
BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 1

Ñoàng Boä Quaù Trình

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 2

Nội dung

 Khái niệm cơ bản

 Tranh chấp “Critical section”

 Các giải pháp

 Sử dụng lệnh máy thông thường

 Giải thuật Peterson, và giải thuật bakery

 Sử dụng lệnh cấm ngắt hoặc lệnh máy đặc biệt

 Semaphore

 Monitor

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 3

Bài toán đồng bộ

 Khảo sát các process/thread thực thi
đồng thời và chia sẻ dữ liệu (ghi shared
memory) trong hệ thống
 uniprocessor, hoặc
 shared memory multiprocessor

 Nếu không có sự kiểm soát khi truy cập
các dữ liệu chia sẻ thì chúng có thể rơi
vào tình trạng không nhất quán
(inconsistent).

 Để duy trì sự nhất quán dữ liệu, hệ
thống cần có cơ chế bảo đảm sự thực
thi có trật tự của các process đồng thời.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 4

Bài toán đồng bộ (tt.)

 Hai lớp bài toán đồng bộ:

 Hợp tác (cooperation)

 Bài toán producer-consumer: bounded buffer

 Tranh giành (contention)

 Bài toán loại trừ tương hỗ: đồng bộ nhiều quá
trình sử dụng một tài nguyên không chia sẻ đồng
thời được (như printer)

 Bài toán Dining Philosophers

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 5

Đồng thời vs. song song

 Trên uniprocessor hay
trên shared memory
multiprocessor, các quá
trình chạy đồng thời

 Trên shared memory
multiprocessor, các quá
trình có thể chạy song
song

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 6

Bài toán Producer-consumer

 Ví dụ Bounded buffer, thêm biến đếm
count

 #define BUFFER_SIZE 10 /* 10 buffers */

 typedef struct {

 . . .

 } item;

 item buffer[BUFFER_SIZE];

 int in = 0, out = 0, count = 0;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 7

Bài toán Producer-consumer (tt.)

 Quá trình Producer
item nextProduced;
while(1) {
 while (count == BUFFER_SIZE); /* do nothing */
 buffer[in] = nextProduced;
 count++;
 in = (in + 1) % BUFFER_SIZE;

 }

 Quá trình Consumer
item nextConsumed;
while(1) {
 while (count == 0); /* do nothing */
 nextConsumed = buffer[out];
 count--;
 out = (out + 1) % BUFFER_SIZE;
 } biến count được chia sẻ

giữa producer và consumer

con troû

con troû

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 8

Bài toán Producer-consumer (tt.)

 Các lệnh tăng/giảm biến count tương đương trong ngôn
ngữ máy là:
Producer count++:

register1 = count

register1 = register1 + 1

count = register1

Consumer count--:

register2 = count

register2 = register2 - 1

count = register2

 Trong đó, registeri là thanh ghi của CPU.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 9

Đồng bộ và lệnh đơn nguyên

 Mã máy của các lệnh tăng và giảm biến count có thể thực thi xen

kẽ

 Giả sử count đang bằng 5. Chuỗi thực thi sau có thể xảy ra:

 1: producer register1 := count {register1 = 5}

 producer register1 := register1 + 1 {register1 = 6}

 2: consumer register2 := count {register2 = 5}

 consumer register
2
 := register

2
- 1 {register

2
 = 4

 3: producer count := register1 {count = 6}

 4: consumer count := register2 {count = 4}

 Cả hai process thao tác đồng thời lên biến chung count. Trị của biến

chung này không nhất quán dưới các thao tác của hai process.

 Giải pháp: các lệnh count++, count-- phải là đơn nguyên (atomic),

nghĩa là thực hiện như một lệnh đơn, không thực thi đan xen nhau.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 10

Race condition

 Race condition: nhiều process truy xuất và
thao tác đồng thời lên dữ liệu chia sẻ (như
biến count); kết quả cuối cùng của việc truy
xuất đồng thời này phụ thuộc thứ tự thực thi
của các lệnh thao tác dữ liệu.

 Để dữ liệu chia sẻ được nhất quán, cần bảo
đảm sao cho các process lần lượt thao tác lên
dữ liệu chia sẻ. Do đó, cần có cơ chế đồng bộ
hoạt động của các process này.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 11

Khái niệm “Critical Section”

 Giả sử có n process đồng thời truy xuất dữ liệu
chia sẻ.

