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Abstract

The main goal of this work is to present detailed solutions of exercises that have been sub-
mitted to students of the course Coding, cryptography and cryptographic protocols, given
by prof. RNDr. Jozef Gruska, DrSc. in 2006 as homeworks. This way a handbook of solved
exercises from coding theory and cryptography is created. Ahead of each set of new exer-
cises we include main concepts and results from the corresponding lecture that are needed
to solve exercises.
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Introduction

The main goal of this work is to present detailed solutions of exercises that have been sub-
mitted to students of the course Coding, cryptography and cryptographic protocols, given
by prof. RNDr. Jozef Gruska, DrSc. in 2006 as homeworks. The authors of exercises are Mgr.
Lukés Bohéa¢, RNDr. Jan Bouda, Ph.D., Mgr. Ivan Fialik and Mgr. Josef Sprojcar.

This way we create a handbook of solved exercises from coding theory and cryptography
that could be useful to the future students of the above course. Ahead of each set of exercises
we include main concepts and results from the corresponding lecture that are needed to
solve exercises. The main source of solutions presented here are solutions submitted by the
students of the above course. The solutions were adopted and/or modified to achieve a
uniform presentation of the exercises and of their solutions.

For some of the exercises we present not only one, but several solutions in the case suf-
ficiently different approaches have been used in the submitted solutions. Some of the solu-
tions are newly created. The authors of solutions are cited. The solutions, where no author is
stated, were created or submitted by myself.

Ciphers and codes have been a part of human history since the time of Egyptian pharaohs.
They arose from the requirement to protect secrets and messages against aliens and enemies.
People were trying to protect their own secrets, as hard as they were trying to discover se-
crets of others. Their competition led up to invent better and better ciphers and codes that
cannot be so easily broken through. And this is how the cryptography progresses till now:
code makers are inventing new more sophisticated and secure ciphers and codes and code
breakers try to crack them. The struggle between the code makers and the code breakers
stood in the background of various historical events — it decided battles, revolts and human
lives.

Today, encipherment, coding and authentication are an inseparable part of our daily life.
Therefore, it is very important to know the history of ciphers, how they work and where
are their weaknesses. The basics can be obtained in the course Coding, Cryptography and
Cryptographic Protocols, taught at the Faculty of Informatics every year by prof. RNDr. Jozef
Gruska, DrSc.

The bibliography I used as a source of information for my work and which can be useful
for everyone interested in more detailed information about studied problems is listed at the
end of the work. Simultaneously, there are listed some interesting web pages, where can be
found more about problems, as well as some useful tools for solving exercises.
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Chapter 1

Basics of Coding Theory

Coding theory has developed methods of protecting information against noise. Without cod-
ing theory and error correcting codes, there would be no deep space pictures, no satellite TV,
no CD, no DVD and many more. ..

1.1 Definition of Code

A code C over an alphabet ¥ is a subset of X* (C' C ¥*). A g-ary code is a code over alphabet
of ¢ symbols. A binary code is a code over the alphabet {0, 1}.

The Hamming distance h(z,y) of words z, y is the number of positions, where words x
and y differs. The properties of Hamming distance are following:

1. h(zyy)=0ez=y
2. h(z,y) =h(y,x)
3. h(z,z) <h(z,y) + h(y, 2)
An important parameter of codes is their minimal distance h(C).
h(C) = min{h(z,y)|z,y € C,x # y},

h(C) is the smallest number of bits needed to change one codeword into another. Code C
can detect up to s errors if h(C) > s+ 1. Code C' can correct up to ¢ errors if h(C) > 2t + 1.

An (n, M, d)-code C'is a code such that n is the length of codewords, M is the number of
codewords and d is the minimum distance of C. A good (n, M, d) code has small n and large
M and d.

The main coding problem is to optimize one of the parameters n, M, d for given values
of the other two. A,(n, d) is the largest M such that there is a g-ary (n, M, d)-code. It holds
that

1. Agn1)=¢

2. Ay(n,n)=gq

1.2 Equivalence of Codes

Two g-ary codes are equivalent if one can be obtained from the other by a combination of
following operations:

1.  permutation of the positions of the code;
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1. BAsIics OF CODING THEORY

2. permutation of symbols at the fixed positions.

Any g-ary (n, M, d)-code is equivalent to an (n, M, d)-code which contains the zero code-
word.

If d is odd then a binary (n, M, d)-code exists if and only if a binary (n + 1, M, d + 1)-code
exists. That means that if d is odd then As(n,d) = A2(n + 1,d + 1) and if d is even then
AQ(n,d) = AQ(TL - l,d - 1).

1.3 Properties of Code

F} is a set of all words of length n over alphabet {0,1,...q — 1}. For any codeword u € F}
and any integer r > 0 the sphere of radius  and center u is defined as

S(u,r) = {v € F/ld(u,v) <r}.

A sphere of radius r in F,0 <r <ncontains

T n ;
> (1)@
=0
words.
The sphere packing bound: If C' is a g-ary (n, M, 2t + 1)-code, then

M - Z<>q1 (1.1)

A code which achieves the sphere packing bound (a code that satisfies the equality) is called
a perfect code.
Singleton’s bound: If C'is a g-ary (n, M, d)-code, then

M < g"—dtt, (1.2)

Gilbert-Varshamov’s bound (lower bound): For a given d < n, there exists a g-ary
(n, M, d)-code with

M q" 13
S -1y (9

and therefore

Ay(n,d) > ¢ -
( )>Z?0()<q—1)

1.4 Entropy

Let X be a random variable (source) which takes a value x with probability p(x). The entropy
of X is defined by

Zp )lgp(z (1.4)
and it is considered to be the information content of X. Shannon’s noiseless coding theorem

says that in order to transmit n values of X we need to use nS(X) bits. More exactly, we
cannot do better and we should reach the bound n.S(X) as close as possible.
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1. BAsIics OF CODING THEORY

1.5 Exercises

Exercise 1.1

Determine A,(n,d) and write or describe the corresponding code that achieves the upper
bound.

1.  Ax8,d)ford=1andd=2.
2. As(n,4)forn=4,n=>5and n =6.

3. Ay4,3)forg=2andq=3.

Solution 1.1.1
1. A2(8,d)

(@) d=1.A45(8,1) =28 Code C contains all binary words of the length eight.
(b) d = 2. A3(8,2) = Ay(7,1) = 27. Code C contains all binary words of the length
seven with the parity bit added.
2. A2 (TL, 4)

(@) n=4. Ay(4,4) =2.C = {0000,1111}.

(b) n = 5. Ay(5,4) = 2 because C contains the word 00000, then it can contain only
one word with four or five ones. C' cannot contain any other word because of the
given minimum distance d = 4.

() n =6.A45(6,4) = Ay(5,3). We know from the first lesson, that A3(5,3) = 4 and
one of the corresponding codes is the code C3 = {00000,01101,10110,11011}.
(6,4,4)-codes exist and come from the code C3. There is, for example, the code
C = {000000,011011,101101,110110} (it is the code C3 with a parity bit added).

3. A,4,3)

(@) g = 2. A2(4,3) = 2. Indeed, because 0000 € C, there is no word in C with less
then three ones and there can be only one word with three or four ones in C. One
of Ay(4,3)-codes is code C = {0000,0111}.

(b) ¢ = 3. A3(4,3) < ¢" 9! = 32 according to Singleton’s bound. And we can find
a ternary (4,9,3)-code C = {0000,0111,0222,1012, 1120, 1201, 2021, 2102, 2210}
that reaches the Singleton’s bound (1.2).

Exercise 1.2

Let ¢ > 1. What is the relation (<, > or =) between
1. A4(2n,d)and Ay(n,d)
2. Ay(n,d)and Ay(n + 2,2d)

3. Ag(n, 2d — 1) and Ag(n + 1, 2d)
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1. BAsIics OF CODING THEORY

Solution 1.2.1

1. Aq(2n,d) > Ay(n,d)
Let A;(2n,d) = My and A4(n,d) = M,. We need to show that for each ¢, n and d it holds
My > M. To do that, we need to determine which code contains more codewords. We
compute it using the Singleton bound (1.2), page 5:

2n—d+1
Ml S q noat )

We can see that

2n—d+1 — n n—d+1 > qn—d+1

q q4q

and therefore A,(2n, d) contains ¢" codewords more then A,(n, d) and hence A4,(2n, d) >
Ay(n,d).

We can see that if we have two codes of different length with the same minimum dis-
tance, the code with longer codewords contains more codewords then the other code.

2. Ay(n,d)and A,(n + 2,2d) are incomparable as we can see in the following examples:
ifg=2,n=2andd=1then A3(2,1) = 22 < Ay(4,2) = As(3,1) = 23,
ifn=2and d=2then 4,(2,2) =q¢=A4,(4,4) =g¢q,
if g=2,n=4and d = 2then A5(4,2) = A5(3,1) = 2 > Ay(6,4) = Ay(5,3) = 4.

3. As(n,2d — 1) = As(n + 1,2d) Because
2d — 1is odd, we have A3(n,2d — 1) = As(n+1,(2d — 1) + 1) = A2(n + 1,2d).

Exercise 1.3

Consider the binary erasure channel which has two inputs (0 or 1) and three outputs (0, 1
or ?). The symbol is correctly received with probability 1 — p and erased with probability p.
Erasure is indicated by receiving the symbol "?’.

1.  Consider the nearest neighbour decoding strategy and the code
C = {011,101, 110,000}

Calculate the probability that the received word is decoded incorrectly and the proba-
bility of error detection.

2. Consider a code C with the minimum distance h(C) = d. How many erasures can the
code C' detect and correct?

3. Consider a binary channel that has both erasures and errors. Give the lower bound for

the minimum Hamming distance for a code capable of correcting all combinations of
e erasures and t errors.
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1. BAsIics OF CODING THEORY

Solution 1.3.1

1.  The received word is decoded incorrectly only if it contains two or more question
marks. The probability of an erroneous decoding is:

3-p*(1—p)+p* =3p* - 3p° + p* = 3p* — 2p°

We can detect every erasure because the question mark is not an element of the code
alphabet. And we can correct one erasure in the codeword. So the probability that the
received word is decoded correctly is:

(1-p)3+3-p-(1—p)? = 1-3p+3p*> —p>+3p—6p* +3p> = 1-3p* +2p> = 1— (3p> —2p?)

2. Code C can detect every erasure — in this case we receive a symbol that cannot be sent.
Code C can correct up to d — 1 erasures in a codeword. When receiving a word with
e < d — 1 erased symbols, we delete positions where we received a question mark
in all codewords of C. This way we get a new code C’. The length of the codewords
decreases from n to n — e and the d(C') decreases to d — e > 1. That means, that there
is still the Hamming distance h(xz,y) > 1 of each two words z, y of the code C’. So we
can decode the received word correctly.

3. The minimum distance for a code C' capable of correcting all combinations of e erasures
and t errors is d(C') = 2t + e + 1. When there are some (less then or equal to e) erased
symbols, we transform the code C to code C’ the same way as it was described above
and d(C") > 2t + 1. According to the definition of Hamming distance, we can correct
up to t errors in the codeword.

Exercise 1.4

You are given two dices with 6 faces. Design a binary Huffman code for encoding the sum
of two dices. Compare efficiency of the proposed code with Shannon’s entropy.

Solution 1.4.1

All the possible sums of two dices and their probabilities are written in the Table 1.1.

At the Figure 1.1 there you can see how to design a Huffman code for the given data. (For
short, there is written 1 there instead of 1/36 and so on.)

In the Table 1.2, there are written the possible values and their codes. We can see, that it
is a prefix code.

We calculate the Shannon’s entropy (1.4) as follows:

Zp g p(x) ~ 3.2744

By Shannon’s theorem, we need 3.2744 bits in average per message. Now, we calculate the
efficiency E of our code:

3444+5+6+5+4 243 +2 1+1
E = Zp )code(z)| = 3 - 2= ;; o +4'%+5-%z3.3056

By using our code we need circa 0.03 bits per message (sum of two dices) more.
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1. BAsIics OF CODING THEORY

2 [1/36
3 [2/36
4 [3/36
5 [ 4/36
6 | 5/36
7 16/36
8 [5/36
9 [4/36
10 | 3/36
11 | 2/36
12 [ 1/36

Table 1.1: Messages and their probabilities

76 6 6 7 8 10 11 15 21 36
! \ \
6: 5 5 506 0\ 7 8\10\11\1<P
8 5 5 5\.5\.6\7\\\8 10
5 4 4 s 1 st she 7
\ \ |
9. 4 4 O T -
N\ | |
g7l el D sy gl sl
10: 3 3 ‘\,‘4‘\4+
3 2 2 3}

_.
o h
=
o |t
¢

Figure 1.1: Design of the Huffman code

00101
1000
000
011
110
111
101
010
1001
0011
12 | 00100

O | [ J| | T | W N

[
e}

—_
—_

Table 1.2: Messages and their codes

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. BAsIics OF CODING THEORY

Exercise 1.5

You have found the belt with an ornament displayed at the Figure 1.2. It seems that the
ornament is related to coding theory. Decode the hidden message.

0] O 000 0O 00 0000 (o]e]
00000 00 O O 0000 0000 O

000 O e]e] o000 O 000 000
0 o 000 000 00 00 000 0

Figure 1.2: Ornament belt

Solution 1.5.1 by Lukas Bohat

NRZI (Non Return to Zero, Inverted) signal encoding was used. A change of the level en-
codes 1, staying on the level encodes 0. The bit-string encodes the message CODE NRZI (8bit
ASCII code) as you can see at the Figure 1.3.

0 0 000 O O © 000 O 00
00000 0O O o 0 0000 0000 0

01000011 01001111 01000100 01000101
C 0 D E

000 © 00 00 O O o0 O 000
0 0 00 O 000 00 0O 000 0

01001110 01010010 01011010 01001001
N R Z I

Figure 1.3: Ornament belt — the hidden message

Exercise 1.6

A single character was encoded into the following long message. Decode.

012221102011200210110121222012001211122201

Solution 1.6.1

The message is 42 bits long and there should be hidden only one single character. Therefore
there is a strong probability that it is a graphic cipher. Our task is to form the message into
a table and look for the hidden letter. The character is formed by twos when we put the
message into a table with six rows and seven columns. And here we can see the letter G:

10
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1. BAsIics OF CODING THEORY

01 2 2 2 11
0 2011 20
0 210110
1 21 2 2 2 0
1 2 0 01 2 1
11 2 2 2 01

The letter G is better to see when replacing the 1s and 0s by spaces:

2 2 2

NN NN

11
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Chapter 2

Linear Codes

Linear codes are important because they have very concise description, very nice properties,
very easy encoding and in principle quite easy decoding.

2.1 Definition of Linear Code

Linear codes are special sets of words of length n over an alphabet {0,...,q — 1} where ¢ is
a power of prime.
A subset C' C V(n, q) is called a linear code if

1. forall u,v € C:u+v € C;
2. forallue C,ae GF(q):au e C,

where GF'(q) is Galois field, the set {0,...,¢q — 1} with operations + and - taken modulo ¢,
where ¢ is a prime.

