
BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 1

Tắc ghẽn
(Deadlock)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 2

Nội dung

 Mô hình hệ thống

 Đồ thị phân bổ tài nguyên (RAG)

 Phương pháp giải quyết nghẽn

 Chống (Ngăn) nghẽn

 Tránh (avoidance) nghẽn

 Phát hiện nghẽn

 Phục hồi nghẽn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 3

Tắc nghẽn giao thông

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 4

Tắc nghẽn trong hệ thống

 Tình huống: một tập các process bị blocked, mỗi process
giữ tài nguyên và đang chờ tài nguyên mà process khác
trong tập đang giữ.

 Ví dụ 1

 Giả sử hệ thống có một printer và một DVD drive. Quá
trình P1 đang giữ DVD drive, quá trình P2 đang giữ
printer.

 Bây giờ P1 yêu cầu printer, và P2 yêu cầu DVD drive

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 5

Mô hình hóa hệ thống

 Hệ thống gồm các loại tài nguyên, kí hiệu R1, R2,…, Rm
 Tài nguyên: CPU cycle, không gian bộ nhớ, thiết bị I/O, file,…

 Mỗi loại tài nguyên Ri có Wi thực thể (instance).

 Process sử dụng tài nguyên theo thứ tự

 Yêu cầu (request): process phải chờ nếu yêu cầu không được đáp
ứng ngay

 Sử dụng (use): process sử dụng tài nguyên

 Hoàn trả (release): process hoàn trả tài nguyên
 Các tác vụ yêu cầu và hoàn trả được gọi qua system call. Ví dụ:ï

 request/release device

 open/close file

 allocate/free memory

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 6

Điều kiện cần để xảy ra nghẽn

Bốn điều kiện cần (necessary conditions)
1. Mutual exclusion: ít nhất một tài nguyên được giữ theo nonsharable

mode (ví dụ: printer; ví dụ sharable resource: read-only file).
2. Hold and wait: một process đang giữ ít nhất một tài nguyên và đợi

thêm tài nguyên do quá trình khác đang giữ.
3. No preemption: (= no resource preemption) không lấy lại tài nguyên

đã cấp phát cho process, ngoại trừ khi process tự hoàn trả nó.
4. Circular wait: tồn tại một tập {P0,…,Pn} các quá trình đang đợi sao

cho

P0 đợi một tài nguyên mà P1 đang giữ

P1 đợi một tài nguyên mà P2 đang giữ

…

Pn đợi một tài nguyên mà P0 đang giữ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 7

Resource Allocation Graph

 Resource allocation graph (RAG) là đồ thị
có hướng, với tập đỉnh V và tập cạnh E
 Tập đỉnh V gồm 2 loại:

 P = {P1, P2,…, Pn } (Tất cả process trong hệ thống)

 R = {R1, R2,…, Rm } (Tất cả các loại tài nguyên
trong hệ thống)

 Tập cạnh E gồm 2 loại:

 Request edge: cạnh có hướng từ Pi đến Rj

 Assignment edge: cạnh có hướng từ Rj đến Pi

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 8

Resource Allocation Graph (tt.)

Ký hiệu

 Process:

 Loại tài nguyên với 4 thực thể:

 Pi yêu cầu một thực thể của Rj :

 Pi đang giữ một thực thể của Rj :

Pi

Pi

Pi

Rj

Rj

Rj

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 9

Ví dụ về RAG (tt.)

R1 R3

P1 P2 P3

R2 R4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 10

Ví dụ về RAG (tt.)

R1 R3

P1 P2 P3

R2 R4

Deadlock xảy ra!

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 11

RAG và deadlock

 Ví dụ một RAG chứa chu trình lặp nhưng không xảy ra
deadlock: trường hợp P4 trả lại instance của R2.

R1

P1

P2

P3 R2

P4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 12

RAG và deadlock (tt.)

