
Chapter 8:

Data Storage, Indexing

Structures for Files

Jan - 2014 CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Overview of Database Design Process

2CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

3

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

4

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5

Disk Storage Devices

 Preferred secondary storage device for high

storage capacity and low cost.

 Data stored as magnetized areas on

magnetic disk surfaces.

 A disk pack contains several magnetic disks

connected to a rotating spindle.

 Disks are divided into concentric circular

tracks on each disk surface .

 Track capacities vary typically from 4 to 50

Kbytes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk Storage Devices (cont.)

6CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk Storage Devices (cont.)

7

Sector

Track

Spindle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

8

Disk Storage Devices (cont.)

 A track is divided into smaller blocks or

sectors.

 because a track usually contains a large amount

of information .

 A track is divided into blocks.

 The block size B is fixed for each system.

 Typical block sizes range from B=512 bytes to

B=4096 bytes.

 Whole blocks are transferred between disk and

main memory for processing.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

9

Disk Storage Devices (cont.)

 A read-write head moves to the track that contains the
block to be transferred.
 Disk rotation moves the block under the read-write head for

reading or writing.

 A physical disk block (hardware) address consists of:
 a cylinder number (imaginary collection of tracks of same

radius from all recorded surfaces)

 the track number or surface number (within the cylinder)

 and block number (within track).

 Reading or writing a disk block is time consuming
because of the seek time s and rotational delay (latency)
rd.

 Double buffering can be used to speed up the transfer of
contiguous disk blocks.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Disk storage devices (cont.)

10CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

11

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

12

Records

 Fixed and variable length records.

 Records contain fields which have values of a

particular type.

 E.g., amount, date, time, age.

 Fields themselves may be fixed length or

variable length.

 Variable length fields can be mixed into one

record:

 Separator characters or length fields are needed

so that the record can be “parsed”.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Records (cont.)

13CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

14

Blocking

 Blocking: refers to storing a number of
records in one block on the disk.

 Blocking factor (bfr): refers to the number
of records per block.

 There may be empty space in a block if an
integral number of records do not fit in one
block.

 Spanned Records: refer to records that
exceed the size of one or more blocks and
hence span a number of blocks.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Blocking (cont.)

15CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

16

Files of Records

 A file is a sequence of records, where each record is

a collection of data values (or data items).

 A file descriptor (or file header) includes information

that describes the file, such as the field names and

their data types, and the addresses of the file blocks

on disk.

 Records are stored on disk blocks.

 The blocking factor bfr for a file is the (average)

number of file records stored in a disk block.

 A file can have fixed-length records or variable-

length records.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

17

Files of Records (cont.)

 File records can be unspanned or spanned:

 Unspanned: no record can span two blocks

 Spanned: a record can be stored in more than one block

 The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

 In a file of fixed-length records, all records have the
same format. Usually, unspanned blocking is used with
such files.

 Files of variable-length records require additional
information to be stored in each record, such as
separator characters and field types.

 Usually spanned blocking is used with such files.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

18

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

19

Operation on Files

Typical file operations include:

 OPEN: Reads the file for access, and associates a
pointer that will refer to a current file record at each point
in time.

 FIND: Searches for the first file record that satisfies
a certain condition, and makes it the current file record.

 FINDNEXT: Searches for the next file record (from the
current record) that satisfies a certain condition, and
makes it the current file record.

 READ: Reads the current file record into a program
variable.

 INSERT: Inserts a new record into the file, and
makes it the current file record.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

20

Operation on Files (cont.)

 DELETE: Removes the current file record
from the file, usually by marking the record to
indicate that it is no longer valid.

 MODIFY: Changes the values of some fields
of the current file record.

 CLOSE: Terminates access to the file.

 REORGANIZE: Reorganizes the file records. For
example, the records marked deleted are physically
removed from the file or a new organization of the
file records is created.

 READ_ORDERED: Read the file blocks in order of
a specific field of the file.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

21

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

22

Unordered Files

 Also called a heap or a pile file.

 New records are inserted at the end of the file.

 A linear search through the file records is

necessary to search for a record.

 This requires reading and searching half the file

blocks on the average, and is hence quite expensive.

 Record insertion is quite efficient.

 Reading the records in order of a particular field

requires sorting the file records.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

23

Ordered Files
 Also called a sequential file.