We can also say thata subset C' C V' (n, ¢) is a linear code if one of the following conditions
are satisfied:

1.  Cisasubspace of V(n,q);
2. sum of any two codewords from C'is in C' (for the case ¢ = 2).

If C is a k-dimensional subspace of V' (n, ¢) then C'is called [n, k]-code and C consists of
¢* codewords.

If S is a set of vectors of a vector space then (S) is the set of all linear combinations of
vectors from S. For any subset S of a vector space the set (.5) is a linear space that consists of
the following words:

° the zero word;
° all words from S;
° all sums of two or more words from S.

The weight of a codeword x denoted as w(x) is the number of nonzero entries of z. If
z,y € V(n,q) then the Hamming distance h(z,y) = w(z — y). If C is a linear code then
the weight of code C, denoted as w(C), is the smallest weight of all the weights of nonzero
codewords from C' and w(C) = h(C).

If C' is a linear [n, k]-code then it has a basis of k codewords.

A k x n matrix whose rows forms a basis of a linear [n, k]-code (subspace) C is said to be
a generator matrix of C.

12

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

2. LINEAR CODES

2.2 Equivalence of Linear Codes

Two linear codes over GF(q) are equivalent if one can be obtained from the other by the
following operations:

1.  permutation of the positions of the code;

2. multiplication of symbols appearing in a fixed position by a nonzero scalar.

Two n x k matrices generate equivalent linear [n, k]-code over GF'(q) if one matrix can be
obtained from the other by a sequence of the following operations:

1.  permutation of the rows;

2 multiplication of a row by a nonzero scalar;

3. addition of one row to another;

4.  permutation of columns;

5. multiplication of a column by a nonzero scalar.

2.3 Dual Code

If C is a linear [n, k]-code then the dual code of C, denoted as C*, is defined by
Ct={veVn, gl -u=0ifuc C}.

We can also say that if C' is a linear [n, k]-code with generator matrix G, then for all
v € V(n,q) holds
veCt & uG" =0,
where G denotes the transpose of the matrix G.
If C is a linear [n, k]-code over GF(q) then the dual code C* is a linear [n,n — k]-code.
A parity check matrix H of a linear [n, k]-code C is a generator matrix of code C*.
If H is a parity check matrix of C then

C={xeV(n,q)zH" =0}

and therefore any linear code is completely specified by its parity check matrix. The rows of
a parity check matrix are parity checks on codewords.

If G = [I}|A] is the standard form of generator matrix of a linear [n, k]-code C, then the
parity check matrix for C'is H = [~ AT|I,,_].

2.4 Encoding with Linear Codes

Encoding of a message u = (uy,...,u;) with a linear code C with a generator matrix G is
vector — matrix multiplication:

k
u-G = g W;Ty,
i—1

where r1, ...,y are rows of the matrix G.
If a codeword x = x1,...,z, is sent and the word y = ¥, ...,y, is received then e¢ =
y—x =ey,...,eyissaid to be the error vector. To decode y, it is necessary to decide which z

was sent or which error e occurred.
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2. LINEAR CODES

2.5 Decoding of Linear Codes
Suppose that C'is a linear [n, k|-code over GF'(¢q) and a € V (n, ¢q). The set
a+C={a+z|lzeC}

is called a coset of C'in V (¢, n).

If C is a linear [n, k]-code over GF'(q), then every vector of V (n, ¢) is in some coset of C.
Every coset contains exactly ¢" words and every two cosets are either disjoint or identical.
Each vector having the minimum weight in a coset is called a coset leader.

Nearest neighbour decoding strategy: A word y is decoded as a codeword of the first
row of the column in which y occurs.

Let C be a binary [n, k]-code, and for i = 0, 1,...,n let a; be the number of coset leaders
of weight i. The probability P....(C) that a received vector after decoding is the codeword
which was sent is given by

Pcorr(c) = Z O‘ipi(l - p)n—i'
=0

The decoder will fail to detect transmission errors if the received word y is a codeword
different from the sent codeword xz. Let C be a binary [n, k]-code and A; be the number of
codewords of C' of weight i. The probability P, jetected(C) that a an incorrect codeword is
received is

Pundetected(c) = Z Azpl(l - p)nii‘
1=0

If H is a parity check matrix of a linear [n, k]-code C, then S(y) is called the syndrom of
y, for each y € V(n, ¢). The syndrom can be calculated as follows:

S(y) =yH". (2.1)

Two words have the same syndrom if and only if they are in the same coset.
Syndrom decoding: When a word y is received, compute S(y), locate the coset leader !
with the same syndrom and decode y as y — [.

2.6 Hamming Code

An important family of simple linear codes are Hamming codes. Let r be an integer and H be
arx(2"—1) matrix whose columns are nonzero distinct words from V' (r, 2). The code having
H as its parity check matrix is called binary Hamming code and denoted as Ham(r, 2).

The Hamming code Ham(r,2) is a linear [2" — 1,2" — 1 — r]-code, it has the minimum
distance 3 and it is a perfect code. Coset leaders are words of weight less then or equal to 1.
The syndrom of the word z with one at the ith position and zeroes otherwise is the transpose
of the ith column of matrix H.

Decoding the Hamming codes for the case that columns of H are arranged in the order
of increasing binary numbers the columns represent: when received word y compute S(y),
if S(y) = 0 then y is assumed to be the codeword sent, if S(y) # 0 then assuming a single
error, S(y) gives the binary position of the error.
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2. LINEAR CODES

2.7 Properties of Linear Code

Singleton bound: If C is a linear (n, k, d)-code, then
n—k>d-1.

If v is a codeword of a linear code C' of weight w(u) = s, then there is a dependence rela-
tion among s columns of any parity check matrix of C. Otherwise, any dependence relation
among s columns of a parity check matrix of C' yields a codeword of weight s in C.

If C'is a linear code then C has minimum weight d if d is the largest number such that
every d — 1 columns of any parity check matrix of C' are independent.

A linear (n, k, d)-code is called maximum distance separable (MDS code) if d = n —k+ 1.
MDS codes are codes with maximal possible minimum weight.

2.8 Exercises

Exercise 2.1

Decide which of the following codes is linear. Find a generator matrix in standard form for
linear codes.

1.  5-ary code C; = {21234, 42413, 13142, 34321, 00000}

2. 6-ary code Cy = {201,202, 231,402, 403, 432, 003, 004, 033, 204, 205, 234,
405, 400, 435,000, 001, 030, 404, 005, 200, 401, 002, 203, 433, 034, 235, 430,
031,232, 035,230, 431, 032, 233, 434}

3. Ternary code C = {000,201, 111,021,012, 120, 102, 222, 210}

Solution 2.1.1

1. 5-ary code Cy = {21234,42413, 13142, 34321, 00000} is linear code over GF'(5) because
foreachu,v € Cy : u+v € C} and for each a € GF(5),u € Cy : au € C;. The generator

matrix G is:
21 2 3 4
4 2 413
1 3142]~(13142)=G
3 43 21
00 00O
2. 6-ary code (5 is not a linear code because 6 is not a power of prime.

3.  Ternary code C5 = {000,201, 111,021,012, 120, 102, 222, 210} is linear code over GF(3)
because for each u,v € C5 : u+ v € C3 and for each a € GF(3),u € C5 : au € C5. The
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generator matrix G is:

N == OO DN O
H N ONRFR DN~ OO
O ON === O

N\

o =

=)

N DN

~—_

Il

D

Exercise 2.2

Let C be a binary code of length 6 such that for every z1z9z3 € {0,1}3 : 212023747576 € C if
and only if x4 = x1 + 22, 5 = 22 + x3 and x¢ = z1 + x2 + x3. Show that C'is a linear code.
Find a generator matrix and a parity check matrix for C.

Solution 2.2.1 by Jifi Novosad

Consider binary code C of length 6 such that for every zimox3 € {0,1} : 212923247576 €
C < x4 = 21 + 22,25 = T2 + 23,6 = X1 + T2 + x3. In the next table are shown all the
codewords from the code C:

T1 T2 X3 | T1T2X3L4T5T6
0 O 0 000000
0 0 1 001011
0 1 0 010111
0 1 1 011100
1 0 0 100101
1 0 1 101110
1 1 0 110010
1 1 1 111001

Since C'is a binary code we have to prove thatVz,y € C: 2+y € C. Letx = 12223247576 €
C and y = y1y2y3yaysye € C. If

z=x+y=(r1+y1)(@2+y2)... (6 + yYs) = 212223242526
then we can see that
24 =T+ Ys=T1+T2+Y1 Y2 =21+ 22
25 =I5+ Ys = T2+ T3+ Y2+ Y3 =22+ 23

26 =26+ Y6 =21+ T2+ T3+ Y1 +Y2+ys=21+22+ 23

and that means that z € C and that the code C is linear.
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Code C consists of 8 codewords thus its dimension must be 3. The generator matrix for

code C'is:
00 0O0O0O0
001011
0 Lol 1 00101
01 1100
~10 1 011 1]=G
1 00101 001011
101110
110010
111001
The parity check matrix for code C is:
110100
H=10110 10
1 11001

Solution 2.2.2 by Martin Vejnar
Let B = {100101,010111,001011}. Then C = (B) because
Vi, Ts, x3.x1(100101) + 1’2(010111) + 1'3(001011) = (.%'1, T9,23,T1 + T2, Ty +T3,L1 + T2+ 1‘3).

The generator matrix for code C' is

o
[t
[

G =

o O =
O = O
— O
o =
—

— =

And the parity check matrix for code C'is

1101 0
H=10 11010
1 110 1

Exercise 2.3

Find examples of a linear self-dual code of length 3 and 4. If such code does not exist, prove
it.

Solution 2.3.1

There is no self-dual code C' of length 3 because C must be a [3, k]-code where k € {1,2,3}.
Code C+ must be a [3,3 — k]-code. But there is no k such that k = 3 — k.
The code C' = {0000, 1010,0101, 1111} is a self-dual code. The generator matrix for code

Cis:
1 010
G_<O 10 1)'

The parity check matrix H for code C is equal to matrix G. Because the generator matrix G-
for the dual code C is the parity check matrix for code C, we have G = H = G*. So we can
see that the code C'is self-dual.
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Exercise 2.4

Find a generator matrix and a parity check matrix for ISBN code.

Solution 2.4.1

The ISBN code is not a linear code unless we allow all position of the code to have a value
from Z;; — strictly, only the last digit can be X.

The ISBN code is a 11-ary code of length 10. We use it to encode massages of length 9, so
its dimension must be 9. Basically, encoding is a process of calculating the 10th position of
the given message so that the following equality is fulfilled:

10
szz =0 (mod 11)
i=1

We can see, that the generator matrix for ISBN code is:

@Q

I
= elelBolBeBolacBol S
O O OO OO o~ O
OO OO OO+ OOo
OO OO O+ O OO
OO OO R OO OO
O OO OO O oo
OO OO OO oo
O R O O O O o oo
_ O O O o O o o o
© 00~ O U i W N~

The parity check matrix is following:

H=(-1 -2 -3 -4 =5 —6 -7 -8 -9 1)=(10 9 8 7 6 5 4 3 2 1).

Exercise 2.5

Prove that a binary Hamming code H, is perfect.

Solution 2.5.1

According to the Corollary ”If C' is a linear code, then C' has minimum weight d, if d is the
largest number such that every d — 1 columns of any parity check matrix of C are indepen-
dent.” we can see, that the minimum distance d of H,. is 3. Because the columns of the parity
check matrix for a H, consists of all non zero distinct words from V'(r, 2), every two columns
are independent. When we have words 01...1, 10...0, 1...1 of length r, we can see that the sum
of the first and the second word is the third word. That means that not every 3 columns are
independent and therefore the largest d is 3.

The parity check matrix H for H, is a r x 2" — 1 matrix, hence the generator matrix for H,
isa2" —1—r x 2" —1—r+r matrix. That means that H, isa [2" — 1,2" — 1 — r]-code. Since
the dimension of the code H, is 2" — 1 — r, the number of codewords is 22" ~1~". We can say
that H, isa (2" — 1,22 ~1=" 3)-code.
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We know that a code is perfect if it achieves the sphere packing bound (1.1), page 5. That
means that the following equality must be satisfied:

Lo 1
92" 17 - 1y | 92t
<§ < Z, )(2 1)) 2
=0
And we have:

r 2" —1 2" —1 r r -
221r(< 0 )+< ) )(2_1)>:221r(1+27‘_1):221r,2T:221

Now it is obvious, that H, is a perfect code.

Exercise 2.6

Let C = {00000, 10001, 01010, 11011,00100,10101,01110,11111} be a binary linear code. List
all the cosets of C'. Compute a parity check matrix for C'. Use syndrom decoding to decode
words 00111 and 01011.

Solution 2.6.1

Code C' = {00000, 10001, 01010, 11011, 00100, 10101,01110, 11111} is a binary linear code be-
cause the sums of any two or more words from C falls into C'. The generator matrix G of

code C'is
00000
1 00 01
0 1.0 10 1 0 0 0 1
1 1 0 1 1
~ 101 01 0 =G
0O 01 0O 00100
1 01 01
01 1 10
1 1 1 11

The dimension of the code is 3 and the parity check matrix H of code C is
01010
i = <1 0 0 0 1) '

The cosets of code C' are following;:

00000 + C = {00000, 10001, 01010, 11011,00100,10101,01110, 11111}
e 00001+ C = {00001,10000,01011,11010,00101,10100,01111,11110}
e 00010 + C = {00010, 10011,01000,11001,00110,10111,01100, 11101}
e 00011+ C = {00011,10010, 01001, 11000,00111,10110,01101,11100}

There are no other cosets because there is only 2° binary words of length 5 and all of them
are listed above.

We determine the syndrom S(y) of word y as shown in (2.1), page 14. The syndromes of
coset leaders are following:
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coset leader /(z) syndrom z

00000 00
00001 01
00010 10
00011 11

Now, we should decode words 00111 and 01011 using the syndrom decoding strategy:
° Lety = 00111 then z = S(y) = 11. The sent word was y—I(z) = 00111—00011 = 00100.
° Lety = 01011 then z = S(y) = 01. The sent word was y—I(z) = 01011—00001 = 01010.

Exercise 2.7

Let C be a binary linear code. Show that either all the codewords of C' have even weight or
exactly half of the codewords have even weight.

Solution 2.7.1

Let v and v be two binary words form V' (r, 2). If w(u) and w(v) are both odd or both even,
the weight of their sum w(u + v) is even. If w(u) is even and w(v) is odd (or vice versa), the
weight of their sum w(u + v) is odd.

That means that if there is no word v € C with odd weight, all words from C' must have
even weight.

In case that there is a word v € C with odd weight, the sum = + u must fall into C for
each ¢ € C because C is a linear code. Now, we can define a relation « over the codewords
from C so that (z,y) € aif z + y = u. Since C is a binary code, « is symmetric relation, thus
(z,y) € a = (y,x) € a. Because w(u) is odd then one of w(z) and w(y) must be odd and the
other must be even. We can easily see that (z,y) € a only if x # y. In case that z = y then
x 4+ y =z + x = 0 which is contradiction because w(0) is not odd.

Because a is defined over all words from C, and two words are in relation « only if one is
even and the other is odd, we can see that exactly one half of the codewords has odd weight
and the other has even weight.

