
BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 1 

 
Bộ Nhớ Thực 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 2 

Kiến trúc hệ thống bộ nhớ 

Tốc độ cao 
Dung lượng nhỏ 
Giá thành cao 

Tốc độ thấp 
Dung lượng lớn 
Giá thành thấp 

Vd: file-system data 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 3 

Nội dung 

 Các kiểu địa chỉ nhớ  

 Chuyển đổi địa chỉ nhớ 

 Overlay và swapping 

 Mô hình quản lý bộ nhớ đơn giản 

 Fixed partitioning (Phân chia cố định) 

 Dynamic partitioning (Phân chia động) 

 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 4 

Quản lý bộ nhớ  

 Phân phối và sắp xếp các process trong bộ nhớ sao cho 
hệ thống hoạt động hiệu quả. 

 Ví dụ: nạp càng nhiều process vào bộ nhớ càng tốt (gia tăng mức 
độ đa chương) 

 Thông thường, kernel chiếm một phần cố định của bộ 
nhớ, phần còn lại phân phối cho các process. 

 Yêu cầu đối với việc quản lý bộ nhớ 

 Cấp phát vùng nhớ cho các process 

 Tái định vị (relocation): khi swapping,… 

 Bảo vệ: phải kiểm tra truy xuất bộ nhớ có hợp lệ không 

 Chia sẻ: cho phép các process chia sẻ vùng nhớ chung 

 Kết gán địa chỉ nhớ luận lý của process vào địa chỉ thực 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 5 

Các kiểu địa chỉ nhớ 

 Địa chỉ vật lý -- physical (memory) address --  là địa chỉ 
mà tại đó bộ nhớ chính được tham chiếu (từ CPU, hay 
MMU=Mmemory Management Unit). 

 Địa chỉ luận lý (logical address) là địa chỉ một ô nhớ mà 
một quá trình sinh ra 

 Các trình biên dịch (compiler) tạo ra mã lệnh chương 
trình mà trong đó mọi tham chiếu bộ nhớ là 
 Địa chỉ tương đối (relative address) (địa chỉ khả tái định vị , 

relocatable address) là địa chỉ được biểu diễn tương đối so với 
một vị trí xác định nào đó trong chương trình. 

 Ví dụ: 12 byte so với vị trí bắt đầu chương trình,… 

 Địa chỉ tuyệt đối (absolute address): địa chỉ “tương đương” với 
địa chỉ thực. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 6 

Các kiểu địa chỉ nhớ (tt.) 

 Khi lệnh được thực thi, các địa chỉ luận lý phải được 
chuyển đổi thành địa chỉ vật lý. Thao tác chuyển đổi 
này thường có sự hỗ trợ của phần cứng để đạt hiệu 
suất cao. 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 7 

Nạp chương trình vào bộ nhớ 

 Bộ linker: 

 tái định vị địa chỉ tương đối và phân giải các external reference 

 kết hợp các object module thành một file nhị phân khả thực thi gọi là 
load module. 

System 

library 

System  

library 

static linking 

dynamic linking 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 8 

Thực hiện linking 

Module A 

CALL B 

Return 

length L 

Module B 

CALL C 

Return 

length M 

Module C 

Return 

length N 

0 

L  1 

Module A 

JMP “L” 

Return 

Module B 

JMP “L+M” 

Return 

Module C 

Return 

L 

L  M  1 

L  M 

L  M  N  1 

relocatable 

object modules 

load module 

0 

L  1 

0 

M  1 

0 

N  1 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 9 

Chuyển đổi địa chỉ 

 Chuyển đổi địa chỉ: quá trình ánh xạ một địa chỉ từ không gian địa 
chỉ này sang không gian địa chỉ khác. 

 Biểu diễn địa chỉ nhớ 

 Trong source code: symbolic (các biến, hằng, pointer,…) 

 Thời điểm biên dịch: thường là địa chỉ khả tái định vị 

 Ví dụ: a ở vị trí 14 bytes so với vị trí bắt đầu của module. 