 RAG không chứa chu trình lặp  không có deadlock

 RAG chứa một (hay nhiều) chu trình lặp

 Nếu mỗi loại tài nguyên chỉ có một thực thể 

deadlock

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 13

Deadlock: Cách giải quyết

Ba phương pháp

1) Bảo đảm rằng hệ thống không rơi vào tình
trạng deadlock bằng cách ngăn (preventing)
hoặc tránh (avoiding) deadlock.

Khác biệt:

 Ngăn deadlock: không cho phép (ít nhất) một
trong 4 điều kiện cần cho deadlock

 Tránh deadlock: các quá trình cần cung cấp
thông tin về tài nguyên nó cần để hệ thống cấp
phát tài nguyên một cách thích hợp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 14

Deadlock: Cách giải quyết (tt.)

2) Cho phép hệ thống vào trạng thái deadlock,
nhưng sau đó phát hiện deadlock và phục hồi hệ
thống khỏi deadlock.

3) Bỏ qua mọi vấn đề, xem như deadlock không
bao giờ xảy ra trong hệ thống.

 Khá nhiều hệ điều hành sử dụng phương pháp này.

 Deadlock không được phát hiện, dẫn đến việc giảm
hiệu suất của hệ thống. Cuối cùng, hệ thống có thể

ngưng hoạt động và phải được khởi động lại.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 15

Ngăn deadlock

Ngăn deadlock bằng cách ngăn một trong 4
điều kiện cần của deadlock

1. Ngăn mutual exclusion

 đối với nonsharable resource (vd: printer):
không làm được

 đối với sharable resource (vd: read-only file
và tác vụ cho phép lên file chỉ là đọc): không
cần thiết

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 16

Ngăn deadlock (tt.)

2. Ngăn Hold and Wait
 Cách 1: mỗi process yêu cầu toàn bộ tài nguyên cần

thiết một lần. Nếu có đủ tài nguyên thì hệ thống sẽ
cấp phát, nếu không đủ tài nguyên thì process sẽ bị
blocked.

 Cách 2: khi yêu cầu tài nguyên, process không đang
giữ bất kỳ tài nguyên nào. Nếu đang giữ thì phải trả
lại trước khi yêu cầu.

 Khuyết điểm của các cách trên:

 Hiệu suất sử dụng tài nguyên (resource utilization)
thấp

 Quá trình có thể bị starvation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 17

Ngăn deadlock (tt.)

3. Ngăn No Preemption: cho phép lấy lại tài
nguyên đã cấp phát cho quá trình 

 Chỉ thích hợp cho loại tài nguyên dễ dàng lưu và
phục hồi như

 CPU

 Register

 Vùng nhớ

 Không thích hợp cho loại tài nguyên như printer,
tape drive.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 18

Ngăn deadlock (tt.)

4. Ngăn Circular Wait: tập các loại tài
nguyên trong hệ thống được gán một
thứ tự hoàn toàn.

 Ví dụ: F(tape drive) = 1, F(disk drive) = 5,
F(printer) = 12

 F là hàm định nghĩa thứ tự trên tập các loại tài
nguyên.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 19

4. Ngăn Circular Wait (tt)
 Cách 1: mỗi process yêu cầu thực thể của tài nguyên theo thứ tự tăng dần

(định nghĩa bởi hàm F) của loại tài nguyên. Ví dụ

 Chuỗi yêu cầu thực thể hợp lệ: tape drive  disk drive  printer

 Chuỗi yêu cầu thực thể không hợp lệ: disk drive  tape drive

 Cách 2: Khi một process yêu cầu một thực thể của loại tài nguyên Rj thì nó
phải trả lại các tài nguyên Ri với F(Ri) > F(Rj).

 “Chứng minh” cho cách 1: phản chứng

 F(R4) < F(R1)

 F(R1) < F(R2)

 F(R2) < F(R3)

 F(R3) < F(R4)
 Vậy F(R4) < F(R4), mâu thuẫn!