Solution 2.7.2 by Jifi Novosad

Let x, y be codewords. Then = + y is a codeword with ones in exactly those positions, where
x and y differ. If w(z) and w(y) are both even, then w(x + y) is even too (two words with
even number of ones can’t differ in an odd number of positions). By the same reasoning, we

get:

1. 2w(z) A2uw(y) = 2wz +y)
2. 2 fw(x) A2w(y) =2 fulz +y)
3. 2 jw(x) A2 Jw(y) = 2wz +y)

Now let us consider the three forms a generator matrix of a particular code can take (let k be
the dimension of the code):

) Firstly, all the vectors in the matrix can have even weight. From (1) we get that all the
generated vectors have even weight.
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° If exactly one of the vectors has odd weight, vector o, then the remaining k& — 1 vectors
generate a subspace E with 28! elements, whose weight is even, from (1). The coset
E + o has 287! elements with odd weight, from (2). The union of these two sets gives
us the whole subspace and exactly half the vectors has odd weight and the other half
has even weight.

o If there are more vectors of odd weight in the generator matrix, we can get the previous
case by choosing one odd vector and adding it to all the remaining odd vectors. From
(3) follows that there is only one vector with odd weight in the generator matrix.

Exercise 2.8

Let C' be a binary linear code of length n. Let ¢; denote the number of words of weight i in
C. Suppose that ¢, = 1. Show that ¢; = ¢,—; fori € {0,1,...,n}.

Solution 2.8.1 by Martin Vejnar

Let C be a binary linear code of length n. Let C; = {c € C|w(c) = i} be a set of codewords of
weight . It holds that ¢; = |C;|. The only possible codeword = of weight w(z) = nisz = 1™.
Since ¢, = 1, C,, = {z}. Because C'is a linear code, it is closed under addition and it holds
Ve € C.(c+ z) € C. It can be easily observed, that w(c + z) = n — w(c).

Now, we need to show that there is a bijective mapping for each 0 < ¢ < n.Let f; : C; —
C),—; be a mapping such that f;(¢) = ¢ + x. There is also a mapping k; : C;,—; — C; such that
ki(d) = d + x. We can see that f; and k; are bijective because f; o k; = id = k; o f;.
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Chapter 3

Cyclic Codes

Cyclic codes are of interest and importance because they posses rich algebraic structure that
can be utilized in a variety of ways. They have extremely concise specifications, they can be
efficiently implemented using shift registers. Many practically important codes are cyclic. In
order to specify a binary cyclic code with 2¥ codewords of length n it is sufficient to write
down only one codeword of length n.

3.1 Definition of Cyclic Code

A code C'is cyclic if
1.  Cisalinear code;
2. any cyclic shift of a codeword is also a codeword.

Comparing with linear codes, the cyclic codes are quite rare. For any field F' and any
integer n > 3 there are always the following trivial cyclic codes of length n over F*:

) Non information code (code consisting of just one zero codeword);

. Repetition code (code consisting of codewords o™ for each a € F);

. Single-parity-check code (code consisting of all codewords with parity 0);
. Non parity code (code consisting of all codewords of length n).

For some cases, there are no other cyclic codes then the four trivial cyclic codes.

3.2 Algebraic Characterization of Cyclic Codes
A codeword of a cyclic code is usually denoted as
agaq - .. 0p—1
and to each such a codeword is associated the polynomial
ao + a1 + asx® + -+ ap_z" L
A code C'is cyclic if C satisfies two conditions
1. a(x),b(z) € C = a(z)+bx) € C;

2. a(x)eC,r(xz) € R, =r(x)a(x)eC,
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where R, is a field such that R,, = F,[z]|/(z™ — 1), where F,[z] denotes the set of all polyno-
mials over GF(q).
For any f(z) € R, the set

(f(x)) = {r(z)f(2)|r(z) € Rn}

is a cyclic code generated by the polynomial f.
Let C be a non zero cyclic code in R,,. Then there exists unique monic polynomial g(x) of
the smallest degree such that

e C={g(x))
o g(x) is a factor of =™ — 1.

If for a cyclic code C'it holds
C = (9(2)),
then g(z) is called the generator polynomial for code C.

The task of finding all cyclic codes of given length n is equal to the task of finding all
factors of polynomial 2™ — 1.

3.3 Generator Matrix, Parity Check Matrix and Dual Code

Suppose C's a cyclic code of length n with the generator polynomial
9(x) =go+ gz +- + g’

Then dim(C') = n — r and the generator matrix G for C'is

g 91 92 -+ g 0 0 0 --- 0
0 g0 91 92 -+ g 0 0 - 0
G=|0 0 9 o 9 - g 0 -~ 0
00 - 0 0 - 0 go - gr

Let C be a cyclic [n, k]-code with the generator polynomial g(x) of order n—k. Polynomial
g(x) is a factor of ™ — 1. Hence
" —1=g(x)h(x)

for some polynomial h(x) of degree k. Polynomial h(z) is called the check polynomial of
code C.
Let C be a cyclic code over R,, with a generator polynomial g(x) and a check polynomial
h(x). Then any polynomial ¢(z) € R,, is a codeword of C'if ¢(x)h(x) =0 (mod 2" — 1).
Suppose C is a cyclic [n, k]-code with the check polynomial h(z) = hg + hiz + - - - + hgz¥,

then
1. a parity check matrix for code C'is
he hg_1 -+ ho O -+ 0
0 hg -+ hy hyg -+ O
H= . s
0 0 0 hyg ho
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2. C+isthe cyclic code generated by the reciprocal polynomial of h(z) :

h(z) = h + hp_1z + - + hoz*

3.4 Encoding with Cyclic Codes

Encoding using a cyclic code can be done by a multiplication of two polynomials —a message
polynomial and the generator polynomial of the cyclic code.

Let C be a cyclic [n, k]-code over any field F' with the generator polynomial g(z) = go +
g1z + - -+ + grx" of degree r = n — k. If a message vector m is represented by a polynomial
m(z) of degree k and m is encoded as

c=mG,
then the following relation between m(x) and ¢(z) holds

c(x) = m(x)g(z).

3.5 Hamming Code

Let r be a positive integer and H be a r x (2" — 1) matrix whose columns are distinct nonzero
vectors from V(r,2). Then the code having H as its parity check matrix is called binary
Hamming code and denoted as Ham(r,2).

The binary Hamming code Ham(r,2) is equivalent to a cyclic code.

If p(x) is an irreducible polynomial of degree r such that z is a primitive element of the
field F'[z]/p(z), then p(x) is called a primitive polynomial.

If p(z) is a primitive polynomial over GF'(2) of degree r, then the cyclic code (p(x)) is the
Hamming code Ham(r, 2).

3.6 Exercises

Exercise 3.1

Let us consider the following definition of equivalence of two binary codes: Two binary
codes are equivalent if and only if they can be transformed to each other by permutation of
positions and addition of a constant vector.

Is this definition correct? Prove or disprove.

Solution 3.1.1 by Luka3 Mojzis

The definition is correct. The standard definition of equivalence of two codes states that two
codes are equivalent if and only if one can be obtained from the other by permutation of
position and permutation of symbols appearing in a fixed position.

The first operation is the same in both definitions. The second operation, addition of
a constant vector, can be (for binary codes) transformed into permutation. If we want to
permute ith column, we add te every codeword vector v = (v1,va, ..., v, ..., v,) Where n is
the length of codeword and for i # j we have v; = 1 and v; = 0. Adding vector v to every
codeword we achieve the permutation of ith position.
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Exercise 3.2

If it holds that C ¢ C+ , we say that C' is weakly self-dual. If C is a weakly self-dual code,
show that every codeword has Hamming weight divisible by 3.

Solution 3.2.1 by Zdenek Kola#

This statement is not correct.
For example code C' = {000,011} has a dual code C* = {000, 011,111,100}. We can see
that C C C* but the only non zero codeword has Hamming weight w(011) = 2.

Exercise 3.3

Use the Plotkin bound and properties of A(n,d) to prove that A>(2d,d) < 4d.
Plotkin bound: Let C' be a binary code with minimum distance d and length n. If 2d > n
then

<2 |

Solution 3.3.1
First we need to show that A,(n,d) < ¢A,(n—1,d). Let A;(n,d) = M; and gA,(n—1,d) = M.
From the Singleton’s bound (1.2) (page 5) we have

—d+1
Ml < qn + ;
M2 < qqn—l—d—l-l — qn—d—H'

We can see that the values of M; are lower then ¢"~%*t!. Now, we need to determine the

minimal values of M;. To do that, we use the lower bound (1.3) (page 5):

n

q
M., = = -,
> ()@ — 1)
n—1
M, _ qq

S (=7

It is obvious that M, , < Mo
qAqy(n—1,d).

Let’s assume that ¢ = 2 and n = 2d. Then we have A3(2d,d) < 2A45(2d — 1,d). Because
2d > 2d — 1 we can use the Plotkin bound and we get

In total, we get that M; < M,, what is equal to Ay(n,d) <

main *

Ax(2d —1,d) < 2 {M‘ld_l)J = 2d.

When we put this two inequalities together we get

Ay(2d,d) < 245(2d — 1,d) < 4d.
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Exercise 3.4

Determine whether the following codes are cyclic. Explain your reasoning.

1.

2.

3.
4.

The ternary code C; = {0000, 1212,2121}
The ternary code Cy = {z|x € Z3 Aw(z) =0 (mod 3)}
The ternary code C3 = {x|r € Z} Ax1 + 22+ -+ + 25 =0 (mod 3)}

The 7-ary code Cy = {x|z € ZZ A Y2>_ iz; =0 (mod 7)}

Solution 3.4.1

1.

Ternary code C is cyclic code. Let ¢; = 0000, c2 = 1212 and ¢3 = 2121, then:

cl1+co=c,c1+C3=cC3,C2o+C3=1C,C+C=¢C3,C3+C3=Co
€] — C1,C2 — C3 — C2

Cr=(1-x+2%—2°

Ternary code C is not cyclic. For example, words 11100 and 00111 both fall into Cs,
because w(11100) = w(00111) = 0 (mod 3). Their sum must also fall into C5 in case it
is linear, but w(11100 + 00111) = w(11211) = 2 (mod 3). That is contradiction so code
(5 is not cyclic.

Ternary code Cs is a cyclic code. We know, that a code is cyclic, if it is a linear code and
if any cyclic shift of a codeword is also a codeword.

Firstly, let z = z1z2x32425 and y = y192y3y4ys be words from Cs. Then =1 + x2 +
23+ x4+ x5 = 0 (mod 3) and y1 + y2 + y3 + ya + y5 = 0 (mod 3), that means that
(x14+xo+a3+zs+a5)+(y1+y2+ys+ys+ys) = 0 (mod 3) and because of commutativity
and associativity of addition we get (x1+y1)+(x2+y2) +(23+y3) +(2a+ys) +(z5+y5) =
0 (mod 3). And so the word = +y = (1 + y1)(x2 + y2)(v3 + ¥3) (24 + y4) (x5 + y5) falls
into Cj.

Letx = z1x0x37475 be a word from code C3 and a be a scalar < 3. We have z1+xo+x3+
z4+2x5 =0 (mod 3) after multiplying this equality by a we get a(z1+zo+z3+24+25) =
a0 (mod 3) because of distributivity we get ax; + azx2 + axs + axs + axs =0 (mod 3)
hence the word az = (az1)(az2)(azs3)(azs)(axs) € Cs.

Secondly, let © = z1z2x32475 be a word from code C3, then 1 + 22 + 23 + x4+ 25 =0
(mod 3). And because of commutativity of addition we get x5 + 1 + 22 + 23+ 24 =0
(mod 3), that means that the word x5z 2923124 falls into Cj too.

The 7-ary code C} is not cyclic. We can easily see that the word 20001 is a codeword
from Cy because 2+ 0+ 0+ 0+ 5 = 0 (mod 7). If code Cj is cyclic, then any cyclic
shift of a codeword should be a codeword too. But the word 12000 is not a codeword
because 1 +4+0+0+0=5 (mod 7). Hence the code C4 cannot be a cyclic code.

Exercise 3.5

Let C1, C; be g-ary cyclic codes of length n with generator polynomials fi(x), f2(x). Show
that the code C3 = C; N Cy is also cyclic. Find its generator polynomial.
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Solution 3.5.1

Let x and y be words from C'5. That means that z,y € Cy and z,y € Cs. Because both C; and
(5 are cyclic, all cyclic shifts of x and y and their sums falls into C so as into C». Hence they
fall into C5 too. And that means that C's is a cyclic code too.

Let fi(x) and f2(x) be the generator polynomials of C; and Cy, then C; = (fi(z)) and
Co = (f2(x)). Weknow that (f(z)) = {r(z)f(z)|r(z) € Rn} hence: (fi(z)) = {r(z) f1(z)|r(z) €
R,} and (fa(x)) = {s(z)f2(x)|s(xz) € Ry} (multiplication is taken modulo ™ — 1) because
fi(z), f2(z) € R, there must be some r(z) = f2(z) and some s(x) = fi(x). That is the way
how we get the generator polynomial of Cs, it is the polynomial lem( fi(x), f2(x)) (modulo
" —1).

Exercise 3.6

1. Describe all binary cyclic codes of length 19.
2. How many different binary cyclic [65, 36] codes are there?

3. Isitpossible to find a binary cyclic [65, 20] code?

Solution 3.6.1

With the help of website http://www.quickmath.com/ [6] and its factorizing tool we can
get the following results:

1. There are only four trivial binary cyclic codes of length 19. Firstly, it is written in the
materials, secondly, 219 — 1 = (z + 1)(2!® + 27 + 216 4+ 2 4+ 2™ 4 213 4+ 212 4 21! +
210+ 29 + 28 + 27 + 25 + 25 + 2 + 23 + 2% + 2 + 1) so the according cyclic codes are:

. 1) = nonparity code

{

e (x4 1) = single-parity-check code
('8 + 217+ -+ + 2 + 1) = repetition code
(

o z'” — 1) = non-information code

2. The factors of polynomial 2%° —1 are (z+1)(x? + 23 + 22 + 2 +1) (212 + 28+ 27+ 20+ 2° +
p141) (2242042 T+ 2l + 2+ 22+ 1) (22 4+ 20+ 2% + 2B 2l a2t 2P+ 22+ 1) (a2t +
42T+ 25+t +1) (222t 42042 S 42T a2l 4 aS ot 4 a3 2t + 1),
The binary cyclic [65, 36]-code is generated by polynomial of degree 65 — 36 = 29 that
are factors of x5 — 1. Since 29 = 1 + 4 + 12 + 12 we have to choose two different
polynomials of degree 12, so there are (3) = 10 possibilities how can we choose them.

2
That means that there are 10 different binary cyclic [65, 36]-codes.

3. The factors of polynomial #%° — 1 are written above and we can see that we get all the
trivial cyclic codes, one [65, 61]-code, one [65, 60]-code, five [65, 53]-codes, five [65, 52]-
codes, five [65,49]-codes, five [65,48]-codes, ten [65,41]-codes, ten [65,40]-codes, ten
[65, 37]-codes, ten [65, 36]-codes, ten [65, 29]-codes, ten [65, 28]-codes, ten [65, 25]-codes,
ten [65, 24]-codes, five [65, 17]-codes, five [65, 16]-codes, five [65, 13]-codes, five [65, 12]-
codes, one [65, 5]-code and one [65, 4]-code. But there is no [65, 20]-code at all.
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Exercise 3.7

Consider the polynomial g(z) = 2® 4+ 2+ 1. Show that there is a cyclic code C of length 8 over
I3 such that g(z) is its generator polynomial. Find the generator polynomial of the code C*.