 Thời điểm linking/loading: có thể là địa chỉ tuyệt đối. Ví dụ: dữ liệu 
tương đương địa chỉ bộ nhớ thực 2030 

0 

250 

2000 

2250 

relocatable address 
physical memory 

symbolic address 

int  i; 
goto p1; 

p1 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 10 

Chuyển đổi địa chỉ (tt.) 

 Địa chỉ lệnh (instruction) và dữ liệu (data) có thể được chuyển đổi 

thành địa chỉ tuyệt đối tại các thời điểm 

 Compile time: nếu biết trước địa chỉ bộ nhớ của chương trình thì có thể 

kết gán địa chỉ tuyệt đối lúc biên dịch. 

 Ví dụ: chương trình .COM của MS-DOS, phát biểu assembly 

           org xxx 

 Khuyết điểm: phải biên dịch lại nếu thay đổi địa chỉ nạp chương trình 

 Load time: tại thời điểm biên dịch, nếu chưa biết quá trình sẽ nằm ở đâu 

trong bộ nhớ thì compiler phải sinh mã khả tái định vị. Vào thời điểm 

loading, loader phải chuyển đổi địa chỉ khả tái định vị thành địa chỉ tuyệt 

đối dựa trên một địa chỉ nền (base address). 

 Địa chỉ tuyệt đối được tính toán vào thời điểm nạp chương trình  
phải tiến hành reload nếu địa chỉ nền thay đổi. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 11 

Sinh địa chỉ tuyệt đối 
   vào thời điểm dịch 

Symbolic 

addresses 

PROGRAM 

JUMP  i 

LOAD  j 

DATA 

i 

j 

Source code 

Absolute 

addresses 

1024 

JUMP  1424 

LOAD  2224 

1424 

2224 

Absolute load module 

Compile Link/Load 

Physical memory 

addresses 

1024 

JUMP  1424 

LOAD  2224 

1424 

2224 

Process image  

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 12 

Sinh địa chỉ thực 
  vào thời điểm nạp 

Relative  

(relocatable) 

addresses 

0 

JUMP  400 

LOAD  1200 

400 

1200 

Relative 

load module 

Symbolic 

addresses 

PROGRAM 

JUMP  i 

LOAD  j 

DATA 

i 

j 

Source code 

Compile Link/Load 

Physical memory 

addresses 

1024 

JUMP  1424 

LOAD  2224 

1424 

2224 

Process image  

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 13 

Chuyển đổi địa chỉ 

 Execution time: nếu trong khi thực 
thi, process được di chuyển từ vùng 
nhớ này sang vùng nhớ khác thì việc 
chuyển đổi địa chỉ được trì hoãn đến 
thời điểm thực thi 

 CPU tạo ra địa chỉ luận lý cho 
process 

 Cần sự hỗ trợ của phần cứng cho 
việc ánh xạ địa chỉ. 

 Ví dụ: dùng thanh ghi base và 
limit,… 

 Sử dụng trong đa số các OS đa 
dụng (general-purpose) trong đó có 
các cơ chế swapping, paging, 
segmentation 

Relative (relocatable) 

addresses 

0 

JUMP  400 

LOAD  1200 

400 

1200 

MAX = 2000 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 14 

Dynamic linking 

 Quá trình link đến một module ngoài (external module) 
được thực hiện sau khi đã tạo xong load module (i.e. file 
có thể thực thi, executable) 

 Ví dụ trong Windows: module ngoài là các file .DLL còn trong Unix, 
các module ngoài là các file .so (shared library) 

 Load module chứa các stub tham chiếu (refer) đến routine 
của external module. 

 Lúc thực thi, khi stub được thực thi lần đầu (do process gọi routine 
lần đầu), stub nạp routine vào bộ nhớ, tự thay thế bằng địa chỉ 
của routine và routine được thực thi. 

 Các lần gọi routine sau sẽ xảy ra bình thường 

 Stub cần sự hỗ trợ của OS (như kiểm tra xem routine đã 
được nạp vào bộ nhớ chưa). 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 15 

Dynamic Linking 

main: 
  ... 
  call printf 

0x400012
34 printf: 

  ... 
  ret    

0x080480
00 

program 

libc 

printf: 
  call GOT[5] 

  ... 
  [5]: dlfixup 
  ... 