P1

R1

P2

P4 P3

R3

R2 R4

Ngăn deadlock (tt.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 20

Tránh (avoidance) Nghẽn

 Deadlock prevention sử dụng tài nguyên không hiệu quả.

 Deadlock avoidance vẫn đảm bảo hiệu suất sử dụng tài
nguyên tối đa đến mức có thể.

 Yêu cầu mỗi process khai báo số lượng tài nguyên tối đa
cần để thực hiện công việc

 Giải thuật deadlock-avoidance sẽ điều khiển trạng thái
cấp phát tài nguyên (resource-allocation state) để bảo
đảm hệ thống không rơi vào deadlock.

 Traïng thaùi caáp phaùt taøi nguyeân ñöôïc ñònh nghóa döïa

treân soá taøi nguyeân coøn laïi, soá taøi nguyeân ñaõ ñöôïc

caáp phaùt vaø yeâu caàu toái ña cuûa caùc process.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 21

Trạng thái safe và unsafe

 Một trạng thái của hệ thống được gọi là
an toàn (safe) nếu tồn tại một chuỗi an
toàn (safe sequence).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 22

Chuỗi an toàn

 Một chuỗi quá trình P1, P2,…, Pn  là một
chuỗi an toàn nếu
 Với mọi i = 1,…,n, yêu cầu tối đa về tài nguyên

của Pi có thể được thỏa bởi

 tài nguyên mà hệ thống đang có sẵn sàng (available)

 cùng với tài nguyên mà tất cả Pj , j < i, đang giữ.

 Một trạng thái của hệ thống được gọi là
không an toàn (unsafe) nếu không tồn tại
một chuỗi an toàn.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 23

Chuỗi an toàn (tt.)

Ví dụ: Hệ thống có 12 tape drive và 3 quá trình P0, P1, P2

 Tại thời điểm t0 , giả sử hệ thống còn 3 tape drive sẵn
sàng.

 Chuỗi P1, P0, P2  là chuỗi an toàn  hệ thống
là an toàn

P0 10 5

P1 4 2

P2 9 2

cần tối đa đang giữ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 24

Chuỗi an toàn (tt.)

 Giả sử tại thời điểm t1, P2 yêu cầu và được
cấp phát 1 tape drive

 coøn 2 tape drive saün saøng

 Hệ thống trở nên không an toàn.

P0 10 5

P1 4 2

P2 9 3

cần tối đa đang giữ

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 25

Safe/unsafe và deadlock

 Ý tưởng cho giải pháp tránh deadlock:
Khi một process yêu cầu một tài nguyên
đang sẵn sàng, hệ thống sẽ kiểm tra: nếu
việc cấp phát này không dẫn đến tình
trạng unsafe thì sẽ cấp phát ngay.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 26

Safe/unsafe và deadlock (tt.)

 Nếu hệ thống đang ở trạng thái safe  không deadlock.

 Nếu hệ thống đang ở trạng thái unsafe  có thể dẫn
đến deadlock.

 Tránh deadlock bằng cách cấp phát tài nguyên sao cho
hệ thống không đi đến trạng thái unsafe Neáu heä thoáng

ñang ôû traïng thaùi safe  khoâng deadlock.

safe

deadlock unsafe

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 27

Giải thuật banker

 Áp dụng cho hệ thống cấp phát tài nguyên trong đó mỗi loại tài

nguyên có thể có nhiều instance.

 Điều kiện

 Mỗi process phải khai báo số lượng thực thể (instance) tối đa của mỗi
loại tài nguyên mà nó cần

 Khi process yêu cầu tài nguyên thì có thể phải đợi mặc dù tài nguyên
được yêu cầu đang có sẵn

 Khi process đã có được đầy đủ tài nguyên thì phải hoàn trả trong một
khoảng thời gian hữu hạn nào đó.