Solution 3.7.1

All cyclic codes of length 8 over field F; are generated by the factors of the polynomial 2® — 1.
If the polynomial g(x) = 2% + x + 1 is a factor of 2® — 1 then it generates a [8, 5]-cyclic code.

First, we need to factorize the polynomial 2% — 1: 2% — 1 = (z + 1)(z — 1) (22 + 2 — 1) (2* —
23 — 2 — 1). We can see that there are two different [8, 5]-codes, there are their generator

polynomials:
. (x+1)(2?+z—-1)=2%-2%2 -1
. (x—1D)(2?+z—-1)=22+2+1=g)

Now it is obvious that g(x) generates a cyclic code of length 8 over F3. Since 2% — 1 =
g(x)h(z), the check polynomial h(z) = (v +1)(z* — 23— —1) = 2% — 2® — 2% + 2 — 1. Hence
the code C* is generated by the reciprocal polynomial h(z) = —2° + 2% — 23 — 2% + 1.

Exercise 3.8

Decide correctness of the following statement. Prove your decision. Let C' be a code.
(chHt=c

Solution 3.8.1 by Lukas Moj#is

The statement is not generally correct. For example for code C' = {01}, C*+ = {00,10} and
then (C+)+ = {00,01} # C.

If C is a linear code then the statement is correct. We will show that if C C F™ is a k-
dimensional code and if C+ C F" is its dual code and if G is a generator matrix for C'. Then
C=(ChHt

Let g : F™ — F* is a linear map defined by the k x n generator matrix G of code C.
Observe that a vector € F" obeys g(x) = 0 if and only if it is orthogonal to each of the
rows of G; but the rows of G form a basis for C. Therefore g(z) = 0 if and only if z € C*.
Thus Ct = ker(g). Since the k rows of G are linearly independent, the map g has rank
k. By the Rank Nullity Theorem, the kernel has dimension n — k, thus C* is an (n — k)-
dimensional code. Clearly C' C (C+)* since a vector 2 € C is orthogonal to every vector
which is orthogonal to z; but C and (C~)* both have dimension &, hence C' = (C+)*.

Solution 3.8.2

This statement is true for linear and cyclic code.

First, let C be a g-ary linear [n, k]-code with the generator matrix G and parity check
matrix H. Then the dual code D = C* is a linear [n,n — k]-code with the generator matrix
H = (' and the parity check matrix H'. Let v € V(n,q), v € D < vGT = 0. The dual code
E = D" isa[n, k]-code with generator matrix H' = G”. Word w € E < wG'" =0 & wHT =
0.
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We can easily see that if wH? = 0 then w € C. Because w is a word from code E then
C=FE=D"=(CHt

Second, if C'is a cyclic [n, k]-code with the generator polynomial g(z) of degree n—k then
the check polynomial h(z) = hg + hiz + - - - + hxz* and we know that g(x)h(z) = 2™ — 1. We
also know that the dual code D = C* is generated by the polynomial h(x) = hy, + hy_17 +
-+ hyak~1 4 hoz*. According to the proof of polynomial representation of dual codes we
know that h(z) = xFh(x~') and h(x)g(x) = 1 — 2. That means that g(x) = f(z) is the
check polynomial (of degree n — k) of code D. The dual code E = D+ is generated by the
polynomial f(x). Since polynomial f(x) = fo+ fiz+- -+ fu_xz" ¥ then polynomial f(z) =
foktfok—1z+- -+ fra" F 14 for" k. Since polynomial g(z) = go+g12+ - -+gn_kz" ¥ and
polynomial () = gn—k+gn—r—12+- - -+g12" " 14goa"F = f(z) = fo+fra+ - A fopaz"F
we get fo = Gn-k, fi = Gn-k-1, ---,fn—k = go- And now, we can easily see that f(z) =
Skt fomk—1z 44 fra"F T for R = go+gra A gk—12™ T T 4 g™ = g(a)
and that means that C = (g(z)) = (f(z)) = E = D+ = (C*)*. What we had to show.
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Chapter 4

Secret Key Cryptography

Secret key cryptosystems are very old. They were primarily used in pre-computer era —secret
key cryptosystems are too weak nowadays and too easy to break, especially with computers.
However, they can illustrate several ideas of cryptography and cryptoanalysis.

4.1 Cryptosystem

Every cryptosystem consists of a plaintext space P (set of plaintexts over an alphabet X)), a
cryptotext space C' (set of cryptotexts over an alphabet A) and a key space K (set of possible
keys).

Each key k determines an encryption algorithm e;, and a decryption algorithm dj, such,
that for any plaintext w, e, (w) is the corresponding cryptotext and it holds

w € dy(ex(w)) or w=dg(ex(w))

As encryption algorithms we can also use randomized algorithms.

The philosophy of modern cryptoanalysis is embodied in the Kerckhoff’s principle for-
mulated in 1983: The security of a cryptosystem must not depend on keeping secret the
encryption algorithm. The security should depend only on keeping secret the key.

The requirements for good cryptosystem according to Sir F. R. Bacon are:

1.  Given ¢ end a plaintext w, it should be easy to compute ¢ = ey (w).

2. Given dj, end a cryptotext ¢, it should be easy to compute w = di(c).

3. A cryptotext e (w) should not be much longer then the plaintext w.

4. It should be unfeasible to determine w from ey (w) without knowing dy.

5. The so called avalanche effect should hold: A small change in the plaintext, or in the

key, should lead to a big change in the cryptotext.

o

The cryptosystem should not be closed under composition.

7. The set of keys should be very large.

4.2 Cryptoanalysis

The aim of cryptoanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptoanalytics attacks are: cryptotexts-only attack, known-plaintexts at-
tack, chosen-plaintexts attack, known-encryption-algorithm attack and chosen-cryptotext at-
tack.

30

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt
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Cryptotexts-only attack: The cryptoanalysts get cryptotexts ¢; = ex(wi),...,c, = ex(wy)
and try to infer the key k or as many of the plaintexts wy, ..., w, as possible.

Known-plaintexts attack: The cryptoanalysts know some pair w;, ex(w;), 1 < i <n, and try
to infer key £, or at least the plaintext w,, ;1 for a new cryptotext e (wpn41).

Chosen-plaintexts attack: The cryptoanalysts choose plaintexts wi,...,w, to get crypto-
texts ex(w1),...,ex(wy), and try to infer key k or at least w,y; for a new cryptotext

Cnt+1 = ek(wn+1)-

Known-encryption-algorithm attack: The encryption algorithm ey, is given and the crypto-
analysts try to get the decryption algorithm dj,.

Chosen-cryptotext attack: The cryptoanalysts know some pairs ¢;, di(¢;), 1 < i < n, where
the cryptotexts c; have been chosen by the cryptoanalysts. The aim is to determine the
key k.

The basic cryptoanalytic attack against monoalphabetic substitution cryptosystems be-
gins with frequency analysis. Each letter in the cryptotext is counted and put into a table,
so we get the frequency counts for each letter. The distribution of letters in the cryptotext is
likely to be substituted for the letter with highest frequency in the plaintext language, etc.
The likelihood grows with the length of cryptotext. The frequency tables can be found in the
Internet.

4.3 Secret Key Cryptosystem

A cryptosystem is called secret key cryptosystem if some secret piece of information (the
key) has to be agreed first between any two parties that want to communicate through the
cryptosystem.

There are some basic types of secret key cryptosystems:

o substitution based cryptosystems — they substitute the characters of plaintext for an-
other characters;

- monoalphabetic cryptosystems — they use a fixed substitution, one character is
always replaced with the same group of symbols;

—  polyalphabetic cryptosystems — the substitution keeps changing during the en-
cryption;

. transposition based cryptosystems — they only transpose the characters of plaintext,
for example permission /impression

The cryptosystems can be also divided into block cryptosystems (cryptosystems that are
used to encrypt simultaneously blocks of plaintext) and into stream cryptosystems (cryp-
tosystems that encrypt plaintext letter by letter, the encryption may vary during the encryp-
tion process).

Stream cryptosystems are more appropriate in some applications (telecommunication),
usually are simpler to implement, faster and have no error propagation. In stream cryptosys-
tems is each block of plaintext encrypted using a different key.

In block cryptosystems, the same key is used to encrypt arbitrarily long plaintext block
by block.
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4.3.1 Caesar Cryptosystem

Caesar cryptosystem can be used to encrypt words in any alphabet. In order to encrypt
words in English alphabet, we use the key space K = {0,1,...,25}.

An encryption algorithm e, substitutes any letter by the one occurring k positions ahead
(cyclically) in the alphabet. A decryption algorithm dj, substitutes any letter by the one oc-
curring k positions backwards (cyclically) in the alphabet.

4.3.2 Polybious Cryptosystem

Polybious cryptosystem is designed for encryption of words in the English alphabet without
the letter J. The key space is formed by checkerboards of size 5 x 5 with English letters and
with columns and rows labeled by symbols.

An encryption algorithm substitutes each character by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed. The decryption
algorithm substitutes every two symbols denoting the row and the column of checkerboard
by the symbol that is found at these coordinates.

4.3.3 Hill Cryptosystem

In spite of the fact that Hill cryptosystem was probably never used, it played an important
role in the history of modern cryptography.

The key space are matrices M of degree n with elements from the set {0,1,...,25} such
that M ! mod 26 exists. All the possible plaintexts and cryptotexts are words of length n.
Any word w is represented by a column vector ¢, of length n of the symbols of w. Encryption
of column vector ¢, is computed as ¢, = Mc¢,, mod 26. Decryption of column vector ¢, is
computed as ¢,, = M !¢, mod 26.

4.3.4 Affine Cryptosystem

The Affine cipher is one of monoalphabetic substitution ciphers. The cryptosystem for an
alphabet of size m is given by two integers a and b such that a and m are coprime and b is
positive.

The encryption algorithm for letter x is e(x) = (ax+b) mod m, the decryption of received
letter y is d(y) = a~1(y — b) mod m, where a~! is the inverse of a in the group Z,.

4.3.5 Playfair Cryptosystem

The playfair cipher was used in World War I by British Army. The key is a playfair square of
size 5 x 5, or a word, or text in which repeated letters are removed and the remaining letters
of alphabet (except ]) are added and divided to form an array.

Encryption of a pair of letters x, y is done as follows:

o If z and y are in the same row (column), then they are replaced by the pair of symbols
to the right (below) of them.

° If x and y are neither in the same row nor in the same column, then the smallest rectan-
gle containing x and y is taken and symbols = and y are replaced by the pair of symbols
in the remaining corners of the rectangle.
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4.3.6 Vigenere and Autoclave Cryptosystems

Both Vigenere and Autoclave cryptosystem are polyalphabetic modifications of the Caesar
cryptosystem. The key k of these cryptosystems is as long as the plaintext w. Using the
Vigenere cryptosystem, a short key p is chosen and the key k is calculated as k = prefix),, p*
(the prefix of length |w| from the word p*). It is a cyclic version of Caesar cryptosystem. Using
the Autoclave cryptosystem, we also choose a short key p. The key k is then calculated as
k = prefiz),pw.

4.3.7 One time pad Cryptosystem

One time pad is cryptosystem for encoding binary data using a binary key of the same length
as the data. If w is binary plaintext, k binary key and c binary cryptotext, then the encryption
algorithm ey, is ¢ = ex(w) = w @ k and the decryption algorithm dj, is w = di(c) = c P k.

4.4 Perfect Secret Cryptosystem

By Shannon, a cryptosystem is perfect if the knowledge of the cryptotext provides no infor-
mation about the plaintext (with the exception of its length). It follows from Shannon’s result
that perfect secrecy is possible if and only if the key space is as large as the plaintext space.
In addition, the key has to be as long as the plaintext and the same key should not be used
twice.

A cryptosystem in which |P| = |K| = |C| provides perfect secrecy if and only if every
key is used with the same probability and for every plaintext w € P and cryptotext c € C
there is a unique key £ € K such that e, (w) = c.

4.5 Exercises

Exercise 4.1

Decode the following cryptotexts:
1. TEVSECMKOCKB

2. TSRLNCHHIAFCIEISIEEPR

. OO@LrFr<="1>0dJvir>07r 11gger nar

4.  (Playfair cipher, password: PLAYFAIR)
BKLBPGQXKGFQTNQOKU

Solution 4.1.1

1.  This is a Caesar cryptosystem and every letter of the message is shifted by 10 posi-
tions ahead. To decode the message we need to shift every letter of the cryptotext 16
positions ahead or 10 positions backwards. Using this algorithm we get the message
"Julius Caesar”.

2. To decode this cryptotext is a bit harder. When we put the message into a table, in the
columns we can see the hidden message. The message is “This is rail fence cipher” as
you can see in the Table 4.1.
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T
H
I

»n —~ W
— > 3
o
m O Z
o= 0
W m T

Table 4.1: Message hidden using the Rail Fence cipher

3.  To decode this cryptotext we need the tables shown at the Figure 4.1.

AlB]|C J|K|L
D|E|F M| N |-0
G|H|I Pl QR

Figure 4.1: Tables for encoding and decoding messages using Pigpen cipher

And the hidden message is "Encrypted with Pigpen cipher”.

4. Decode this cryptotext is very easy because we know that it is encoded with Playfair
cipher and we also know the key. We just need to design the playfair square (see Table
4.2). The hidden message is “Charles Wheatstone x”.

PI/L|A]|Y|F
I /[ R|B |C|D
E|/GIH|K M
NIOIQ|S|T
UV IW|X Z

Table 4.2: Playfair square for the keyword PLAYFAIR

Exercise 4.2

Consider the following variation of the one time pad cryptosystem. Let P = K = {00,01, 10}".
Encryption and decryption work in the same way as in the one time pad. Decide whether
this cipher is perfectly secure. Explain your reasoning.

Solution 4.2.1
A cipher is perfectly secure, if |P| = |K| = |C|. But we can see that C' = {00,01,10, 11} and
therefore | P| = | K| # |C|. Now, it is obvious that this cipher is not perfectly secure.

Exercise 4.3

You have found an old cryptotext and you know that the plaintext is related to cryptography.
You suppose Vigenere cryptosystem was used so you looked for repeated strings in the
cryptotext. You found that the string TICRMQUIRTJRoccurs twice in the cryptotext. The
first occurrence begins at position 10 and the second one at position 241. You guess this
cryptotext sequence is the encryption of the plaintext word CRYPTOGRAPHK you are right,
what would be the key?

34

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4. SECRET KEY CRYPTOGRAPHY

Solution 4.3.1

The key would be the word “"CORRECT”.

First, we need to guess the length of the keyword. We can see that the distance between
this two occurrences is 241 — 10 = 231. To guess the length of the keyword, we need to find
the factors of 231 and we can see that 231 =11-21 =11-7- 3.