 Không phải tất cả các đoạn code đều cần được
giải quyết vấn đề race condition mà chỉ những
đoạn code có chứa các thao tác lên dữ liệu chia
sẻ. Đoạn code này được gọi là vùng tranh chấp
(critical section, CS).

 Bài toán loại trừ tương hỗ: phải bảo đảm sự loại
trừ tương hỗ (mutual exclusion, mutex), tức là
khi một process P đang thực thi trong CS của P,
không có process Q nào khác đồng thời thực thi
các lệnh trong CS của Q.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 12

Cấu trúc tổng quát của quá trình
trong bài toán loại trừ tương hỗ

 Giả sử mỗi process thực thi bình

thường (i.e., nonzero speed) và

không có sự tương quan giữa tốc

độ thực thi của các process

 Cấu trúc tổng quát của một

process:

Một số giả định

 Có thể có nhiều CPU nhưng
phần cứng không cho phép
nhiều tác vụ truy cập một vị trí
trong bộ nhớ cùng lúc
(simultaneous)

 Không ràng buộc về thứ tự
thực thi của các process

 Các process có thể chia sẻ
một số biến chung nhằm đồng
bộ hoạt động của chúng

 Giải pháp cần phải đặc tả entry
section và exit section

do {

 critical section

 remainder section

 } while(1);

entry section

exit section

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 13

Giải bài toán loại trừ tươnghỗ

Lời giải phải thỏa 3 tính chất:
 1. Mutual exclusion: Khi một process P đang thực thi trong

vùng tranh chấp (CS) thì không có process Q nào khác
đang thực thi trong CS.

 2. Progress: Nếu không có quá trình nào đang thực thi
trong vùng tranh chấp (CS) và có ít nhất một quá trình
muốn vào vùng tranh chấp, thì chỉ có những quá trình đang
không thực thi trong vùng remainder (RS) mới có quyền
quyết định lựa chọn quá trình kế tiếp vào vùng tranh chấp
và quyết định đó không được phép trì hoãn vô hạn định

3. Bounded waiting (lockout-freedom): Khi một quá trình
muốn vào vùng tranh chấp (CS), thì từ khi yêu cầu đến khi
được đáp ứng là khoảng thời gian có hạn (bounded or
limit)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 14

Phân loại giải pháp cho
loại trừ tương hỗ

 Giải pháp dùng lệnh máy thông thường

 Giải pháp dùng lệnh cấm ngắt hay lệnh máy
đặc biệt

 Lệnh Disable interrupt

 Lệnh máy đặc biệt như

 TestAndSet

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 15

Giải pháp dùng
lệnh máy thông thường

 Giải pháp cho 2 process đồng thời

 Giải thuật 1 và 2 (Dekker1 &2)

 Giải thuật Peterson cho 2 process

 Giải pháp cho n process

 Giải thuật bakery

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 16

Giải thuật 1 (Dekker1)

 Biến chia sẻ

int turn; /* khởi đầu turn = 0 */

if turn = i then (Pi được phép vào critical section, với i = 0 hay 1)

 Process Pi

 do {

 while (turn != i);

 critical section

 turn = j;

 remainder section
 } while (1);

 Giải thuật thoả mãn mutual exclusion (1), nhưng không thoả mãn
tính chất progress (2) vì tính chất strict alternation của giải thuật

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 17

Giải thuật 1(tt.)

Process P0:

do

 while (turn != 0);

 critical section

 turn := 1;

 remainder section

while (1);

Process P1:

do

 while (turn != 1);

 critical section

 turn := 0;

 remainder section

while (1);

Giải thuật không thỏa mãn tính chất progress (2):
Nếu turn = 0, P0 được vào CS và sau đó thực thi turn = 1 và vào vùng
RS; giả sử P0 “ở lâu” trong đó.
Lúc đó P1 vào CS và sau đó gán turn = 0, kế đó P1 vào và xong RS,
vào entry section, đợi vào CS một lần nữa; nhưng vì turn = 0 nên P1
phải chờ P0.

(viết lại)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 18

Giải thuật 2 (Dekker2)

 Biến chia sẻ
boolean flag[2]; /* khởi đầu flag[0] = flag[1] = false */
if flag[i] = true then Pi “sẵn sàng” vào critical section.