 Giải thuật banker gồm

 Giải thuật kiểm tra trạng thái an toàn

 Giải thuật cấp phát tài nguyên

 Giải thuật phát hiện deadlock

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 28

Thực hiện Giải thuật

 n: số process, m: số loại tài nguyên
Các cấu trúc dữ liệu
 Available: vector độ dài m

 Available[j] = k  loại tài nguyên Rj có k instance sẵn sàng

 Max: ma trận n  m

Max[i, j] = k  quá trình Pi yêu cầu tối đa k instance của loại tài
nguyên Rj

 Allocation: ma trận n  m
 Allocation[i, j] = k  Pi đã được cấp phát k instance của Rj

 Need: ma trận n  m

Need[i, j] = k  Pi có thể yêu cầu thêm k instance của Rj

Nhận xét: Need[i, j] = Max[i, j] – Allocation[i, j]

Ký hiệu Y  X  Y[i]  X[i], ví dụ (0, 3, 2, 1)  (1, 7, 3, 2)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 29

Thực hiện Giải thuật (tt.)

Tìm một chuỗi an toàn
1. Gọi Work và Finish là hai vector độ dài là m và n. Khởi tạo

 Work := Available

 Finish[i] := false, i = 1,…, n

2. Tìm i thỏa

 (a) Finish[i] = false

 (b) Needi  Work (hàng thứ i của Need)

Nếu không tồn tại i như vậy, đến bước 4.
3. Work := Work + Allocationi

Finish[i] := true

quay veà böôùc 2.

4. Nếu Finish[i] = true, i = 1,…, n, thì hệ thống đang ở trạng thái
safe

Thời gian chạy của giải thuật là O(m·n2)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 30

Thực hiện Giải thuật (tt.)

 5 process P0 ,…, P4

 3 loại tài nguyên: A, gồm 10 instance; B, 5 instance; và C, 7
instance.

 Trạng thái cấp phát tài nguyên của hệ thống tại thời điểm T0

Allocation Max Available Need

A B C A B C A B C A B C

P0
0 1 0 7 5 3 3 3 2 7 4 3

P1
2 0 0 3 2 2 1 2 2

P2
3 0 2 9 0 2 6 0 0

P3
2 1 1 2 2 2 0 1 1

P4
0 0 2 4 3 3 4 3 1










CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 31

Thực hiện Giải thuật (tt.)

 Allocation Need Work

 A B C A B C A B C

 P0 0 1 0 7 4 3 3 3 2

 P1 2 0 0 1 2 2

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

Dùng giải thuật kiểm tra trạng thái an toàn, tìm được một chuỗi an
toàn là P1, P3, P4, P2, P0 :

7 4 3

7 4 5

10 4 7 10 5 7

5 3 2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 32

Giải thuật cấp phát tài nguyên

Gọi Requesti (độ dài m) là request vector của
process Pi .

 Requesti [j] = k  Pi cần k instance của tài
nguyên Rj .

1. Nếu Requesti  Needi thì đến bước 2. Nếu không,
báo lỗi vì process đã vượt yêu cầu tối đa.

2. Nếu Requesti  Available thì qua bước 3. Nếu
không, Pi phải chờ vì tài nguyên không còn đủ
để cấp phát.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 33

Giải thuật cấp phát tài nguyên (tt.)

3. Giả định cấp phát tài nguyên đáp ứng yêu cầu của Pi

bằng cách cập nhật trạng thái hệ thống như sau:
Available := Available – Requesti
Allocationi := Allocationi + Requesti
Needi := Needi – Requesti

Áp dụng giải thuật kiểm tra trạng thái an toàn lên trạng thái
trên

 Nếu trạng thái là safe thì tài nguyên được cấp thực sự
cho Pi .

 Nếu trạng thái là unsafe thì Pi phải đợi, và phục hồi
trạng thái:

Available := Available + Requesti
Allocationi := Allocationi - Requesti
Needi := Needi + Requesti

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 34

Giải thuật cấp phát tài nguyên (tt.)