PLT 
(r/o code) 

GOT 
(r/w data) 

dlfixup: 
  GOT[5] = &printf 
  call printf 

Fig from M. Rosenblum 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 16 

Ưu điểm của dynamic linking 

 Các external module là thư viện cung cấp các tiện ích của 
OS. Chương trình thực thi có thể dùng các phiên bản khác 
nhau của external module mà không cần sửa đổi, biên 
dịch lại. 

 Chia sẻ mã (code sharing): chỉ cần nạp external module 
vào bộ nhớ một lần. Các process dùng external module 
này chia sẻ đoạn mã của external module  tiết kiệm 
không gian nhớ và đĩa. 

 Dynamic linking cần sự hỗ trợ của OS để kiểm tra xem 
một thủ tục nào đó có thể được chia sẻ giữa các process 
hay là phần mã của riêng một process (bởi vì chỉ có OS 
mới có quyền thực hiện việc kiểm tra này). 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 17 

Dynamic loading 

 Chỉ khi nào cần được gọi đến thì một thủ tục mới được 
nạp vào bộ nhớ chính  tăng độ hiệu dụng của bộ nhớ 
(memory utilization) bởi vì các thủ tục không được gọi đến 
sẽ không chiếm chỗ trong bộ nhớ 

 

 Rất hiệu quả trong trường hợp tồn tại khối lượng lớn mã 
chương trình có tần suất sử dụng thấp, không được sử 
dụng thường xuyên (ví dụ các thủ tục xử lý lỗi)  

 

 Quá trình tự điều khiển dynamic loading. 

 Hệ điều hành cung cấp một số thủ tục thư viện hỗ trợ. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 18 

Kỹ thuật overlay 

 Tại mỗi thời điểm, chỉ giữ lại trong bộ nhớ những 
lệnh hoặc dữ liệu cần thiết, giải phóng các 
lệnh/dữ liệu chưa hoặc không cần dùng đến. 

 Kỹ thuật này rất hữu dụng khi kích thước một 
process lớn hơn không gian bộ nhớ cấp cho 
process đó. 

 Quá trình tự điều khiển việc overlay (có sự hỗ trợ 
của thư viện lập trình) 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 19 

Kỹ thuật overlay (tt.) 

Pass 1                     70K 

Pass 2                     80K 

Symbol table           20K 

Common routines   30K 

Assembler 

Total memory 

available = 150KB 

symbol 

table 
20K 

common 

routines 
30K 

overlay 

driver 
10K 

pass 1 pass 2 

80K 70K 

Đơn vị: byte 

Nạp và thực thi 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 20 

Cơ chế swapping 

 Một process có thể tạm thời bị swap ra khỏi bộ nhớ chính 
và lưu trên bộ nhớ phụ. Khi thích hợp, process có thể 
được nạp lại vào bộ nhớ để tiếp tục thực thi. 

Swapping policy: hai ví dụ 

 Round-robin: swap out P1 (vừa tiêu thụ hết quantum 
của nó), swap in P2 , thực thi P3 ,… 

 Roll out, roll in: dùng trong cơ chế định thời theo độ 
ưu tiên (priority-based scheduling) 

 Process có độ ưu tiên thấp hơn sẽ bị swap out 
nhường chỗ cho process có độ ưu tiên cao hơn vừa 
đến. 

 Hiện nay, ít hệ thống sử dụng cơ chế swapping trên 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 21 

Minh họa cơ chế swapping 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 22 

Mô hình quản lý bộ nhớ 

 Trong chương này, mô hình quản lý bộ nhớ là một mô 
hình đơn giản, không có bộ nhớ ảo. 

 Một process phải được nạp hoàn toàn vào bộ nhớ thì mới 
được thực thi (ngoại trừ khi dùng kỹ thuật overlay). 