 Process Pi
 do { flag[i] = true; /* Pi “sẵn sàng” vào CS */

 while (flag[j]); /* Pi “nhường” Pj */
 critical section
 flag[i] = false;
 remainder section
 } while (1);
 Bảo đảm được mutual exclusion. Chứng minh?
 Không thỏa mãn bounded wait(3). Vì sao? Trường hợp sau có thể xảy

ra:
P0 gán flag[0] = true
P1 gán flag[1] = true
P0 và P1 loop mãi mãi trong vòng lặp while

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 19

Giải thuật Peterson (1981)

 Biến chia sẻ: kết hợp cả giải thuật 1 và 2

 Process Pi , với i = 0 hay 1

 do {

 flag[i] = true; /* Process i sẵn sàng */
 favor = j; /* Nhường process j */
 while (flag[j] and favor == j);

 critical section

 flag[i] = false;

 remainder section

 } while (1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 20

Giải thuật Peterson
cho 2 process (tt.)

Process P0

do {

 /* 0 wants in */

 flag[0] = true;

 /* 0 gives a chance to 1 */

 favor = 1;

 while (flag[1] &&

 favor == 1);

 critical section

 /* 0 no longer wants in */

 flag[0] = false;

 remainder section

 } while(1);

Process P1

do {

 /* 1 wants in */

 flag[1] = true;

 /* 1 gives a chance to 0 */

 favor = 0;

 while (flag[0] &&

 favor == 0);

 critical section

 /* 1 no longer wants in */

 flag[1] = false;

 remainder section

 } while(1);

(viết lại)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 21

Giải thuật Peterson cho 2 process:
Tính đúng đắn

Giải thuật Peterson cho 2 process thỏa mutual

exclusion, progress, và lockout-freedom

 Mutual exclusion được bảo đảm bởi vì

 P0 và P1 đều ở trong CS nếu và chỉ nếu flag[0] =

flag[1] = true và turn = i cho mỗi Pi (không thể xảy ra)

 Chứng minh thỏa yêu cầu về progress(2) và

bounded wait(3).

 Xem tài liệu

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 22

Giải thuật bakery

 Trước khi vào CS, process Pi nhận một con số.
Process nào giữ con số nhỏ nhất thì được vào CS

 Trường hợp Pi và Pj cùng nhận được một chỉ số:
 Neáu i < j thì Pi ñöôïc vaøo tröôùc.

 Khi ra khỏi CS, Pi đặt lại số của mình bằng 0

 Cách cấp số cho các process thường tạo các số
tăng dần, ví dụ 1, 2, 3, 3, 3, 3, 4, 5,…

 Kí hiệu

 (a,b) < (c,d) nếu a < c hoặc if a = c và b < d

 max(a0,…,ak) là con số b sao cho b  ai với mọi i =
0,…, k

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 23

Giải thuật bakery (tt.)

 /* shared variable */
 boolean choosing[n]; /* initially, choosing[i] = false */
 int num[n]; /* initially, num[i] = 0 */

 do {
 choosing[i] = true;
 num[i] = max(num[0], num[1],…, num[n  1]) + 1;
 choosing[i] = false;
 for (j = 0; j < n; j++) {
 while (choosing[j]);
 while ((num[j] != 0) && (num[j], j) < (num[i], i));
 }
 critical section
 num[i] = 0;
 remainder section
 } while (1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 24

Đánh giá

 Các giải pháp dùng lệnh máy thông thường

 Các process khi yêu cầu được vào vùng tranh
chấp đều phải liên tục kiểm tra điều kiện (busy
waiting), tốn thời gian xử lý của CPU.

 Nếu thời gian xử lý trong vùng tranh chấp lớn,
một giải pháp hiệu quả nên có cơ chế block các
process cần đợi

 Các giải pháp dùng lệnh cấm ngắt hay
dùng các lệnh máy đặc biệt  slide tiếp
theo

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 25

Dùng lệnh cấm ngắt

 Trong hệ thống uniprocessor:
mutual exclusion được bảo
đảm.