Second, we get the letters of the keyword using the Vigenere encrypting table. And we
get results that are shown in the table:

Position in the cryptotext | 10 11 12 13 14 15 16 17 18 19 20 21
Cryptotext T I C€C R M Q U I R T J R
Message Cc Ry P T O G R A P HY
Keyword R R E ¢ T € O R R E C T

Now, we can see, that the length of the keyword is not 3 because there are more then
three letters in the keyword. The length of the keyword is not 11 either because the 10th
and 21st position of the keyword are different. Hence the length of the codeword must be
7 and we can see that the 10th and 17th position are equal and so on. Now we must find
the beginning of the repeated keyword. Because its length is seven, it starts at 1st, 8th, 15th,
22nd ... position of the cryptotext — and here we get the keyword ”"Correct”.

There is also another possibility — the length of the keyword is more then 11 symbols. In
this case we are unable to say anything about the keyword.

Exercise 4.4

Alice used Vigenere cryptosystem for encryption but she has become afraid that it can be eas-
ily broken. She is now considering using double encryption, that means sender and receiver
agree on two keywords key; and key; and sender encrypts message m by first encrypting it
with Vigenere cipher using the key key; and then encrypting the resulting cryptotext with
Vigenere cipher using the key keys. Show that the proposed encryption has actually the same
effect as a single Vigenere encryption using a keyword keys and describe how to find this
keyword. What can you say about security of the double encryption?

Solution 4.4.1

Let e, be the encryption algorithm and let dj, be the decryption algorithm described in the
materials (lecture 4, site 6, 7). Let w be the plaintext and key; and keys be the two given
keywords. We take wli] as the ith letter of the message w, key,[i’] as the i'th character of
keyword key; where i’ =i (mod |key|).
The algorithm for encrypting the message w is following;:
CM = Cleys[i’] (ekey1 [#/] (w[z]))
where i € {1,..., |w|}. According to the encryption algorithm we get
cli] = ekey, (w[i] + key1[i'])  (mod 26)
= (wli] + key1 [i'] + keya[i”]) (mod 26)
= (w[i] + keys[i"’]) (mod 26)
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4. SECRET KEY CRYPTOGRAPHY

where keys[i"”'] = keyi1[i'] + keya[i"] (mod 26) and i =i’ =" =i (mod |keys|).

Hence we can see that double Vigenere encryption using keywords key; and keys has
the same effect as a single Vigenere encryption using the keyword keys. The length n of
the keyword keys is lem{|key1|, |keya|}. And keys[i] = (keyi[i] + keyz[i]) (mod 26) where
i € {1,...,n}. Using double Vigenere encryption can be more secure than single Vigenere
encryption only because of the length of keys: |keys| > max{|key|, |keya|}.

But encryption using keys, which is dependent on keys key; and keys is less secure than
encryption using a randomly chosen key key, with the same length as keys.

Exercise 4.5

Enigma was a family of portable electromechanical rotor machines used to encrypt and de-
crypt secret message during WorldWar II. Consider the following Enigma machine whose
key consists of

initial position of three different exchangeable rotors, each rotor has 26 different posi-
tions;

. plugboard setting allowing six swaps of two different characters from 26-letter alpha-
bet.

1.  How many different keys does this Enigma machine have?
2. What is the key length (in bits)?

3. What is the average complexity of an exhaustive key search?

Solution 4.5.1 by Lukas Moj#i3
1. The number of rotor keys is 3! - 263. There is 3! because there is 6 different orders of
rotors.

The number of possible plugboard combinations according to number of cables is writ-
ten in the Table 4.3. The sum of the right column of the table is our result.

Number of swaps | Number of combinations

NOlL b W DN~ O
|~
SN
03
~—

Table 4.3: The count of possible combinations of plugboard settings

Hence, the total number of keys is

(3!-26°) - (sum of right column of Table 4.3)
= (3!-26%) - 1.05578918576 - 101!
= 1.1133930437350656 - 10'6
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4. SECRET KEY CRYPTOGRAPHY

2. Keylengthis [log,(1.1133930437350656-10'6)] = 54, i.e. 54 bits are necessary to encode
key.

L.

5 - 1.1 - 10'% keys on average. The

3.  Using exhaustive key search we need to check ~
complexity is therefore big.

Exercise 4.6

Find the key and decode the following ciphertext produced by Vigenere cryptosystem.

AjcrvgtvixmrgvislkraykefgrizsD4Mragocaskhym"Wuhtgmteoo",i
patvnihjwebijwjkgzuclthhrkpxlzs26cmxletusfsgdipdpcrijjwsjsf.
Tjkwwpgcchwdyvjifwsunsjaugggfrixijavgv,jwouqrytjgpsedjirv
wtkxafukpidevvijkrfer.LhgUgzjszjgsxycwhdotmhgnvqgtgxhymlfiioe
esqgygrwapfaskqgfvrwcvghlghympsmrrefwz;kwmfsvepdivvxvanvgv,lzs
cighcgxijsbuipdlkillticjwzafvstwfvusnef.Dikarvamisjcrvabvaw,
atkotjgjvishetcxagbrtwwewtmlq:hymwagpcpgxtzkijngnsfysipevtq
uiwlvvxpsipvipl,ojblwptkriwfdgkztjczwtsvvmfsvepdwrzvxze
ectlswe’agsbkpsxsgljgsrkpi,kghyixlhgumyfocasxfkeijvwublw
tarmfyoelowyjcrvdweofmtpgzwjurgrwdmpsodsuoigfuggjwhimgwixgh
hdozvxwxvkrxgfdixaop.

Crglvvzeucguwgjmniwlhgtieghvteeprcrwd. Wwblwmcelafsniwwgwkthwr
ngxzapgbljogirwl,vjiogcumruaugsxlvvMragocaskkzlijapfggmzu
axgrgviwwlkzehapgp.Lzsimasscneehdrvidvgtwagbkpelcqwpvts
twrfeevivstkmvoatfw,tmhkpelrgsyajsu,ryktcuaalvkpiKcijtiatarf,
xzencghhoempsnfnmyzhscptsvqfwjsdwzwd.Vjijwafbihapgpesrvgx
houumtdswwvspgtwgfhfzisdvjivwgigtlefvipl,kzblguvimnabxblw
orgvsliciigueuuxgah.

Zv1944 xzeNwjloownianvtsvmgvlefezvvshzlofgatfwoahtp,gsinghlzs
Lpv(ulgeo).Lzsimasscnmllzvjsp,cqpxsabzvkssykxuzkzbl40
houkxagbj.Qxjerneuwrkpivehcydldcckk.Ahvijuceviutkpklzsgtyys,cu
hwlisiumfefkrlzsuimdymgckzsvb,xzeqrijshfzggunfxmjbkpikwkvgzab
fvigfvji40hggzbmgnu,geuzdfamligpvwkicbmfgkpevatwmvwnv
esetweixaopgjhdixemjipi.Qgkhfnxzeugtdmutwrfeevmgfoim,yflkmi
Izsumjsunvtdmuj,vsipckv-oagv.

Solution 4.6.1

To decrypt the text we use the Kasiski method and frequency analysis. For example, the se-
quence LZSIMASSCNstarts at 719th and at 1005th position; the sequence MRAGOCASKarts
at 30th and at 679th position; the sequence TWRFEE\étarts at 755th position and at 1250th
position. The distances between their first and second occurrences are 286, 649 and 495. Be-
cause gcd (286, 649,495) = 11 the length of the keyword is most likely eleven. Now, it is easy
to find that the keyword is "ACCESSORIES”. And here is the hidden message:

A handy feature that was used on the M4 Enigma was the "Schreibmax”, a

little printer which could print the 26 letters on a small paper ribbon.

This excluded the need for a second operator, reading the lamps and

writing the letters down. The Schreibmax was placed on top of the Enigma

machine and was connected to the lamp panel; to install the printer, the

lamp cover and all light bulbs had to be removed. Besides its handiness,

it improved operational security: the signal officer no longer had to

37

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4. SECRET KEY CRYPTOGRAPHY

see the plaintext, as the printer might have been installed in the
captain’s cabin of a submarine, so that the signals officer did the
typing and keyhandling but never gained knowledge of secret received
plaintext information.

Another accessory was the remote lamp panel. If the machine was equipped
with an extra panel, the wooden case of the Enigma was wider and could
store the extra panel. There was a lamp panel version that could be
connected afterwards, but that required, just as with the Schreibmax,

the lamp panel and light bulbs to be removed. The remote panel made it
possible for a person to read the decrypted text, without giving the

operator access to it.

In 1944, the Luftwaffe introduced an extra plugboard switch, called the
uhr (clock). There was a little box, containing a switch with 40
positions. It replaced the default plugs. After connecting the plugs, as
determined in the daily key sheet,the operator could turn the switch in
one of the 40 positions, each position resulting in a different
combination of plug wiring. Most of these plug connection are, unlike
the default plugs, not pair-wise.
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Chapter 5

Public Key Cryptography

The main disadvantage of the classical cryptography is the need to send a long key through
a absolutely secure channel before sending the message itself. In secret key (symmetric key)
cryptography both sender and receiver share the same secret key. In public key cryptography
there are two different keys — a public (encryption) key and a secret (decryption) key. The
basic idea is that if it is infeasible from the knowledge of encryption algorithm e, to construct
the decryption algorithm dj, then e;, can be made public.

5.1 Diffie-Hellman Key Exchange

The main problem of secret key cryptography is secure distribution of the key before trans-
mission. The problem was solved in 1976 by Diffie and Hellman. They designed a protocol
for secure key establishment over public channels.

If two parties, Alice and Bob, want to create a common secret key, then they first agree
on a large prime p and a primitive root ¢ (mod p) and then they perform, through a public
channel, the following activities:

. Alice chooses randomly a large integer 1 < x < p — 1 and computes X = ¢* mod p.
° Bob also chooses randomly a large integer 1 < y < p — 1 and computes Y = ¢¥ mod p.
o Alice and Bob exchange X and Y through a public channel and keep = and y secret.

o Alice computes Y* mod p and Bob computes X¥ mod p. Then each of them has the key
K =Y" mod p= XY mod p = ¢*¥ mod p.

In order to determine x from X, p and ¢ or y from Y, p and ¢, an eavesdropper seems to
have the capability to compute the discrete logarithms, what is believed to be infeasible.

5.2 Blom’s Key Predistribution Protocol

Blom’s protocol allows trusted authority (Trent) to distribute secret keys to $n(n — 1) pairs
of n users. Let a large prime p > n be publically known. The protocol goes as follows:

e  Eachuser U in the network is assigned by Trent a unique public number r; < p.
° Trent chooses three random numbers a, b and ¢, smaller then p.
° For each user U Trent calculates two numbers a;; = (a + bry) mod p and by = (b +

cry) mod p and sends them via his secure channel to U.

° Each user U creates the polynomial gi/(x) = ay + byz.
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5. PUBLIC KEY CRYPTOGRAPHY

° If Alice (A) wants to send a message to Bob (B), then Alice computes her key K p =
ga(rp) and Bob computes his key Kp4 = gp(ra).

° It is easy to see that K4y = Kpa and therefore Alice and Bob can now use their keys

to communicate using some secret key cryptosystem.

5.3 Cryptography and Computational Complexity

Modern cryptography uses such encryption methods that no enemy can have enough com-
putational power and time to do decryption. Modern cryptography is based on positive and
negative results of complexity theory — on the fact that for some algorithm problems no effi-
cient algorithm seem to exist, and for some small modifications of these problems there is a
simple, fast and good enough (randomized) algorithm.

Integer factorization Given n = pg, the task to find p, ¢ is infeasible.
Prime recognition Is a given n prime? There is a fast randomized algorithm.

Discrete logarithm problem Given z, y, n, the task to compute a such that y = 2% (mod n)
is infeasible.

Discrete square root problem Given y, n, the task to compute z such that y = z° (mod n)
is infeasible in general, but easy if n is a prime.

5.4 RSA Cryptosystem

The most important public key cryptosystem is the RSA cryptosystem. It was invented in
1978 by Rivest, Shamir and Adleman. The basic idea is that prime multiplication is very
easy but integer factorization seems to be infeasible. To design a RSA cryptosystem we need
to choose two large primes p and ¢ and compute n = pq. Then choose a large d such that
ged(d, p(n)) = 1, where ¢ is Euler’s function, and compute e = d~* (mod ¢(n)).

The public key is modulus n and encryption integer e. The private key is p, ¢ and de-
cryption integer d. The plaintext is first encoded as a word over alphabet {0, 1, ...,9}, then
divided into blocks of length i — 1 where 10~! < n < 10%. Each block is then taken as an
integer and encrypted. The encryption of a plaintext w is the cryptotext ¢ = w® mod n. The
decryption of a cryptotext c is the plaintext w = ¢? mod n.

5.5 Rabin-Miller’s Prime Recognition

One of the key problems for the development of RSA cryptosystem is the prime recogni-
tion. Rabin-Miller’s prime recognition algorithm is based on the following result of number
theory.

Letn € N, for 1 < z < n, C(z) denotes the following condition: “Either z"~1 # 1
(mod n) or there is an m = "27-1 for some i, such that ged(n, 2™ — 1) # 1”7. If C(x) holds for
some 1 < z < n, then n is not a prime. If n is not a prime, then C(z) holds for at least half of
x between 1 and n.

The algorithm goes as follows:

° Choose randomly integers z1, x2, ..., z;, such that 1 < z; <n
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5. PUBLIC KEY CRYPTOGRAPHY

. For each z; determine whether C'(z) holds.

. If C(z;) holds for some x; then n is not a prime for sure. Otherwise n is prime with the
probability of error 27,

5.6 Exercises

Exercise 5.1

1. Compute 72097 mod 143 by hand. (Use Chinese Remainder Theorem and Fermat’s
Little Theorem.)

2. Let n be any integer. Show that n> — n is divisible by 30.

Solution 5.1.1

1. First, using Fermat'’s Little Theorem and modular exponentiation we get:

7120007 1mod 11 = 77712999 mod 11 = 77(7'° mod 11)'2°%° mod 11
= 771290 116d 11 = 7" mod 11 = 6

7120007 1nod 13 = 777129090 1n0d 13 = 77(7'2 mod 13)190% mod 13
= 77119900 1164 13 = 7" mod 13 = 6

Let # be a number such that x = 7129097 (mod 143). Then we have two congruences:

x=6 (mod 11)
x=6 (mod 13)

From Chinese Reminder Theorem we know that if x = y (mod a) and = y (mod b)
then z = y (mod ab). Hence we have 7'2°07 = 6 (mod 143).

2. We know, that n® — n is divisible by 30 only if n®> — n is divisible by 2, 3 and 5 (its
factors). But we have: n° —n = n(n* — 1) = n(n?> = 1)(n®>+1) = n(n—1)(n+1)(n?+1).
Now it is easy to see that

n® — n is divisible by 2: if n = 0 (mod 2) then n is divisible by 2, elseif n = 1 (mod 2)
then n — 1 is divisible by 2.

n® — n is divisible by 3: if n = 0 (mod 3) then n is divisible by 3, else if n = 1 (mod 3)
then n — 1 is divisible by 3, else if n = 2 (mod 3) then n + 1 is divisible by 3.

n® — n is divisible by 5: if n = 0 (mod 5) then n is divisible by 5, else if n = 1 (mod 5)
then n — 1 is divisible by 5, else if n = 4 (mod 5) then n + 1 is divisible by 5.