 File records are kept sorted by the values of an ordering
field.

 Insertion is expensive: records must be inserted in the
correct order.
 It is common to keep a separate unordered overflow (or

transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

 A binary search can be used to search for a record on
its ordering field value.
 This requires reading and searching log2 of the file blocks on the

average, an improvement over linear search.

 Reading the records in order of the ordering field is quite
efficient.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

24

Ordered Files

(cont.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

25

Average Access Times

 The following table shows the average access time

to access a specific record for a given type of file:

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

26

Hashed Files

 Hashing for disk files is called External Hashing.

 The file blocks are divided into M equal-sized buckets,
numbered bucket0, bucket1, ..., bucketM-1.
 Typically, a bucket corresponds to one (or a fixed number of) disk

block.

 One of the file fields is designated to be the hash key of
the file.

 The record with hash key value K is stored in bucket i,
where i=h(K), and h is the hashing function.

 Search is very efficient on the hash key.

 Collisions occur when a new record hashes to a bucket
that is already full.
 An overflow file is kept for storing such records.

 Overflow records that hash to each bucket can be linked together

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files (cont.)

27CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

28

Hashed Files (cont.)

 There are numerous methods for collision resolution,
including the following:
 Open addressing: Proceeding from the occupied position specified by

the hash address, the program checks the subsequent positions in
order until an unused (empty) position is found.

 h(K) = K mod 7

 Insert 8

 Insert 15

 Insert 13

0 1 2 3 4 5 6

1 3 11 6

1 8 3 11 6

1 8 3 11 15 6

13 1 8 3 11 15 6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

29

Hashed Files (cont.)

 There are numerous methods for collision resolution,
including the following:
 Chaining:

 Various overflow locations are kept: extending the array with a number
of overflow positions.

 A pointer field is added to each record location.

 A collision is resolved by placing the new record in an unused overflow
location and setting the pointer of the occupied hash address location
to the address of that overflow location.

 Multiple hashing:
 The program applies a second hash function if the first results in a

collision.

 If another collision results, the program uses open addressing or
applies a third hash function and then uses open addressing if
necessary.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Hashed Files (cont.) - Overflow handling

30CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

31

 To reduce overflow records, a hash file is typically

kept 70-80% full.

 The hash function h should distribute the records

uniformly among the buckets; otherwise, search

time will be increased because many overflow

records will exist.

 Main disadvantages of static external hashing:

 Fixed number of buckets M is a problem if the number of

records in the file grows or shrinks.

 Ordered access on the hash key is quite inefficient

(requires sorting the records).

Hashed Files (cont.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

32

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

33

Parallelizing Disk Access using RAID

Technology.
 Secondary storage technology must take steps to

keep up in performance and reliability with

processor technology.

 A major advance in secondary storage technology is

represented by the development of RAID, which

originally stood for Redundant Arrays of

Inexpensive Disks.

 The main goal of RAID is to even out the widely

different rates of performance improvement of disks

against those in memory and microprocessors.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

34

 A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.

 A concept called data striping is used, which utilizes
parallelism to improve disk performance.

 Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

RAID Technology (cont.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

35

RAID Technology (cont.)
 Different raid organizations were defined based on different

combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.
 Raid level 0 has no redundant data and hence has the best write

performance.

 Raid level 1 uses mirrored disks.

 Raid level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components.
Level 2 includes both error detection and correction.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

36

 Raid level 3 uses a single parity disk relying on the disk controller to
figure out which disk has failed.

 Raid levels 4 and 5 use block-level data striping, with level 5 distributing
data and parity information across all disks.

RAID Technology (cont.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

37

 Raid level 6 applies the so-called P + Q redundancy scheme using
Reed-Soloman codes to protect against up to two disk failures by using
just two redundant disks.

RAID Technology (cont.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

38

Use of RAID Technology (cont.)
 Different raid organizations are being used under different

situations:
 Raid level 1 (mirrored disks)is the easiest for rebuild of a disk from other

disks

 It is used for critical applications like logs.

 Raid level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components.
Level 2 includes both error detection and correction.

 Raid level 3 (single parity disks relying on the disk controller to figure
out which disk has failed) and level 5 (block-level data striping) are
preferred for large volume storage, with level 3 giving higher transfer
rates.