 Nhưng nếu system clock được
cập nhật do interrupt thì …

 Trên hệ thống multiprocessor:
mutual exclusion không được
đảm bảo vì

 Chỉ cấm ngắt tại CPU thực thi
lệnh disable interrupts

 Các CPU khác vẫn có thể truy
cập bộ nhớ chia sẻ

Process Pi:

do {

 disable_interrupts();

 critical section

 enable_interrupts();

 remainder section

} while (1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 26

Dùng các lệnh máy đặc biệt

 Ý tưởng
 Việc truy xuất vào vào một địa chỉ của bộ nhớ vốn đã

có tính loại trừ tương hỗ (chỉ có một thao tác truy
xuất tại một thời điểm)

 Mở rộng
 Thiết kế một lệnh máy đơn nguyên có thể thực hiện

hai thao tác trên cùng một ô nhớ (vd: read và write)
 Việc thực thi các lệnh máy như trên luôn bảo đảm

mutual exclusion (ngay cả với multiprocessor)

 Các lệnh máy đặc biệt có thể đảm bảo mutual
exclusion nhưng cần kết hợp với một số cơ chế
khác để thoả mãn progress, tránh starvation và
deadlock.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 27

Lệnh TestAndSet

 Đọc và ghi một biến chia sẻ
bằng một lệnh đơn nguyên

boolean TestAndSet(boolean &target)

{

 boolean rv = target;

 target = true;

 return rv;

}

Áp dụng TestAndSet

 Shared data:

 boolean lock = false;

 Process Pi :

 do {

 while (TestAndSet(lock));

 critical section

 lock = false;

 remainder section

 } while (1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 28

Lệnh TestAndSet (tt.)

 Mutual exclusion được bảo đảm: nếu Pi vào CS,
các process Pj khác đều đang busy waiting

 Khi Pi ra khỏi CS, sự chọn lựa process Pj vào CS
kế tiếp là tùy ý  starvation (bounded wait)

 Các processor (ví dụ Pentium) thông thường
cung cấp một lệnh máy đơn nguyên là Swap(a, b)
có tác dụng hoán chuyển nội dung của a và b.

 Swap(a, b) cũng có ưu nhược điểm như
TestAndSet

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 29

Lệnh Swap

Áp dụng lệnh Swap

 Biến chia sẻ lock khởi tạo là false

 Mỗi process Pi có biến cục bộ key;
process Pi nào thấy giá trị lock
= false thì được vào CS.

 Process Pi sẽ loại trừ các process
Pj khác khi thiết lập lock = true

void Swap(boolean &a,

 boolean &b) {

 boolean temp = a;

 a = b;

 b = temp;

}

 Biến chia sẻ (khởi tạo là false)

bool lock;

Process Pi :
 do {
 key = true;
 while (key == true)
 Swap(lock, key);
 critical section
 lock = false;
 remainder section
 } while (1);

 Không thỏa mãn starvation freedom

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 30

Giải thuật dùng TestAndSet:
thoả mãn 3 yêu cầu

waiting[i] = true;

key = true;

while (waiting[i] && key)

 key = TestAndSet(lock);

waiting[i] = false;

j = (i + 1) % n;

while ((j != i) && !waiting[j])

 j = (j + 1) % n;

if (j == i)

 lock = false;

else

 waiting[j] = false;

critical section

remainder section

do {

} while (1)

Biến chia sẻ,
khởi tạo là false

bool waiting[n];
bool lock;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 31

Giải thuật dùng TestAndSet:
thoả mãn 3 yêu cầu (tt.)

 Mutual exclusion: Pi chỉ có thể vào CS nếu và chỉ
nếu hoặc waiting[i] = false, hoặc key = false

key = false chỉ khi TestAndSet (hay Swap) được thực thi

 Process đầu tiên thực thi TestAndSet mới có key
== false; các process khác đều phải đợi

waiting[i] = false chỉ khi process khác rời khỏi CS

 Chỉ có một waiting[i] có giá trị false

 Progress

 Lockout-freedom: waiting in the cyclic order

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 32

Semaphore

Semaphore là công cụ đồng bộ cung cấp bởi OS.

 Một thuộc tính của semaphore là trị của nó, ngoài thao
tác khởi động biến thì chỉ có thể được truy xuất qua hai
tác vụ

 wait(S) hay còn gọi là P(S): giảm trị semaphore, nếu trị này âm
thì process gọi lệnh bị blocked.

 signal(S) hay còn gọi là V(S): tăng trị semaphore, nếu trị này
không dương, một process đang blocked bởi gọi lệnh wait() trước
đó sẽ được hồi phục để thực thi.