 (tiếp ví dụ) Yêu cầu (1, 0, 2) của P1 có thỏa đượckhông?

 Kiểm tra điều kiện Request1  Available:

 (1, 0, 2) (3, 3, 2) là đúng

 Giả sử đáp ứng yêu cầu, kiểm tra trạng thái mới có phải là safe hay
không:

 Trạng thái mới là safe, với chuỗi an toàn là P1, P3, P4, P0, P2 , vậy
có thể cấp phát tài nguyên cho P1.

Allocation Need Available

A B C A B C A B C

P0
0 1 0 7 4 3 2 3 0

P1
3 0 2 0 2 0

P2
3 0 2 6 0 0

P3
2 1 1 0 1 1

P4
0 0 2 4 3 1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 35

Giải thuật cấp phát tài nguyên (tt.)

 P4 yêu cầu (3, 3, 0) hoặc
P0 yêu cầu (0, 2, 0) thì có
thỏa mãn được hay không?

Allocation Need Available

A B C A B C A B C

P0
0 1 0 7 4 3 2 3 0

P1
3 0 2 0 2 0

P2
3 0 2 6 0 0

P3
2 1 1 0 1 1

P4
0 0 2 4 3 1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 36

Phát hiện deadlock

 Chấp nhận xảy ra deadlock trong hệ thống, kiểm
tra trạng thái hệ thống bằng giải thuật phát hiện
deadlock. Nếu có deadlock thì tiến hành phục
hồi hệ thống

 Các giải thuật phát hiện deadlock thường sử
dụng RAG.

 Giải thuật phát hiện deadlock được thiết kế cho
mỗi trường hợp sau

 Mỗi loại tài nguyên chỉ có một thực thể

 Mỗi loại tài nguyên có thể có nhiều thực thể

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 37

Mỗi loại tài nguyên chỉ có một thực thể

 Sử dụng wait-for graph

 Wait-for graph được dẫn xuất từ RAG bằng cách bỏ các node biểu diễn tài
nguyên và ghép các cạnh tương ứng:

 Có cạnh từ Pi đến Pj Pi đang chờ tài nguyên từ Pj

 Gọi định kỳ một giải thuật kiểm tra có tồn tại chu trình trong wait-for
graph hay không. Giải thuật phát hiện chu trình có thời gian chạy là
O(n 2), với n là số đỉnh của graph.

R1 R3 R4

P2
P1 P3

P5

R2 R5 P4

P2 P1 P3

P5

P4

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 38

Mỗi loại tài nguyên có nhiều thực thể

 Phương pháp dùng wait-for graph không áp dụng được cho trường
hợp mỗi loại tài nguyên có nhiều instance.

 Giả thiết: sau khi được đáp ứng yêu cầu tài nguyên, process sẽ hoàn
tất và trả lại tất cả tài nguyên  giải thuật optimistic!

 Giải thuật phát hiện deadlock trường hợp mỗi loại tài nguyên có
nhiều instance: các cấu trúc dữ liệu

Available: vector độ dài m

• số instance sẵn sàng của mỗi loại tài nguyên

Allocation: ma trận n  m

• số instance của mỗi loại tài nguyên đã cấp phát cho mỗi process

Request: ma trận n  m

 yêu cầu hiện tại của mỗi process.

 Request [i, j] = k  Pi đang yêu cầu thêm k instance của Rj

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 39

Giải thuật phát hiện deadlock

1. Các biến Work và Finish là vector kích thước m và n. Khởi tạo:

Work := Available

i = 1, 2,…, n, nếu Allocationi  0 thì Finish[i] := false

 còn không thì Finish[i] := true
2. Tìm i thỏa mãn:

 Finish[i] := false và

 Requesti  Work

Nếu không tồn tại i như thế, đến bước 4.

3. . Work := Work + Allocationi

Finish[i] := true

quay về bước 2.