Now, we need to get factors of n® —n in Zs[n] and these are: n® —n = n(n—1)(n+
1)(n — 2)(n + 2). And here we can see that if » = 2 (mod 5) then n — 2 is divisible
by 5 and if » = 3 (mod 5) then n + 2 is divisible by 5.

Hence n° — n is divisible by 30.
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Exercise 5.2

Alice and Bob computed a secret key k using Diffe-Hellman protocol with p = 467, ¢ = 4,
xz = 400 and y = 134. Later they computed another secret key k&’ with the same p, ¢, y and
with 2’/ = 167. They became very surprised after finding that £ = £’ . Determine the value of
both keys and explain why the keys are identical.

Solution 5.2.1

The secret key k is computed as k = ¢*¥ mod p. For the values p = 467, ¢ = 4, = = 400 and
y = 134 we have k£ = 161. When we get the same value of secret key after choosing another
x, say &' = 167, it means that ¢*¥ mod p = k = k' = ¢*'"¥ mod p.

Euler’s Totient Theorem says that n¥(™ =1 (mod m). It’s corollary is that n¥(m)+* = pk
(mod m). According to this theorem and corollary we have k£ = ¢*¥ mod p = gtk mod
p = ¢" mod p = ¢¢™+* mod p = ¢*'Y mod p = k’. Because p is a prime ¢(p) = p — 1 and we
can see that zy = 2y (mod p — 1): 2y = 400 - 134 = 10 (mod 466) and 2’y = 167 - 134 = 10
(mod 466).

Now it is easy to see that k = 4%°(467)+10 ;m0d 467 = 41° mod 467 = 161 = &'

Exercise 5.3

To simplify the implementation of Diffe-Hellman protocol one replaces the multiplicative
group (Z,, -) by the additive group (Z,, +). How is security affected?

Solution 5.3.1

The Diffie-Hellman protocol is secure because it is infeasible to compute discrete logarithm.
When we replace the multiplicative group (Z,, -) by the additive group (Z, +), we do not
need to compute the discrete logarithm, we just need to compute the inverse elements in
group (Zy, +) which is easy. That means that this simplified Diffie-Hellman protocol is not
secure.

In the Table 5.1 we can see the run of modified Diffie-Hellman protocol and also what
Alice, Bob and Eve knows. At the end of the key exchange protocol Eve doesn’t know the

Alice ‘ Bob ‘ Eve
prime p, base g | prime p, base ¢ prime p, base ¢
x Yy doesn’t know x nor y
qr mod p qxr mod p qr mod p
qy mod p qy mod p qy mod p

k =gqxy modp | k= qxy mod p | doesn’t know secret key k

Table 5.1: The design of the run of modified Diffie-Hellmann key exchange protocol

secret key, but it is easy for her to compute ¢~ mod p such that ¢7'¢ = 1 (mod p). She also

knows that gk = qrqy mod p. Here she gets k = ¢~ 'qk = ¢ qzrqy mod p = gzy mod p.
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Exercise 5.4

Consider RSA cryptosystem. Is it possible to decrypt a ciphertext by repeated encryption of
the ciphertext?

Solution 5.4.1 by Martin Vejnar

The RSA cryptosystem is based on the fact that m® = m (mod n), where e, coprime of
¢(n), is a multiplicative inverse of d. Since e is a coprime of ¢(n), the Euler’s theorem can be
applied to get

e?#M) — eer(@(M)=1 =1 (mod ¢(n)).
Using the Fermat's little theorem we get

meev(@(n))—l _ cew(w(n))—l =m (Inod n)
Now it is obvious that a cryptotext can be decoded by encrypting the cryptotext ¢(¢(n)) — 1
times.

Exercise 5.5

Consider the following modification of RSA cryptosystem.
Public key is a pair (n = pq, e) which is defined in the same way as in the standard RSA.
Private key is a quintuple (p, ¢, dp, dg, Giny) Where d, = e * mod p — 1, d; = e"* mod ¢ — 1

! mod p. Message m is encrypted by computing ¢ = m® mod n. Decryption is
d d

and Qinv = ¢
realized by computing numbers m,, = ¢
p from which the original message m = m, + hq can be reconstructed. Show correctness of
the described cryptosystem.

» mod p, mg = ¢% mod gand h = gjn,(mp—mg) mod

Solution 5.5.1

In plain RSA it holds that m = ¢? (mod n). We can see that d, = d mod p — 1 and d, =
d mod g — 1. Since

w=c?=cdmedrml = o (mod p) and
w=cl=lmedal = ¢da (mod g)
we can see that
_ed — d_ dy _
m=m =C :Cp:mp (modp)and
—ed — d_ dy —
m=m*=c"=c"=m; (modyq).

Now, we need to show that message m’ = m,, + hq is the original message. To do that we
need to verify whether m’ = m, (mod p) and m’ = m, (mod ¢). We can easily see that

m' =my+hg=m,; (mod q).

To show that m’ = m, (mod p) we will start with m, — m; = m, — m, (mod p). Because
qqinv = 1 (mod p), we get

Tinv (mp - mq) qg=mp— My (mOd p)
—_——
h
m' =mg+hg=m, (mod p).
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Because |m| < pg, m' = m (mod p) and m’ = m (mod q) it must hold that m = m’ and

hence the modified cryptosystem is correct.

Exercise 5.6

We want to set up RSA cryptosystem in a network of n users.
1.  How many prime numbers do we have to generate?

2. Now consider we want to reduce this number by generating a smaller pool of prime
numbers and making combinations of two of these primes (for each user we pick up a
new pair). How is security of RSA cryptosystem affected?

Solution 5.6.1

1.  Weneed two primes for each user, so we need to generate 2n prime numbers.

2. When there is only k£ prime numbers, we can calculate ged(n;, n;) where n;, n; are
public keys of some users U; and U; of the network. When gcd(n;,n;) = > 1, we can
compute such y and ' that zy = n; and 2y’ = n;. Because ¢; and e; are known, we can
also compute d; and d;.

Now, we know the private keys of users U; and U; of the network and we can read
messages addressed to them. This cryptosystem is not secure.
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Chapter 6

Other Public Key Cryptosystems

6.1 Rabin Cryptosystem

Rabin cryptosystem is based on the discrete square root problem. To design Rabin cryptosys-
tem, we need to find two primes p and ¢ of the form 4k + 3 (i.e. p = ¢ = 3 (mod 4)). The
public key is number n = pq, primes p and ¢ are kept secret. We can see that n is a Blum
integer what is important because of its nice properties.

The encryption of plaintext w < n is the cryptotext ¢ = w? mod n. The decryption of
cryptotext ¢ is done when all square roots of ¢ modulo n are found. Because n is a Blum
integer, we can see that w € {c% mod n,p — "5 mod n, ¢ mod n,q — T mod n}. In
case the plaintext w is a meaningful text, it should be easy to determine the value of w.
However, if w is a random string, for example a secret key, it is impossible to determine the
value of w.

6.2 ElGamal Cryptosystem

To design ElGamal cryptosystem, we need to choose a large prime p, a primitive element
q of the group Z; and a random integer = such that 1 < = < p. Then we need to calculate
y = ¢° mod p. The public key consists of numbers p, ¢ and y. Number z is kept secret for
message decryption.

To encrypt a plaintext w € Z,, we need to choose a random integer r and compute a =
¢" mod p and b = y"w mod p. The cryptotext ¢ = (a,b). To decrypt a cryptotext, we need
to calculate -2 mod p = ba~% mod p = w. The security of ElGamal cryptosystem is based
on the discrete logarithm problem. As we can see, the cryptosystem is not secure under a
chosen cryptotext attack — for an encryption ¢ = (a, b) of message m we can easy construct
an encryption ¢’ = (a, 2b) of message 2m.

6.3 Exercises

Exercise 6.1

Show that with a chosen-ciphertext attack on RSA cryptosystem one can decrypt an arbitrary
ciphertext with only one query.

Solution 6.1.1 by Libor Caha

A chosen-ciphertext attack is an attack in cryptoanalysis in which the cryptoanalyst chooses
a ciphertext and let it decrypt. From some pairs of ciphertexts and decrypted ciphertexts the
cryptoanalyst wants to know some information about the key or about the messages sent.
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Our task is to decrypt an arbitrary ciphertext c using the chosen-ciphertext attack. Say the
ciphertext ¢ was sent to Alice, whose public key is (1, €).

We need to choose a random integer r € Z and compute ¢ = r¢c mod n where e is
Alice’s public key. We send ¢’ to Alice and she sends back d(¢') = ¢/ mod n. Because ¢ mod
n = r®c? mod n = rw mod n we have the message we are looking for multiplied by r. To

get our message w, we need to calculate 71/ mod n = r~1rw mod n = w.

Exercise 6.2

What is the probability that two students of IV054 have the same birthday (74 students at-
tend IV054 course at this moment)?

Solution 6.2.1

Let p(n) be the probability that two out of n students of IV054 have the same birthday.

Let p(n) = 1 — p(n) be the probability that no two students have the same birthday. Then
the probability p(n) is computed this as p(n) = 1 — p(n). The probability p(n) is computed as
follows:

365(365 — 1) --- (365 —n+1) 365!
B 365" "~ 3657(365 —n)!

p(n)

365!

For n = 74 we have ]3(74) = 36574(365 — 74)!

0,00035 ~ 0, 99965.
The probability that two students of IV054 have the same birthday is greater than 99,9%,
although it cannot be 100% unless there are at least 365 people attending the course.

~ 0,00035 and p(74) = 1 — p(74) ~ 1 —

Exercise 6.3

Prove or disprove the following implication. Let g, h be generators of the group (Z,, -) where
pis an odd prime. Suppose g?* = h?* (mod p). Then g* = h* (mod p).

Solution 6.3.1

The condition is not true. We can choose the prime p = 7, then we can see that the group
(Z%,-) has two generators g = 3 and h = 5. When choosing u = 1 and v = 2 we get:

¢?*=32=2 (mod7) h? =51 =2 (mod 7)
g“=3"=3 (mod7) R =5>=4 (mod 7)

We can see that g>* = h?Y (mod 7) but g% # h® (mod 7).

Exercise 6.4

Let p be a large prime, g a generator of the group (Z;,-) and y = ¢g” mod p. Show that it is
possible to find the least significant bit of by computing ypT_l mod p.

46

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt
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Solution 6.4.1 by Libor Caha

To find the least significant bit of x is equal to find the parity of . Because g is a generator

of group (Z,-) then Z% = ¢* for 1 < i < p — 1. The expression yp;21 mod p can be rewrite as

ze(p) . , . .
g 2" mod p (using the Euler’s Totient Theorem). Now, we need to discuss two cases:

. . g . p—1 zo(p) 2ko(p)
x = 2k: If x is even then the least significant bitis 0. We cansee thaty = =g 2 =g 2

g"*®) =1 (mod p).

x =2k + 1: If z is odd then the least significant bit is 1. We can see that yp%l =g 2 =

(2k+12)v>(p) ¢(p)

= ¢"@) g2~ #£1 (mod p) because g is the generator of group Z;.

We can say that if yp%l =1 (mod p) then z is even.

Exercise 6.5

Show that Rabin cryptosystem is vulnerable to a chosen-ciphertext attack.

Solution 6.5.1 by Lukas Moj#is

Suppose that D is any algorithm that computes one plaintext (of the four possible plaintexts)
corresponding to a valid cryptotext y. We choose a random z € Z}, and compute y = 22 mod
n. Now we need to compute r’ = D(y) and we get 22 = z’? (mod n). The probability that
x = 42’ (mod n)is 0,5. In this case we have 22 —1"? = (z—2')(z+2') = 0 (mod n) but neither
factor is equal to 0 modulo n. Therefore, ged((z — 2’), n) = p or ¢ and the factorization of n is
obtained. After two attempts (on average) n is factored. Therefore any decryption algorithm
can be used to factor n efficiently.

After factoring n we can decipher any ciphertext using normal decoding strategy of Ra-
bin cryptosystem.

Exercise 6.6

Let p be a 1024-bit prime. Let g have order g in (Zj, -), where ¢ is a 160-bit prime. Consider
the following modification of ElGamal cryptosystem. Private key x is a randomly chosen
element of {1,...,¢— 1}. Public key is y = ¢” mod p. Message m is encrypted by computing
pair

¢ = (¢" mod p,y"¢g™ mod p),

where r is a randomly chosen integer.

1.  Suppose you know factorization of p — 1. Show a method of finding g € {0,...,p — 1}

of order q.

2. How can the receiver compute g™ mod p from c?

3. Computing discrete logarithms is hard in (Zj,-). In general, the receiver is not able
to recover m from ¢ mod p. Assume the sender only sends messages from the set
{0,...,100}. Show that the receiver can recover m.
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6. OTHER PUBLIC KEY CRYPTOSYSTEMS

Suppose ¢; = (¢ mod p,y" ' ¢"" mod p) is a cryptotext for some unknown message
m1 and similarly c2 = (¢" mod p, y"¢"™* mod p) is a cryptotext for some unknown
message mo. Find a cryptotext ¢ for a message m’ = my + mg mod ¢ using ¢; and cs.

Suppose the receiver is conducting an auction in which two bidders encrypt their bids
using the scheme described above. Suppose also that both bidders can bid at most
$100. The bidder who goes second can eavesdrop messages between the receiver and
the first bidder. Show that he can almost always bid $1 more than the first bidder (even
without knowing the value of his bid).

Solution 6.6.1

1.

Because ¢ is a prime and it is order of some element of Z; then ¢ must be a factor of
p — 1 because every order of some group element divides the size of the group. To get
any element of order ¢ we randomly choose a number = from 1 to p — 1 and when it
holds ¢ =1 (mod p) then x might be g. There is more elements of order ¢, not only g.
Because ¢ is a prime we don’t need to check whether it has a smaller order — there are
no factors of q.

Let ¢ = (a,b) where a = ¢g" mod p and b = 3" ¢™ mod p. Then

T M rT m

Y4y 99 m
a.’L‘ g’/‘$ gT’LIJ

Because a is an element of a group, there must be some inverse a~!

this element and multiplication is used instead of a and division.

in the group and

Because the set M = {1,...,100} is finite, we can calculate the values of ¢* for each
a € M in a finite time. We save our results in a table as a couple (g%, a). Then we can
easily search the table for a ¢”* and find the appropriate m.

Let ¢ be the cryptotext for message m’ = m; + mgy mod ¢ and let ¢; be the cryptotext
for message m;, then ¢’ = ¢; - ca:

¢ = (g° mod p,y°g™ "2 144 mod p)
— (gn+r2 mod pjyr1+rzgm1+m2 mod p) —
= (

T1 4,11

g"g"™ mod p,y" g™y g™ mod p) =
= (a1 - az,b1 - bg) = (a1,b1) - (ag,b2) =

= C1 " C2.

This is correct because 71, ry are random numbers so as s and g1 772 = gmitm2 modg
(mod p) because m; + mg = kq+ [ and (m; + mz) mod ¢ = [ we get grhatl = ghagl = ¢
because ¢ is the order of g.