 Semaphore giúp process tránh busy waiting: khi phải đợi
thì process sẽ được đặt vào một blocked queue, trong đó
chứa các process đang chờ đợi cùng một sự kiện.

 Nhưng có thể cần busy waiting để hiện thực chính semaphore

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 33

Hiện thực semaphore

 Hiện thực semaphore là một record

 typedef struct {

 int value;

 struct process *L;/* process queue */

 } semaphore;

 cùng với các tác vụ lên nó

 Giả sử hệ điều hành cung cấp hai tác vụ:

 block(): tạm treo process nào thực thi lệnh này

 wakeup(P): hồi phục quá trình thực thi của process
P đang blocked

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 34

Hiện thực semaphore (tt.)

 Các tác vụ semaphore được hiện thực như sau

 void wait(semaphore S) {
 S.value--;
 if (S.value < 0) {
 add this process to S.L;
 block();
 }
 }
 void signal(semaphore S) {
 S.value++;
 if (S.value <= 0) {
 remove a process P from S.L;
 wakeup(P);
 }
 }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 35

Hiện thực semaphore (tt.)

 Khi trị của S  0, thì process gọi wait(S) sẽ bị
blocked và được đặt trong hàng đợi semaphore -
- thường là hàng đợi FIFO

 Hàng đợi này là danh sách liên kết các PCB

 Nếu trị của S < 0, tác vụ signal(S) chọn một
process từ S.L và đưa nó vào hàng đợi ready

 block() và wakeup() thay đổi trạng thái của
process

 block: chuyển từ running sang waiting

 wakeup: chuyển từ waiting sang ready

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 36

Ứng dụng semaphore:
hiện thực mutex

 Dùng cho n process

 Khởi tạo S.value = 1

Chỉ một process được thực
thi trong CS (mutual
exclusion)

 Để cho phép k process
được thực thi trong CS,
khởi tạo S.value = k

 Shared data:

 semaphore mutex;

 /* initially mutex.value = 1

*/

 Process Pi:

do {

 wait(mutex);

 critical section

 signal(mutex);

 remainder section
} while (1);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 37

Ứng dụng semaphore:
đồng bộ process

 Hai process: P1 và P2

 Yêu cầu: lệnh S1 trong P1
cần được thực thi trước
lệnh S2 trong P2

 Định nghĩa semaphore
synch để đồng bộ

 Khởi động semaphore:

 synch.value = 0

 Để đồng bộ hoạt động theo
yêu cầu, P1 phải định
nghĩa như sau:

 S1;

 signal(synch);

 Và P2 định nghĩa như sau:

 wait(synch);

 S2;

S1

S2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 38

Nhận xét về semaphore

 Khi S.value  0: số process có thể thực
thi wait(S) mà không bị blocked = S.value

 Khi S.value < 0: số process đang đợi trên
S là S.value

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 39

Nhận xét về semaphore (tt.)

 Cấu trúc dữ liệu hiện thực semaphore là biến chia sẻ 
đoạn mã hiện thực các lệnh wait và signal là vùng tranh
chấp

 Vùng tranh chấp của các tác vụ wait và signal thông
thường rất nhỏ: khoảng 10 lệnh máy.

 Giải pháp cho vùng tranh chấp wait và signal

 Uniprocessor: có thể dùng cấm ngắt (disable interrupt). Nhưng
phương pháp này không thực hiện được trên hệ thống
multiprocessor.

 Multiprocessor: có thể dùng các giải pháp dùng lệnh máy thông
thường (như giải thuật bakery) hoặc giải pháp dùng lệnh máy
đặc biệt.

Vì CS rất ngắn nên chi phí cho busy waiting sẽ rất thấp.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 40

Deadlock và starvation

 Deadlock: hai hay nhiều process chờ vô hạn định một sự kiện không bao giờ
xảy ra, vd sự kiện do một trong các process đang đợi tạo ra.

 Ví dụ deadlock: Gọi S và Q là hai biến semaphore được khởi tạo = 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 … …

 signal(S); signal(Q);

 signal(Q); signal(S);

 P0 thực thi wait(S), rồi P1 thực thi wait(Q), rồi P0 thực thi wait(Q) bị

 blocked, P1 thực thi wait(S) bị blocked.