4. Nếu tồn tại i với Finish[i] = false, thì hệ thống đang ở trạng thái

deadlock. Hơn thế nữa, nếu Finish[i] = false thì Pi bị deadlocked.

thời gian chạy
của giải thuật

O(m·n2)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 40

Giải thuật phát hiện deadlock (tt.)

 Nhận xét:

 Khi giải thuật phát hiện deadlock không thấy
hệ thống đang deadlock, chưa chắc trong
tương lai hệ thống vẫn không deadlock.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 41

Giải thuật phát hiện deadlock (tt.)

 Hệ thống có 5 quá trình P0 ,…, P4

• 3 loại tài nguyên: A, gồm 7 instance; B, 2 instance; C, 6 instance.

Allocation Request Available

A B C A B C A B C

P0
0 1 0 0 0 0 0 0 0

P1
2 0 0 2 0 2

P2
3 0 3 0 0 0

P3
2 1 1 1 0 0

P4
0 0 2 0 0 2

Chạy giải thuật, tìm được chuỗi P0, P2, P3, P1, P4  với Finish[i] = true,

i = 1,…, n, vậy hệ thống không bị deadlocked

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 42

Giải thuật phát hiện deadlock (tt.)

 P2 yêu cầu thêm một instance của C. Ma trận Request như sau:

 Request

 A B C

 P0 0 0 0

 P1 2 0 2

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

 Trạng thái của hệ thống là gì (safe, unsafe, deadlock)?

 Có thể thu hồi tài nguyên đang giữ bởi process P0 nhưng vẫn

không đủ đáp ứng yêu cầu của các process khác.

 Vậy tồn tại deadlock, bao gồm các process P1 , P2 , P3 , và P4 .

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 43

Phục hồi khỏi deadlock

 Các giải pháp khi phát hiện deadlock

 báo người vận hành (operator), người này sẽ
xử lý tiếp

hoặc

 hệ thống tự động phục hồi bằng cách phá
deadlock:

 Giải pháp chấm dứt quá trình

hoặc

 Giải pháp lấy lại tài nguyên

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 44

Phục hồi khỏi deadlock:
 Chấm dứt quá trình

 Phục hồi hệ thống khỏi deadlock bằng cách

 Chấm dứt tất cả process bị deadlocked, hoặc

 Chấm dứt lần lượt từng process cho đến khi không còn deadlock
 Sử dụng giải thuật phát hiện deadlock để xác định còn

deadlock hay không

 Dựa trên yếu tố nào để chọn process cần được chấm dứt?

 Độ ưu tiên của process

 Thời gian đã thực thi của process và thời gian còn lại

 Loại tài nguyên mà process đã sử dụng

 Tài nguyên mà process cần thêm để hoàn tất công việc

 Số lượng process cần được chấm dứt

 Process là interactive process hay batch process

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Khoa Khoa học & Kỹ thuật Máy tính 45

Phục hồi khỏi deadlock:
 Lấy lại tài nguyên

 Lần lượt lấy lại tài nguyên từ các process, cấp phát chúng
cho process khác cho đến khi không còn deadlock nữa.

 Các vấn đề khi thu hồi tài nguyên:

 Chọn “nạn nhân”: chọn tài nguyên và process nào (có
thể dựa trên số tài nguyên sở hữu, thời gian CPU đã
tiêu tốn,...)?

 Rollback: rollback process bị lấy lại tài nguyên trở về
trạng thái safe, rồi tiếp tục process từ trạng thái đó.
Do đó hệ thống cần lưu giữ một số thông tin về trạng
thái các process đang thực thi.

 Starvation: để tránh starvation, phải bảo đảm không
có process nào mà luôn bị lấy lại tài nguyên mỗi khi
phục hồi khỏi deadlock.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

BK
TP.HCM

Kết luận

 Định nghĩa

 Điều kiện cần để Deadlock xảy ra

 Các giải pháp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

