashmg Example(cont.)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

r1 (00001)

| r4 (00111)

r11 (00111)

| __—P

r8 (01011)

=

r12 (01110)

r2 (10000)

——

r7 (10010)

r3 (10100)

r9 (10100)

=)

Insert r14 (10101) =>
J overflow=> splitting

6 (11101)

' 15 (11011)

r10 (11100)

r1 (11111)

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

107

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

r1 (00001) |d'

./
— | r4 (00111) |d’ =3
— ri1 (00111)
./
:::f;;;;:r8(01011) d’
" 7 (10010)

_—173 (10100) |d’
— /
— r9 (10100)
= r14- (10100 td=4-+{ 15 (11011) |d' =3
— {16 (11101) |d’ ~__
=4 r10 (11100) | |l (11111) |d'=4

CuuDuongTh:

anCong.com

https://fb.com/tailieudientucntt

=)

Insert r15 (11000)

108

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing — Example(cont.)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

|r4 (00111) |d'=3

r11 (00111)

r2 (10000) |d’' =3

r7 (10010)

"r5(11011) |d’ =3

r15 (11000)

r1 (00001) |d’

./

«

./

::;j;;;;ir8(01011) d’

= r12 (01110) |
o

* | —1r3(10100) |d’
o//

— r9 (10100)

: r14 (1010 td-

— —[r6 (11101) |d’

=4 r10 (11100) |

CuuDuongTh:

anCong.com

rl(11111) |d' =4

https://fb.com/tailieudientucntt

109

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing — Example

M=4, h,(K) = K mod M, each bucket has 3
records.

Initialization:
Split pointer
< 0) 1 2 3
4:8: 5:9:13 6: 711 Z>
Insert 17 > Bucket 1: overflow
(17mod4 =1)

Split bucket 0
h(K) = Kmod 2*M

110

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Linear Hashing — Example(cont.)

Split pointer
0 1 2 3 4
8: 5:9:13 6: 711 : 4

\ 4: bucket (4 mod 2*4 =) 4

E—— 8: bucket (8 mod 2*4 =) 0

17: overflow records

111

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Linear Hashing — Example(cont.)

insert 15
(15 mod 4 = 3)

Split pointer \
3

o (i 4
8: : 5:9:13 6: conEe: 4 »

\

1éng:

112

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Linear Hashing — Example(cont.)

insert 3
(3 mod 4 = 3)
Split pointer \5
0 1 2 3 4
8: : 5:9:13 6: 7 EPHES. (¢l »

\

J7uon

Bucket 3: overflow
Split bucket 1.

=> Qverflow records: Redistributed

CuuDuongThanCong.com

https://fb.com/tailieudientucntt 113

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing — Example(cont.)

5: bucket (5 mod 2*4 =) 5
9: bucket (9 mod 2*4 =) 1
13: bucket (13 mod 2*4 =) 5
17: bucket (17 mod 2*4 =) 1

0 1 2 3 4 5
8: 9:17 : 6: /7:11:15 4: : 5:13:
Split pointer

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

114

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

‘ Linear Hashing — Example(cont.)

Bucket 3: overflow.

: Insert 23
Split bucket 2. (23 mod 4 = 3)

0 1 2 3\ 4 5

8: : 9:17: 6: 7:11:15 4: 5:13:

Split pointer \

4

3:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

115

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing — Example(cont.)

Bucket 3: overflow
Split bucket 3

=> Qverflow records: Redistributed

Split pointer
0 1 2 3 4 5 6
8: : 9:17 : 6: /7:11:15 4: : 5:13:

insert 31)

(31 mod 4 = 3)

116

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing — Example(cont.)

/: bucket (7 mod 2*4 =) 7
11: bucket (11 mod 2*%4 =) 3
15: bucket (15 mod 2*4 =) 3

h(K) = Kmod &
3: bucket (3 mod 2*4 =) 3
23: bucket (23 mod 2*4 =) 7
31: bucket (31 mod 2*4 =) =7
0 1 2 3 4 5 6 7
8: : 9:17: |6: cuu A1orEbT3ap4cons |5 €13 | 7:23:31

‘\ Split pointer

CuuDuongThanCong.com https://fb.com/tailieudientucntt

117

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