 Starvation: indefinite blocking, có thể xảy ra khi process vào hàng

 đợi và được lấy ra theo cơ chế LIFO.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 41

Các loại semaphore

 Counting semaphore: một số nguyên có trị
không giới hạn.

 Binary semaphore: có trị là 0 hay 1. Binary
semaphore rất dễ hiện thực.

 Có thể hiện thực counting semaphore bằng
binary semaphore.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 42

Semaphore và
bài toán bounded buffer

 Giải thuật cho bài toán bounded buffer

 Dữ liệu chia sẻ:

 semaphore full, empty, mutex;

 Khôûi taïo:

full = 0; /* số buffers đầy */

empty = n; /* số buffers trống */

mutex = 1;

out

n buffers

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 43

Semaphore và
bài toán bounded buffer (tt.)

do {

 wait(full)

 wait(mutex);

 …

 nextc =
get_buffer_item(out);

 …

 signal(mutex);

 signal(empty);

 …

 consume_item(nextc);

 …

 } while (1);

do {

 …

 nextp = new_item();

 …

 wait(empty);

 wait(mutex);

 …

 insert_to_buffer(nextp);

 …

 signal(mutex);

 signal(full);

 } while (1);

producer consumer

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 44

Bài toán “Dining Philosophers”

 5 triết gia ngồi ăn và suy
nghĩ

 Mỗi người cần 2 chiếc
đũa (chopstick) để ăn

 Trên bàn chỉ có 5 đũa

 “Dining philosophers” thuộc
về lớp các bài toán phân
phối tài nguyên giữa các
process sao cho không xảy
ra deadlock và starvation

0

1

2 3

4 0 1

4 2

3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 45

Bài toán “Dining Philosophers” (tt.)

Triết gia thứ i:
do {

wait(chopstick[i])
wait(chopstick[(i + 1) % 5])
 …
eat
 …
signal(chopstick[i]);
signal(chopstick[(i + 1) % 5]);
 …
think
 …
} while (1);

Giải thuật
Dữ liệu chia sẻ:
 semaphore chopstick[5];
Khởi đầu các biến đều là 1

0

1

2 3

4 0 1

4 2

3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 46

Bài toán “Dining Philosophers” (tt.)

 Giải pháp trên có thể gây ra deadlock

 Khi tất cả triết gia đồng thời cầm chiếc đũa bên tay trái rồi lấy
đủa tay phải  deadlock

 Một số giải pháp giải quyết được deadlock

 Cho phép nhiều nhất 4 triết gia ngồi vào bàn

 Cho phép triết gia cầm các đũa chỉ khi cả hai chiếc đũa đều
sẵn sàng (nghĩa là tác vụ cầm các đũa phải xảy ra trong CS)

 Triết gia ngồi ở vị trí lẻ cầm đũa bên trái trước, sau đó mới đến
đũa bên phải, trong khi đó triết gia ở vị trí chẵn cầm đũa bên
phải trước, sau đó mới đến đũa bên trái

 Starvation?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 47

Bài toán Readers-Writers

Giải thuật
 Dữ liệu chia sẻ

semaphore mutex = 1;

semaphore wrt = 1;

int readcount = 0;

 Các writer process

wait(wrt);

...

writing is performed

...

signal(wrt);

 Các reader process

 wait(mutex);
 readcount++;
 if (readcount == 1)
 wait(wrt);
 signal(mutex);
 ...
 reading is performed
 ...
 wait(mutex);
 readcount--;
 if (readcount == 0)
 signal(wrt);
 signal(mutex);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 48

Bài toán Readers-Writers (tt.)

 mutex: “bảo vệ” biến readcount
 wrt

 Bảo đảm mutual exclusion đối với các writer

 Được sử dụng bởi reader đầu tiên hoặc cuối cùng
vào hay ra khỏi vùng tranh chấp.

 Nếu một writer đang ở trong CS và có n reader đang
đợi thì một reader được xếp trong hàng đợi của wrt và
n - 1 reader kia trong hàng đợi của mutex

 Khi writer thực thi signal(wrt), hệ thống có thể phục
hồi thực thi của một trong các reader đang đợi hoặc
writer đang đợi.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 49

Các vấn đề với semaphore

 Nếu các tác vụ wait(S) và signal(S) nằm rải rác ở rất nhiều
process  Người lập trình khó nắm bắt được hiệu ứng của
chúng.