 Most popular uses of the RAID technology currently are: Level 0 (with
striping), Level 1 (with mirroring) and Level 5 with an extra drive for
parity.

 Design decisions for RAID include – level of RAID, number of disks,
choice of parity schemes, and grouping of disks for block-level striping.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

39

 The demand for higher storage has risen
considerably in recent times.

 Organizations have a need to move from a static
fixed data center oriented operation to a more
flexible and dynamic infrastructure for information
processing.

 Thus they are moving to a concept of Storage Area
Networks (SANs).
 In a SAN, online storage peripherals are configured as

nodes on a high-speed network and can be attached and
detached from servers in a very flexible manner.

 This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

Storage Area Networks

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

40

 Advantages of SANs are:

 Flexible many-to-many connectivity among servers and

storage devices using fiber channel hubs and switches.

 Up to 10km separation between a server and a storage

system using appropriate fiber optic cables.

 Better isolation capabilities allowing nondisruptive addition

of new peripherals and servers.

 SANs face the problem of combining storage

options from multiple vendors and dealing with

evolving standards of storage management software

and hardware.

Storage Area Networks (contd.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

41

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Indexes as Access Paths

 A single-level index is an auxiliary file that
makes it more efficient to search for a record in
the data file.

 The index is usually specified on one field of the
file (although it could be specified on several
fields)

 One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

 The index is called an access path on the field.

42CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Indexes as Access Paths (cont.)

 The index file usually occupies considerably less

disk blocks than the data file because its entries

are much smaller.

 A binary search on the index yields a pointer to

the file record.

 Indexes can also be characterized as dense or

sparse:

 A dense index has an index entry for every search key

value (and hence every record) in the data file.

 A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

43CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

44CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

45

 Defined on an ordered data file.

 The data file is ordered on a key field.

 One index entry for each block in the data file

 First record in the block, which is called the block anchor

 A similar scheme can use the last record in a block.

Primary Index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ID Name DoB Salary Sex

1

2

3

4

6

7

8

9

10

12

13

15

46

Primary

key value

Block

pointer

1

4

8

12

Primary key field

Index file

(<K(i), P(i)> entries)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

47

 Number of index entries?

 Number of blocks in data file.

 Dense or Nondense?

 Nondense

 Search/ Insert/ Update/ Delete?

Primary Index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

48

 Defined on an ordered data file.

 The data file is ordered on a non-key field.

 One index entry each distinct value of the field.

 The index entry points to the first data block that

contains records with that field value

Clustering Index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dept_No Name DoB Salary Sex

1

1

2

2

2

2

2

3

3

4

4

5

49

Clustering

field value

Block

pointer

1

2

3

4

5

Clustering field

Index file

(<K(i), P(i)> entries)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dept_No Name DoB Salary Sex

1

1

2

2

2

2

2

3

3

4

4

5

50

Clustering

field value

Block

pointer

1

2

3

4

5

Clustering field

Index file

(<K(i), P(i)> entries)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

51

 Number of index entries?

 Number of distinct indexing field values in data file.

 Dense or Nondense?

 Nondense

 Search/ Insert/ Update/ Delete?

 At most one primary index or one clustering

index but not both.

Clustering Index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

52

 A secondary index provides a secondary means of

accessing a file.

 The data file is unordered on indexing field.

 Indexing field:

 secondary key (unique value)

 nonkey (duplicate values)

 The index is an ordered file with two fields.
 The first field: indexing field.

 The second field: block pointer or record pointer.

 There can be many secondary indexes for the same file.

Secondary index

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5

13

8

6

15

3

9

21

11

4

23

18

53

Index field

value

Block

pointer

3

4

5

6

8

9

11

13

15

18

21

23

Secondary

key field

Index file

(<K(i), P(i)> entries)

…

Secondary index on key field
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on key field

 Number of index entries?

 Number of record in data file

 Dense or Nondense?

 Dense

 Search/ Insert/ Update/ Delete?

54CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on non-key field

 Discussion: Structure of Secondary index on non-

key field?

 Option 1: include duplicate index entries with the

same K(i) value - one for each record.

 Option 2: keep a list of pointers <P(i, 1), ..., P(i, k)>

in the index entry for K(i).