The second bidder needs to calculate c¢; for message m; = 1. When he eavesdrops the
encrypted bid b; he just calculates c; - b; and sends it to the auctioneer. He bids $1 more
than the first bidder except for the case that the first bidder bids $100. In this case, the
second bid is not valid.
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Chapter 7

Digital Signature

Digital signatures are one of the most important applications of modern cryptography. Digi-
tal signatures are such that each user is able to verify signatures of other users, but that gives
him no information about how to sign a message on behind of other users.

An important difference from handwritten signature is that digital signature of a message
is intimately connected with the message and for different messages is different, whereas the
handwritten signature is adjoint to the message and always looks the same.

Technically, a digital signature is performed by a signing algorithm and it is verified by
a verification algorithm. It can be used any public key cryptosystem in which the plaintext
space and cryptotext space are the same.

The signature of message w denoted as sig(w) is diy(w) so as everyone can verify that the
message was sent by user U. If the signature is important only for user V, then the signature
is computed as ey (di7(w)). Now, only user V' can verify, that the message was signed by user
U.

7.1 Digital Signature Scheme

Digital signature allows anyone to verify signature of sender S without providing any infor-
mation about generating signatures of S.

A digital signature scheme (M, S, K, K,) is given by a set of messages to be signed (1),
a set of possible signatures (.5), a set of private keys for signing (K) and a set of public keys
for verification (£,).

It is required, that for each key k from Kj, there exists a single and easy to compute
signing mapping sigy, : {0,1}* x M — S, and for each key k from K, there exists a single
and easy to compute verification mapping very : M x S — {true, false} such that the
following conditions are satisfied:

Correctness: For a message m € M and public key k£ € K,, it holds very(m,s) = true if
there is an » € {0,1}* such that s = sig;(r, m) for a private key | € K, corresponding
to the public key k.

Security: For any w € M and k € K,, it is computationally infeasible, without the knowl-
edge of the private key corresponding to k, to find a signature s € S such that very(w, s) =
true.

7.2 Attacks on Digital Signature

There are several types of attack on digital signature schemes:

Total break: The adversary manages to recover secret key from the public key.
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7. DIGITAL SIGNATURE

Universal forgery: The adversary can derive from the public key an algorithm which allows
him to forge signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge signa-
tures of selected messages (where the selection was made prior the knowledge of the
public key).

Existential forgery: The adversary is able to create from the public key a valid signature of
some message m (but has no control for which m).

7.3 RSA Signatures

Let us have an RSA cryptosystem with encryption and decryption exponents e and d. The
signature of message w is a couple s = (w, o) where ¢ = w? mod n. The signature s is valid
if 0¢ = w mod n.

There are some known attacks on this scheme. The forger can use some public key e
to compute w®, the signature of this message is s = (w®, w). Everybody, who verifies the
signature, finds out that the signature is valid. The forger has no control over the content of
the message w® — it is an example of existential forgery.

Another attacker can produce some new valid signatures without the knowledge of se-

cret key — when he obtains signatures s; = (w;,01) and sy = (w2, 02), he can compute
valid signatures of messages wjws and w; L The signatures are sj2 = (wjws,0102) and
/ —1 —1

s'=(wy o1 ).

7.4 ElGamal Signatures

The public key for ElGamal signature scheme is K = (p,q,y) where p is a prime, ¢ is a
primitive element of Z; and y = ¢* mod p. The integer 1 < x < p is secret key and is used
for signing messages.

To create the signature s of a message m we need to choose a random integer r € Z;,_,.
The signature s = sig(m,r) = (a,b) where a = ¢" mod p and b = (m — ax)r~! mod p — 1.
The signature s = (a,b) of message m is valid if y%a® = ¢* (mod p).

There are ways of producing (using ElGamal signature scheme) valid forged signatures,
but they do not allow the forger to create signature of message of his choice (see Exercise
7.1). There are also several ways of breaking the ElGamal signatures if these schemes are
used not carefully enough. If the random integer r of some signature is known, the forger
can compute the secret key x and then forge signatures at will. Another misuse of ElGamal
signature scheme is to use the same  to sign two messages. In such a case the secret key =
can be computed.

7.5 Digital Signature Algorithm

Digital Signature Algorithm (DSA) was accepted in 1994 as a standard.
The key for DSA is K = (p, ¢, 7, z,y), where p is a large prime, ¢ is a prime dividing p — 1,

-1

r > lisagthrootof1inZ, (r = AT mod p where h is a primitive element in Z,), = is a
random integer such that 0 < < g and y = 7* mod p. The components of public key are p,
g and r; integers x and y are kept secret.
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7. DIGITAL SIGNATURE

To sign a message w we need to choose a random integer k£ such that 0 < & < g and
ged(k,q) = 1. The signature of message w is s = sig(w,k) = (a,b), where a = (¥ mod
p) mod g and b = k~}(w + za) mod ¢, where kk~! = 1 (mod q). The signature s = (a,b) is
valid if (r*1y*2 mod p) mod ¢ = a, where u; = wz mod ¢, uz = az mod ¢ and z = b~! mod gq.

7.6  Ong-Schnorr-Shamir Subliminal Channel Scheme

A subliminal channel is a covert communication channel among a set of users, such that
everybody can see their common messages, without any secret information. The top secret
message is hidden in the sent message and its signature.

To set up a subliminal channel, the users need to choose a large n and an integer k such
that ged(k,n) = 1. The public key is a couple (n, k), where h = k=2 mod n = (k~1)? mod n.
The secret key for all subliminal channel users is k.

When some user wants to send a secret message w, he needs to choose another harm-
less message w’. The messages have to be such that ged(w,n) = 1 and ged(w’,n) = 1. The
signature of those messages is s = (51, S2), where

1 /
51:<w+w> mod n and
2 \w
/
Sg=k<w—w> mod n.
2 \w

The signature s is for everybody just a signature of message w’, for the subliminal channel
users are the message w’ and its signature s only numbers needed to get the hidden message
w.

The signature of message w’ is valid if 57 — hS3 mod n = w’. The hidden message w can
be obtained by computing w' (S + k7152) ™! mod n.

7.7 Lamport Signature Scheme

Lamport signature scheme shows how to construct a signature scheme for only one use from
any one way function. This signature cannot be forged because we are unable to invert the
one way function. On the other hand, Lamport signature scheme can be used to sign only
one message.

Let k be a positive integer and let P = {0, 1}* be the set of messages. Let f : Y — Z be a
one way function where Y is a set of partial signatures. Y = {y;;|1 <i < k,j = 0,1}, where
y;; is chosen randomly and Z = {z;;|z;; = f(yi;)}. The key K consists of f, Y and Z - Y is
the secret key; f and Z are public.

The signature of message © € Pis s = sig(x1...25) = (Y121, - -+ Yks,)- The signature
s is denoted as (ay,...,ax). The signature s of message = is valid if f(a;) = zi,, for each
ie{l,...,k}.

7.8 Exercises

Exercise 7.1

Consider the DSA signature scheme. Show that is possible to recover the secret key in the
following situations.
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7. DIGITAL SIGNATURE

1. A signer has precomputed one pair k, a with a = (7¥ mod ¢) mod p and always uses
this pair to sign his messages.

2. Asigner creates a signature (a, 0) for some message w.

Solution 7.1.1

1.  When we eavesdrop two messages w; and wp and their signatures (a,b;) and (a, bs)
sent by the signer, we can calculate the value of k — one of the secret keys. Suppose that
by > by and kk~! =1 (mod ¢), then we have:

by = k(w1 + za) mod ¢
by = k™ (ws + a) mod ¢
by — by = k(w1 + za) — k™! (wy + za) mod ¢
k(by — b2) = w1 + xa — wy — xa = wy — wy mod ¢
k= (w; —ws2) (b — bg)_l mod ¢
where (b; — b2)(by — b2) ! =1 (mod q). Because ¢ is a primeand 0 < by — b < b1 < g¢q
we know that ged(by —b2, ) = 1. Hence we can calculate (b; —b2) ! using the Extended
Euclidean algorithm and the Bezout’s identity.
With the knowledge of the value of k we can recover z:
b = k’l(wl + xa) mod ¢
kb = wy 4+ xa mod ¢q
kby — w1 = xza mod ¢
x = (kb — wl)a_l mod ¢
where aa™! = 1 (mod ¢). The value of a~! can be calculated the same way as de-
scribed above. Now, we know the value of the secret key = and we can send messages
pretending to be someone else.

2. When we sent a message w with signature (a,0), anybody can compute the value of
our secret key :
0=>b=k(w+za) mod ¢
k0 =0=w+ za mod ¢
ra = —w mod ¢

z=—wa" ' mod ¢
where aa™! =
our signature.

(mod ¢). Whoever did this calculation, can now send messages with

Exercise 7.2

Consider the ElGamal digital signature scheme. A valid signature pair (a,b) for a random
message w can be constructed as follows:

a = q'y’ mod p,
b= —aj ' mod (p— 1),
w = —aij ! mod (p — 1),
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7. DIGITAL SIGNATURE

for0<i,j <p—2andged(j,p—1)=1.

1. Letp = 1367, ¢ = 5 be the generator of Z; and y = 307 be the public key. Using
the construction described above find a signature and the corresponding message for
parameters i, j of your choice. Show derivation steps for equations for a, b and w.
Verify this signature.

2. How can we prevent this attack on ElGamal signature scheme?

Solution 7.2.1

1. We can choose for example i = 10 and j = 3. First we need to calculate j~! such that
jj~1 =1 (mod p — 1). From Extended Euclidean algorithm we have 1366 = 3 -455 + 1,
that means that 1 = 1366 — 3 - 455. Here we get 1 = 3 - (—455) (mod 1366), hence
j~1=—455=911 (mod 1366).

Now, we can calculate a, b and w.

a = ¢'y’ mod p = 5'9307% mod 1367 = 12

b= —aj ' mod (p—1) = —12-911 mod 1366
= —4(3-911) mod 1366 = —4 mod 1366 = 1362

w = —aij ' mod (p — 1) = bi mod (p — 1) = 1362 - 10 mod 1366
= —4-10 mod 1366 = —40 mod 1366 = 1326

b — w

The signature (a, b) of message w is valid if y®a” = ¢* (mod p). And we can see that

yaab _ yaa—aj’l mod (p—1) _ yaq—aijfl mod (p—l)y—ozjj’1 mod (p—1)

_ ya—aq—aij_l mod (p—1) _ qw‘
And we really get

y®a® mod p = 307'2 - 12352 mod 1367 = 1097
¢* mod p = 5320 mod 1367 = 1097

2. This forgery attack can be prevented by signing only the hash of the message. The
forger can determine the signature only for a random messages — he can never sign
any message of his choice, provided the security wasn’t broken.

Exercise 7.3

Consider the RSA signature scheme with the public key (n = 9797, e = 131). Decide whether
the following signatures are valid.

1. w=123, sig(w) = 6292
2. w =4337, sig(w) = 4768

3. w=4333, sig(w) = 1424
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7. DIGITAL SIGNATURE

Solution 7.3.1

The signature of message w using RSA signature scheme is sig(w) = w? mod n. We can ver-
ify the signature by calculating sig(w)® mod n. The signature is valid if sig(w)® = w (mod n).
The couple (n, e) is the public key.

1.  Letw = 123 be the message and sig(w) = 6292 its signature.
Because 6292!3! mod 9797 = 123 the signature is valid.

2. Letw = 4337 be the message and sig(w) = 4768 its signature.
Because 476831 mod 9797 = 9644 the signature is not valid.

3. Letw = 4333 be the message and sig(w) = 1424 its signature.
Because 1424'3! mod 9797 = 4333 the signature is valid.

Exercise 7.4

Consider the following signature scheme. Alice chooses two large secret primes p, ¢ and
computes their product n. She also chooses an element g € {0,...,n — 1} such that g gener-
ates a subgroup of order r in (Z,, -), where r is a large prime.

Alice’s public key is a pair (n, g), her private key is a number 7.

To sign a message m, Alice finds x such that xm = 1 (mod 7). Then she computes the
signature s = ¢g* (mod n). Suppose Bob has received a pair (m, s) from Alice.

1.  How is Bob able to verify her signature?
2. Show that r is a factor of at least one of numbersp — 1, ¢ — 1.

3. Show that if r is a factor of exactly one of these numbers then one can factor n using
only a public key.

Solution 7.4.1
1. When Bob receives couple (m, s) from Alice, he calculates

m m kr+1

st =g =g :gkrgEg (modn)
This is correct since ¢" = 1 (mod n). Therefore, Alice’s signature is valid if s™ = g.

2. The size of group (Z},) is |Z}| = ¢(n) = (p — 1)(¢ — 1). Let a be an element from Z7,
let & be the order of a then k divides |Z} | thus k divides (p—1)(¢—1). In our case k = r
and r is a prime. That means that r divides (p — 1) or r divides (¢ — 1). In other words
r is factor of at least one of numbers (p — 1), (¢ — 1).

3. Suppose, r divides ¢ — 1 and does not divide p — 1. Because g" mod n = 1 it must also
hold that g" mod p = 1. Since r is a prime, we can see that the order of g in Z; is r or 1.
Because r does not divide p — 1 (the size of group Zy), the order of g must be 1. Here
we get gmod p = 1 and g — 1 mod p = 0. Now it is obvious that g — 1 and n have a
common divisor. Hence, to factor n we merely have to compute the greatest common
divisor of numbers g — 1 and n and we get gcd(g — 1,n) = p.
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Exercise 7.5

Prove that the Ong-Schnorr-Shamir subliminal channel scheme is correct.

Solution 7.5.1

Ong-Schnorr-Shamir subliminal channel scheme is correct. Because w and w’ are coprimes
to n, we have ged(n, w) = ged(n,w’) = 1. Therefore we can easily calculate w~! mod n and
w'~! mod n using the Extended Euclidean algorithm and the Bezout’s identity.

We can see that the verification is correct:

w' = 5% — hS5 mod n

1 2 k? 12
-4 <w2 + 2w —|—w2> k2 (“’2 — o/ +w2> mod n
w w

1
= 1 (w'2w_2 + 2w 4+ w? —wPw 2 4+ 20 — wQ) mod n

4w’
:Tmodn:w/modn:w/

The decryption of subliminal message is also correct:

1 ! k !
S+ k1S5 mod n = 3 <w+w> + k712 (w —w> mod n

w 2 \w
1 <w’ w’ )
=—|—4+w+ — —w | modn
2 \w w
2(w'wt)

= — 5 mod n = w'w™ mod n

And now, we can see that

w=w'(S] + /{:*15’2)*1 mod n
=o' (w'w™)"! mod n
= w'w (w1 mod n

=wmodn=w.

Exercise 7.6

Assume that in the Lamport signature schemes two k-tuples, = and 2/, were signed by Bob.
Let f = d(z,2’) be the Hamming distance of x and z’. How many new messages is an
adversary able to sign in such a case?

Solution 7.6.1 by Luka3 Mojzis

If d(xz,z") = f then messages x and 2’ differs in exactly f positions p;,, i, - - ., Pi ;- Atevery
position p;,, where 1 < ¢ < f, we can choose from values 0 and 1 because we know both y; o
and y;,1. We are able to sign every message chosen this way. Therefore we can sign (2/ — 2)
new messages for f > 1. If f = 0 then # = 2’ and the security was not broken — we are
unable to sign any other message.
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Chapter 8

Elliptic Curve Cryptography and Factorization

Cryptography based on manipulating with points of so called elliptic curves is getting mon-
ument and it has tendency to replace public key cryptography based on infeasibility of fac-
torizing integers or of computing discrete logarithm.