 Nếu không sử dụng đúng  có thể xảy ra deadlock hoặc
starvation.

 Một process bị “die” có thể kéo theo các process khác cùng
sử dụng biến semaphore.

signal(mutex)

…

critical section

…

wait(mutex)

wait(mutex)

…

critical section

…

wait(mutex)

signal(mutex)

…

critical section

…

signal(mutex)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 50

Monitor

 Phần tử ngôn ngữ cấp cao

 Xuất hiện trong nhiều ngôn ngữ lập trình
đồng thời như

 Concurrent Pascal, Modula-3, Java,…

 Có thể hiện thực bằng semaphore

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 51

Monitor (tt.)

 Kiểu module phần mềm,
bao gồm

 Một hoặc nhiều thủ tục
(procedure)

 Một đoạn code khởi tạo
(initialization code)

 Các biến dữ liệu cục bộ
(local data variable)

 Ngữ nghĩa của
monitor

 Shared variable chỉ có
thể truy xuất bởi các
thủ tục của monitor

 Process “vào monitor”
bằng cách gọi một
trong các thủ tục của
monitor

 Các thủ tục của
monitor loại trừ tương
hỗ

shared data

entry queue …

operations

initialization
code

Mô hình của một monitor
đơn giản

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 52

Cấu trúc của monitor
 monitor monitor-name
 {
 shared variable declarations
 procedure body P1 (…) {
 . . .
 }
 procedure body P2 (…) {
 . . .
 }
 procedure body Pn (…) {
 . . .
 }
 {
 initialization code
 }
 }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 53

Condition variable

 Nhằm cho phép một process đợi “trong monitor”, phải
khai báo biến điều kiện (condition variable)

 condition a, b;
 Các biến điều kiện đều cục bộ và chỉ được truy cập bên

trong monitor.
 Chỉ có thể thao tác lên biến điều kiện bằng hai thủ tục:

 a.wait: process gọi tác vụ này sẽ bị “block trên biến điều kiện” a
 process này chỉ có thể tiếp tục thực thi khi có process khác thực hiện

tác vụ a.signal

 a.signal: phục hồi quá trình thực thi của process bị block trên
biến điều kiện a.

 Nếu có nhiều process: chỉ chọn một

 Nếu không có process: không có tác dụng

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 54

Monitor có condition variable

 Các process có thể đợi ở entry
queue hoặc đợi ở các condition
queue (a, b,…)

 Khi thực hiện lệnh a.wait,
process sẽ được chuyển vào
condition queue a

 Lệnh a.signal chuyển một
process từ condition queue a
vào monitor

• Khi đó, để bảo đảm mutual
exclusion, process gọi a.signal
sẽ bị blocked và được đưa vào
urgent queue

entry queue shared data

...

operations

initialization
code

a

b

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 55

Monitor có condition variable (tt.)

local data

condition variables

procedure 1

procedure k

initialization code

..
.

monitor waiting area entrance
entry queue

c1.wait

condition c1

condition cn

cn.wait

urgent queue

cx.signal

..
.
MONITOR

exit

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 56

Monitor và dining philosophers

 monitor dp {

enum {THINKING, HUNGRY, EATING} state[5];

condition self[5];

}

0

1

2 3

4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 57

Monitor và dining philosophers (tt.)

 void pickup(int i) {

 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 self[i].wait();
 }
 void putdown(int i) {
 state[i] = THINKING; // test left and right neighbors

 test((i + 4) % 5); // left neighbor

 test((i + 1) % 5); // right …

 }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 58

Monitor và dining philosophers (tt.)

 void test(int i) {

 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 }
 }
 void init() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 59

Monitor và dining philosophers (tt.)

 Trước khi ăn, mỗi triết gia phải gọi hàm pickup(), ăn
xong rồi thì phải gọi hàm putdown()

 đói

 dp.pickup(i);
 ăn
 dp.putdown(i);
 suy nghĩ

 Giải thuật

 không gây deadlock nhưng có thể gây starvation.

 không thực sự phân bố vì điều khiển tập trung.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