 Option 3:

 more commonly used.

 one entry for each distinct index field value + an extra

level of indirection to handle the multiple pointers.

55CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 Secondary

Index on

non-key

field:

option 3

56CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Secondary index on nonkey field

 Number of index entries?

 Number of records in data file

 Number of distinct index field values

 Dense or Nondense?

 Dense/ nondense

 Search/ Insert/ Update/ Delete?

57CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Summary of Single-level indexes

 Ordered file on indexing field?

 Primary index

 Clustering index

 Indexing field is Key?

 Primary index

 Secondary index

 Indexing field is not Key?

 Clustering index

 Secondary index

58CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Summary of Single-level indexes

 Dense index?

 Secondary index

 Nondense index?

 Primary index

 Clustering index

 Secondary index

59CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Summary of Single-level indexes

60CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

61

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

62

 Because a single-level index is an ordered file, we

can create a primary index to the index itself.

 The original index file is called the first-level index and the

index to the index is called the second-level index.

 We can repeat the process, creating a third, fourth,

..., top level until all entries of the top level fit in

one disk block.

 A multi-level index can be created for any type of

first-level index (primary, secondary, clustering) as

long as the first-level index consists of more than

one disk block.

Multi-Level Indexes

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

63

A two-level primary

index resembling

ISAM (Indexed

Sequential Access

Method)

organization.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

64

Multi-Level Indexes

 Such a multi-level index is a form of search

tree.

 However, insertion and deletion of new index

entries is a severe problem because every

level of the index is an ordered file.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A Node in a Search Tree with

Pointers to Subtrees below It

65CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A search tree of order p = 3

66CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

67

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

68

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees

 Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion
problem.
 This leaves space in each tree node (disk block) to allow

for new index entries

 These data structures are variations of search trees
that allow efficient insertion and deletion of new
search values.

 In B-Tree and B+-Tree data structures, each node
corresponds to a disk block.

 Each node is kept between half-full and completely
full.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

69

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees (cont.)

 An insertion into a node that is not full is quite

efficient.

 If a node is full, the insertion causes a split into

two nodes.

 Splitting may propagate to other tree levels.

 A deletion is quite efficient if a node does not

become less than half full.

 If a deletion causes a node to become less than

half full, it must be merged with neighboring

nodes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

70

Difference between B-tree and B+-tree

 In a B-Tree, pointers to data records exist at

all levels of the tree.

 In a B+-Tree, all pointers to data records exist

at the leaf-level nodes.

 A B+-Tree can have less levels (or higher

capacity of search values) than the

corresponding B-tree.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-tree Structures

71CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

The Nodes of a B+-Tree

72CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree

p = 3 and pleaf = 2

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

73CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

74CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

75CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

76CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

77CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

78CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of insertion in B+-Tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

79CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B+-Tree: Delete entry

 Start at root, find leaf L where entry belongs.

 Remove the entry.

 If L is at least half-full, done!

 If L has fewer entries than it should,

 Try to re-distribute, borrowing from sibling (adjacent node with

same parent as L).

 If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to

L or sibling) from parent of L.

 Merge could propagate to root, decreasing

height.

80CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of deletion from B+-Tree

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

Delete 5

81CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of deletion from B+-Tree (cont.)

Delete 12: underflow
(redistribute)

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

82CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of deletion from B+-Tree (cont.)

Delete 9:
Underflow (merge with left, redistribute)

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

83CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of deletion from B+-Tree (cont.)

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

84CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contents

85

1 Data Storage

1.1 Disk Storage Devices

1.2 Files of Records

1.3 Operations on Files

1.4 Unordered Files & Ordered Files & Hashed Files

1.5 RAID Technology

2 Indexing Structures for Files

2.1 Types of Single-level Ordered Indexes

2.2 Multilevel Indexes

2.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

2.4 Indexes in Oracle

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types of Indexes

 B-tree indexes: standard index type

 Index-organized tables: the data is itself the index.

 Reverse key indexes: the bytes of the index key are

reversed. For example, 103 is stored as 301. The

reversal of bytes spreads out inserts into the index

over many blocks.

 Descending indexes: This type of index stores data on

a particular column or columns in descending order.

 B-tree cluster indexes: is used to index a table cluster

key. Instead of pointing to a row, the key points to the

block that contains rows related to the cluster key.

86CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Types of Indexes (cont.)

 Bitmap and bitmap join indexes: an index entry

uses a bitmap to point to multiple rows. A bitmap

join index is a bitmap index for the join of two or

more tables.

 Function-based indexes:

 Includes columns that are either transformed by a

function, such as the UPPER function, or included in

an expression.

 B-tree or bitmap indexes can be function-based.

 Application domain indexes: customized index

specific to an application.

87CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Creating Indexes

 Simple create index syntax:

CREATE [UNIQUE | BITMAP] INDEX

[schema.] <index_name>

ON [schema.] <table_name> (column [ASC |

DESC] [, column [ASC | DESC]] ...)

[REVERSE];

88CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of creating indexes

 CREATE INDEX ord_customer_ix ON ORDERS

(customer_id);

 CREATE INDEX emp_name_dpt_ix ON

HR.EMPLOYEES(last_name ASC, department_id

DESC);

 CREATE BITMAP INDEX emp_gender_idx

ON EMPLOYEES (Sex);

 CREATE BITMAP INDEX emp_bm_idx

ON EMPLOYEES (JOBS.job_title)

FROM EMPLOYEES, JOBS

WHERE EMPLOYEES.job_id = JOBS.job_id;

89CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of creating indexes (cont.)
Function-Based Indexes:

 CREATE INDEX emp_fname_uppercase_idx

ON EMPLOYEES (UPPER(first_name));

 SELECT First_name, Lname

FROM Employee WHERE UPPER(Lname)= “SMITH”;

 CREATE INDEX emp_total_sal_idx

ON EMPLOYEES (salary + (salary *

commission_pct));

 SELECT First_name, Lname

FROM Employee

WHERE ((Salary*Commission_pct) + Salary)

> 15000;

90CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Guidelines for creating indexes

 Primary and unique keys automatically have

indexes, but you might want to create an index on a

foreign key.

 Create an index on any column that the query uses

to join tables.

 Create an index on any column from which you

search for particular values on a regular basis.

 Create an index on columns that are commonly

used in ORDER BY clauses.

 Ensure that the disk and update maintenance

overhead an index introduces will not be too high.

91CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

92CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

93

Dynamic And Extendible Hashed Files

Dynamic and Extendible Hashing Techniques

 Hashing techniques are adapted to allow the
dynamic growth and shrinking of the number of file
records.

 These techniques include the following: dynamic
hashing, extendible hashing, and linear hashing.

 Both dynamic and extendible hashing use the binary
representation of the hash value h(K) in order to
access a directory. In dynamic hashing the directory
is a binary tree. In extendible hashing the directory
is an array of size 2d where d is called the global
depth.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

94

Dynamic And Extendible Hashing (cont.)

 The directories can be stored on disk, and they
expand or shrink dynamically. Directory entries point
to the disk blocks that contain the stored records.

 An insertion in a disk block that is full causes the
block to split into two blocks and the records are
redistributed among the two blocks. The directory is
updated appropriately.

 Dynamic and extendible hashing do not require an
overflow area.

 Linear hashing does require an overflow area but
does not use a directory. Blocks are split in linear
order as the file expands.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

95CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example
Record K h(K) = K % 32 h(K)B

r1 2657 1 00001

r2 3760 16 10000

r3 4692 20 10100

r4 4871 7 00111

r5 5659 27 11011

r6 1821 29 11101

r7 1074 18 10010

r8 2123 11 01011

r9 1620 20 10100

r10 2428 28 11100

r11 3943 7 00111

r12 4750 14 01110

r13 6975 31 11111

r14 4981 21 10101

r15 9208 24 11000

r1 (00001)

r2 (10000)

d’ =0

d = 0

d’ = local depth
d = global depth

Each bucket has

maximum 2 records

96CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert r3 (10100) =>
overflow=> splitting

Extendible Hashing – Example(cont.)

r1 (00001)

r2 (10000)

d’ =0

d = 0

Directory

0
1

d = 1

r1 (00001) d’ =1

r2 (10000)

r3 (10100)

d’ =1

Insert r4 (00111)

97CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert r5 (11011) =>
overflow=> splitting

Extendible Hashing – Example(cont.)