 Các cơ chế quản lý bộ nhớ sau đây rất ít (hầu như không 
còn) được dùng trong các hệ thống hiện đại 

 Phân chia cố định (fixed partitioning) 

 Phân chia động (dynamic partitioning) 

 Phân trang đơn giản (simple paging) 

 Phân đoạn đơn giản (simple segmentation) 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 23 

Phân mảnh 

 Phân mảnh ngoại (external fragmentation) 

 Kích thước không gian nhớ còn trống tuy đủ lớn để thỏa mãn một 
yêu cầu cấp phát, nhưng không gian nhớ này lại không liên tục 

 Có thể dùng kết khối (compacting) để gom lại thành vùng nhớ liên 
tục. 

 

 Phân mảnh nội (internal fragmentation) 

 Kích thước vùng nhớ được cấp phát lớn hơn vùng nhớ yêu cầu. 

 Ví dụ: cấp một khoảng trống 18.464 byte cho một  process yêu 
cầu 18.462 byte. 

 Thường xảy ra khi bộ nhớ thực được chia thành các khối kích 
thước cố định (fixed-sized block) và các process được cấp phát 
theo đơn vị khối. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 24 

Phân mảnh nội  

operating 

system 

(used) 

Yêu cầu kế tiếp là 

18.462 bytes 

Hole kích thước 

18.464 bytes 
Cần quản lý khoảng 

trống 2 bytes 

OS sẽ cấp phát hẳn khối 18.464 bytes cho 
process  dư ra 2 bytes không dùng. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 25 

Fixed partitioning 

 Khi khởi động hệ thống, bộ nhớ 
chính được chia thành nhiều phần 
cố định rời nhau, gọi là các 
partition, có kích thước bằng nhau 
hoặc khác nhau 

 Process nào có kích thước nhỏ hơn 
hoặc bằng kích thước partition thì có 
thể được nạp vào partition đó. 

 Nếu process có kích thước lớn hơn 
partition thì phải dùng kỹ thuật 
overlay. 

 Nhận xét 
 Không hiệu quả do bị phân mảnh 

nội: một chương trình dù lớn hay 
nhỏ đều được cấp phát trọn một 
partition. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 26 

Chiến lược placement 

 Trường hợp partition có kích thước bằng 
nhau 

 Nếu còn partition trống  process mới sẽ 
được nạp vào partition đó 

 Nếu không còn partition trống, nhưng trong 
đó có process đang bị blocked    swap 
process đó ra bộ nhớ phụ nhường chỗ cho 
process mới. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 27 

Chiến lược placement (tt.) 

 Trường hợp partition có kích 
thước không bằng nhau: giải 
pháp 1 

 Gán mỗi process vào 
partition nhỏ nhất đủ chứa 
nó 

 Có hàng đợi cho mỗi partition  

 Giảm thiểu phân mảnh nội 

 Vấn đề: có thể có một số 
hàng đợi trống (vì không có 
process với kích thước tương 
ứng) và hàng đợi dày đặc 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 28 

Chiến lược placement (tt.) 

 Trường hợp partition có 
kích thước không bằng 
nhau: giải pháp 2 

 Chỉ có một hàng đợi 
chung cho mọi 
partition  

 Khi cần nạp một 
process vào bộ nhớ 
chính  chọn 
partition nhỏ nhất còn 
trống và đủ chứa nó 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 29 

Dynamic partitioning 

 Số lượng và vị trí partition không cố định và partition có thể có kích 
thước khác nhau 

 Mỗi process được cấp phát chính xác dung lượng bộ nhớ cần thiết 

 Gây ra hiện tượng phân mảnh ngoại 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


BK 
TP.HCM 

Khoa Khoa học & Kỹ thuật Máy tính 30 

Chiến lược placement khi dynamic 
partitioning 

 Dùng để quyết định cấp phát 
khối bộ nhớ trống nào cho một 
process 

 Mục tiêu: giảm chi phí  
compaction 

 Các chiến lược placement 

 Best-fit: chọn khối nhớ trống 
nhỏ nhất  

 First-fit: chọn khối nhớ trống 
phù hợp đầu tiên kể từ đầu bộ 
nhớ 

 Next-fit: chọn khối nhớ trống 
phù hợp đầu tiên kể từ vị trí cấp 
phát cuối cùng 

 Worst-fit: chọn khối nhớ trống 
lớn nhất 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