0
1

d = 1

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =1

98CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

00

01

10

11

d = 2

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =2

r5 (11011) d’ =2

Insert r6 (11101)

99CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r7 (10010) =>
overflow=> splitting

00

01

10

11

d = 2

r1 (00001)

r4 (00111)

d’ =1

r2 (10000)

r3 (10100)

d’ =2

r5 (11011)

r6 (11101)

d’ =2

100CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r8 (01011) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r1 (00001)

r4 (00111)

d’ =1

r3 (10100) d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

101CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r9 (10100)

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100) d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

102CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011)

r6 (11101)

d’ =2

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

Insert r10 (11100) =>
overflow=> splitting

103CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r11 (00111) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001)

r4 (00111)

d’ =2

r6 (11101)

r10 (11100)

d’ =3

104CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r12 (01110)
010

011

100

101

000

001

110

111

d = 3

r8 (01011) d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r6 (11101)

r10 (11100)

d’ =3

r4 (00111)

r11 (00111)

d’ =3

105CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r13 (11111) =>
overflow=> splitting

010

011

100

101

000

001

110

111

d = 3

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r6 (11101)

r10 (11100)

d’ =3

r4 (00111)

r11 (00111)

d’ =3

106CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r14 (10101) =>
overflow=> splitting

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =3

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

107CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

Insert r15 (11000)

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =4

r5 (11011) d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

r14 (10101) d’ =4

108CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Extendible Hashing – Example(cont.)

0010
0011

0000
0001

0110
0111

0100
0101

1010
1011

1000
1001

1110
1111

1100
1101

d = 4

r8 (01011)

r12 (01110)

d’ =2

r3 (10100)

r9 (10100)

d’ =4

r5 (11011)

r15 (11000)

d’ =3

r2 (10000)

r7 (10010)

d’ =3

r1 (00001) d’ =3

r1 (11111) d’ =4

r4 (00111)

r11 (00111)

d’ =3

r6 (11101)

r10 (11100)

d’ =4

r14 (10101) d’ =4

109CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

 M=4, h0(K) = K mod M, each bucket has 3

records.

 Initialization:

Linear Hashing – Example

0 1 2 3

4 : 8 : 5 : 9 : 13 6 : : 7 : 11 :

Split pointer

Insert 17
(17 mod 4 = 1)

Bucket 1: overflow

Split bucket 0

h1(K) = K mod 2*M

110CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 4 : :

Split pointer

17 : :

4: bucket (4 mod 2*4 =) 4

8: bucket (8 mod 2*4 =) 0

17: overflow records

111CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 4 : :

Split pointer

17 : :

insert 15
(15 mod 4 = 3)

112CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4

8 : : 5 : 9 : 13 6 : : 7 : 11 : 15 4 : :

Split pointer

17 : :

insert 3
(3 mod 4 = 3)

Bucket 3: overflow

Split bucket 1.

=> Overflow records: Redistributed

113CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4 5

8 : : 9 : 17 : 6 : : 7 : 11 : 15 4 : : 5 : 13 :

Split pointer

3 : :

5: bucket (5 mod 2*4 =) 5

9: bucket (9 mod 2*4 =) 1

13: bucket (13 mod 2*4 =) 5

17: bucket (17 mod 2*4 =) 1

114CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4 5

8 : : 9 : 17 : 6 : : 7 : 11 : 15 4 : : 5 : 13 :

Split pointer

3 : :

Insert 23
(23 mod 4 = 3)

Bucket 3: overflow.

Split bucket 2.

115CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4 5 6

8 : : 9 : 17 : 6 : : 7 : 11 : 15 4 : : 5 : 13 :

Split pointer

3 : 23 :

insert 31
(31 mod 4 = 3)

Bucket 3: overflow

Split bucket 3

=> Overflow records: Redistributed

116CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Linear Hashing – Example(cont.)

0 1 2 3 4 5 6 7

8 : : 9 : 17 : 6 : : 11 : 15 : 3 4 : : 5 : 13 : : : 7 : 23 : 31

Split pointer

7: bucket (7 mod 2*4 =) 7

11: bucket (11 mod 2*4 =) 3

15: bucket (15 mod 2*4 =) 3

3: bucket (3 mod 2*4 =) 3

23: bucket (23 mod 2*4 =) 7

31: bucket (31 mod 2*4 =) = 7

h1(K) = K mod 8

117CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