The main advantage of elliptic curves cryptography is that to achieve a certain level of
security shorter keys are required then in case of classical cryptography. Using shorter keys
can result in savings in hardware implementations. The second advantage of elliptic curves
cryptography is that many attacks available for cryptography based on factorization and
discrete logarithm do not work for elliptic curves cryptography.

8.1 Elliptic Curve
An elliptic curve E is the graph of the equation
E:y*=234ax+b,

where a, b are (for our purposes) either rational number or integers (mod n), we extend all
the points of the graph by a point of infinity, denoted as O, that can be regarded as sitting at
the top and the bottom of y-axis at the same time. We consider only those elliptic curves that
have no multiple roots (i.e. 4a3 + 27b% # 0).

8.2 Addition of Points

On elliptic curve, addition of points can be defined in such a way that they form an Abelian
group. If the line through two different points P; and P> of an elliptic curve E intersects
E in a point ) = (z,y), then we define P, + P» = P3 = (z,—y). If the line through two
different points P, and P is parallel with y-axis, then we define P, + P, = O. If P, = P,
and the tangent to £ in P, intersects £ in a point ) = (z,y), then we define P; + P; = P3 =
(xz,—y). Now, it is easy to verify that the addition of points forms Abelian group with O as
the identity element.

Addition of points P, = (z1,41) and P2 = (2, y2) of an elliptic curve E : y* = 2% +az + b
can be computed using the formula P, + P, = P3 = (x3,y3), where x3 = A2 — 21 — x9 and
ys = AMx1 — x3) — y1 and A can be calculated as follows:

\— (Y2 —y1)(we —x1)" ' i P # P
(327 +a)(2y1) ™" ifP =P

If )\ is not finite, then P3 = O
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8. ELLIPTIC CURVE CRYPTOGRAPHY AND FACTORIZATION

8.3 Elliptic Curves over a Finite Field

The points on an elliptic curve E : y*> = 2® + ax + b (mod n) are such pairs (z,y) mod n
that satisfy the above equation, along with the point of infinity ©. The addition of points on
an elliptic curve over a finite field is done the same way as described above. The number of
points on an elliptic curve over a finite field is limited by the Hasse’s theorem.

Hasse’s theorem: If an elliptic curve £ (mod n) has N points, then |[N — n — 1] < 2y/n.

8.4 Discrete Logarithm Problem for Elliptic Curves

Let E be an elliptic curve and A, B its points such that B = kA for some k. The task to find
k is called the discrete logarithm problem for the elliptic curve E. No efficient algorithm to
compute discrete logarithm problem for elliptic curves is known and also no good general
attacks. Elliptic curves cryptography is based on these facts.

Every cryptosystem (protocol) based on discrete logarithm problem can be converted
into a cryptosystem (protocol) based on elliptic curves. The conversion goes as follows:

o Assign to the message (plaintext) a point on an elliptic curve.
. Change in the cryptosystem modular multiplication to addition of points on an elliptic
curve.

. Change in the cryptosystem exponentiation to multiplying a point on an elliptic curve
by an integer.

o To the point of an elliptic curve that results from the modified cryptosystem assign a
message (cryptotext).

8.5 Factorization

Factorization is a process, in which a composite number is decomposed into a product of
factors that are prime numbers. For each number there is an unique decomposition and the
product of factors is equal to the original integer.

When the number is very large, there is no efficient factorization algorithm known. The
hardest problem is to find factors of n = pq, where p and ¢ are distinct primes of the same
size but with a great distance |p — ¢|.

8.5.1 Factorization with Elliptic Curves

To factorize an integer n we choose an elliptic curve £, a point P on £ (mod n) and compute
either points i P for i = 2,3,4, ... or points 2/ P for j = 1,2,3,.... In doing that we need to
compute ged(z, — xp, n) for various points A, B (while computing \). If one of these values
is between 1 and n, we have a factor of n.

8.5.2 Pollard’s Rho Method

This method is based on the Birthday paradox — when we keep choosing pseudorandom
integers, there must be a pair a, b such that a = b (mod p), where p is a prime factor of
n, the number we want to factor. First, we need to choose some pseudorandom function

57

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

8. ELLIPTIC CURVE CRYPTOGRAPHY AND FACTORIZATION

f:Zy — Zy and an integer x¢ € Z,. Then we keep computing z;; = f(x;) fori =0,1,2,...
and ged(|zj — x|, n), for each k < j. If ged(|x; — zx|,n) > r > 1 then we have found a factor
r of n such that z; = z;, (mod 7).

There is several modification of this method. They differ in the frequency of calculating
ged(|zj — zx|, n). In the second Pollard’s rho method, we calculate ged(|z; — x|, n) only for
one k < j.If jis an (h + 1) bit integer (2" < j < 2"*1), then compute ged(|z; — zon-1],n).

8.6 Exercises

Exercise 8.1

Factorize the following numbers (Do not use just brute force; describe computation steps.)

1 232 _ 1
2 264 _ 1
3 3321

Solution 8.1.1 by Tomas Laurinéik

Using the quadratic sieve method and properties of Fermat’s numbers, we get:

L. (22-1)=02%+1)R%-1) =%+ +12*"+ D22+ 12+ 1)(2-1) =
1-3-5-17-257-65537 =3 F, - Iy - F3 - Fy, where F; is ith Fermat’s number. Because
the first four Fermat’s number are primes, the prime factors of (232 — 1) are 3,5, 17,257
and 65537.

2. (254 —1)=(2%24+1)(2%2 ~1)=3-F - F,- I3 - I - F5, where Fj is ith Fermat’s number.
The factors of F5 are 641 and 6 700417, hence the prime factors of (264 — 1) are 3, 5,17,
257,641, 65537 and 6700417.

3. (32-1)=03%+1)BY-1) =38+ )EF+BE*+ 1B+ 1B +1)B-1) =
2-4-10-82-6562 - 43046 722, where the prime factors are 4 = 2210=2-5,82=2-41,
6562 =2-17-193 and 43046 722 = 2 - 21 523 361. It can be shown, that all of the listed
factors are primes using the Fermat'’s test and the Lucas’s test or any factorization tool.
The prime factors of (332 — 1) are 27, 5,17, 41, 193 and 21 523 361.

Exercise 8.2

Show that 216 + 1 is prime number.

Solution 8.2.1 by Dusan Katona

We can see that 216 + 1 = 22" 1 1 is fourth Fermat number. To test whether a Fermat number
is prime, we can use the Pepin’s test:

F, is a prime if and only if 37 = -1 (mod F3,)

Fy—1 216411 15
For F; we have 3 = P 2

=3%" = —1 (mod 2% + 1) and therefore 216 + 1 is a prime.
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Solution 8.2.2 by Martin Mec

To show that 216 + 1 is prime we can use Lucas test:

Let n > 1. If for every prime factor ¢ of n — 1 there is an integer a such that

a” ' =1 (mod n) and T # 1 (mod n), then n is a prime.

In the first step of Lucas test we find out whether a and n are coprimes, in the second step
we test the order of a. If its order is equal to n — 1 then the size of the set Z; is n — 1 and
therefore n is a prime.

The number 216 has only one prime factor — 2. And we can see that 32" =1 (mod 2'6+1)

16 3
and 3°2 =32 = —1 (mod 216 + 1). The number 216 + 1 passes the test and therefore it is a
prime.

Exercise 8.3

Assume that n = pg, where p and ¢ are distinct primes.
1. Compute A=n-+1—p(n).

2. Compute roots of the equation z? — Az +n and give explicit expressions for computing
pand q.

3. Find the factorization for n = 15049 and ¢(n) = 14 800.

Solution 8.3.1
L. A=n+1l-9n)=pg+1-(p-1)(¢-1)=pe+1—-(pg—p—q+1)=p+q
2. The roots of equation 2% — Ax + n are p and g¢:

22— Az+n=0
2? —(p+q)z+pg=0
(x—p)(x—q) =0

The roots can be calculated using the quadratic formula:

p7A+\/A2—4n in—\/Az—éln
OME zMManrn CoOnga2. C

3. When we know the values of n and ¢(n), we can find the factors of n. For n = 15049
and p(n) = 14800 we get:

A =n+1—p(n)=15049 + 1 — 14800 = 250

A+ VA2 —4n 250+ /2304 149
p = = =
2 2
A—VAZ—4n 250 — /2304 101
q = = =

2 2
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Exercise 8.4

Consider the finite field K = GF(7)

= Zr. An elliptic curve E,; over K is defined by
E.p ={0}U{(z,y) € K*|y* = 2® + ax + b}.

Find all points of E» 1.

Verity Hasse’s Theorem.

For each point P € E, 1, compute — P and check that it lies on the curve as well.

To which group is E» ; isomorphic to?

Solution 8.4.1

1.

CuuDuongThanCong.com

To find all point of the curve Fy ; : y? = 23 4+ 22 + 1 we need to find the squares of all

elements of Z7:

For each z € Z; we should find 7?2, if it is a square in Z7, we have found new points of
the curve Ej ;:

1
[4f6[6[3[3]5

x ‘0
y2mod7‘1

For x = 0 we get points P, = (0,1) and P» = (0,6), for z = 1 we get another two
points P3 = (1,2) and P; = (1,5). And there is another one point of Es; — the point
Py = 0: Ey; ={0,(0,1),(0,6),(1,2),(1,5)}. Because the curve has no multiple roots
(4a® + 276 = 4 - 23 4+ 27 = 3 > 0), its points forms a group.

Y

We should verify the Hasse’s Theorem — and we can see that it holds:

IN—-p—1]<2p
5—7-1=3<2-2<2V7

For each point P = (z,y) € E2; we can find the point —P = (z, —y mod 7):
P -P
P=0 “P=0-=h
P =(0,1) | —P, = (0, -1 mod 7) = (0,6) = P,
P2 = (0, 6) —P2 (0 —6 mod 7) (0, 1) = P1
Py =(1,2) =(1,-2mod 7) = (1,5) = P4
Py =(1,5) —P4f (1, -5 mod 7) = (1,2) = P;

And we can see that all of this points lies on the curve Es ;.
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4. The group (E21,+) is isomorphic to the group (Zs, +). Let f : Ez 1 — Zs be a function
such that

We can see that f is a homomorphous mapping (f(a +g,, b) = f(a) +z; f(b)) and we
can easily find the inverse homomorphous mapping g:

9(0)— O

g(1) = (0,1)
9(2) = (1,5)
9(3) — (1,2)
g9(4) = (0,6)

Exercise 8.5

Use the tho method with f(z) = 22 — 1 and x¢ = 5 to find a factor of n = 7031.

Solution 8.5.1

Using the Pollard’s rho method with function f(x) = 2% — 1, 2o = 5 and x;41 = f(;) we get
the following factors of n = 7031:

T =a2—-1=24
ged(z1 — xo,n) = ged(19,7031) =1
Ty =x? —1=575
ged(zg — zp,n) = ged(570,7031) =1, ged(zg — x1,n) = ged(551,7031) =1
r3 =13 —1=167
ged(xs — wp,n) = ged(162,7031) =1,  ged(zg — x1,n) = ged(143,7031) =1,
ged(zs — x2,n) = ged(6623,7031) = 1
Ty =23 — 1 =6795
ged(xg — xp,n) = ged(6790,7031) =1, ged(zq — 21,n) = ged(6771,7031) =1,
ged(zy — z2,n) = ged(6220,7031) =1, ged(zy — 23,n) = ged(6628,7031) = 1
r5 =3 — 1 = 6478
ged(xs — xp,n) = ged(6473,7031) =1,  ged(zs — x1,n) = ged(6454,7031) = 1,
ged(xs — w2,n) = ged(5903,7031) =1, ged(zs — x3,n) = ged (6311, 7031) = 1,
ged(xs — x4,n) = ged(6714,7031) = 1
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T6 =% — 1= 3475
ged(xg — xo,n) = ged(3470,7031) =1,
ged(xg — 22, n) = ged (2900, 7031) =1,
ged(xg — w4,n) = ged(3711,7031) =1,

r7 =2 —1=3397
ged(zy — z9,n) = ged (3392, 7031)
ged(x7 — x9,n) = ged(2822,7031)

) = ged(3633, 7031)
) = ged (6953, 7031)

)

)

1
1
L,
1

(
ged(zy — 24,1
(

ged(x7 — xg,m

ged(xg — x1,n) = ged(3450,7031) =1,
ged(xg — 23,n) = ged(3308,7031) =1,
ged(xg — o5,n) = ged(4028,7031) = 1

ged(xr — x1,n) = ged(3373,7031) = 1,
ged(x7 — x3,n) = ged(3230,7031) = 1,
ged(zy — z5,n) = ged (3950, 7031) = 79,

And we can see that 79 is one factor of 7031: 7031/79 = 89.

Solution 8.5.2 by Luka3 Mojzis

To factor n = 7031 we can also use the second Pollard’s rho method.

ry =2t —1=24 ged(xy — zo,n) = ged(19,7031) =

Ty =22 —1 =575 ged(xg — x1,n) = ged(551,7031) =

r3 =13 — 1 =167 ged(zs — z1,n) = ged(143,7031) = 1
Ty =12 —1=6795 ged(zg — x3,n) = ged(6628,7031) =

x5 =15 — 1= 6478 ged(zs — x3,n) = ged(6311,7031) =

T =2 — 1= 3475 ged(xg — x3,n) = ged(3308,7031) =

r7 =g — 1= 3397 ged(27 — x3,n) = ged(3230,7031) =

xg = 2 — 1 = 1737 ged(zg — x7,1) = ged(5371,7031) =

T9 =22 — 1 = 869 ged(wg — 27,m) = ged(4503,7031) = 79

79 is prime and it is a prime factor of 7031, the other prime factor is 7031/79 = 89.

Exercise 8.6

Let n be an odd integer.

1. Describe a method based on Fermat’s theorem for testing whether n is composite.

2. Prove that for each odd composite number n there are always at least two numbers

a € 7% such that "' =1 (mod n).

3. Are there any numbers n for which the test (from (1)) fails for any a € Z;;? Prove that
such numbers do not exist or give an example of such number.

Solution 8.6.1 by Martin Mec

1.  The method is called Fermat’s primality test. It is based on the Fermat'’s little theorem:

Let p be a prime, a any positive integer such that ged(a,n) = 1, then a1 = 1

(mod n).
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It says that an odd positive integer n is composite if there exists a positive integer a
such that ged(a,n) = 1and a” ! # 1 (mod n).

2. Ifa=1lora=mn-1thena" ! =1 (mod n).If a = 1, then for any positive integer

k it holds that 1* = 1. If a = n - 1, ’chen1 a is even (because n is odd) and we have
(n—1)"t=(-1)"1t=(-1)3)"2 =172 =1 (mod n).

3. The test fails for Carmichael numbers. Carmichael numbers are not primes, but they
satisfy a”~! = 1 (mod n) for all values of a such that ged(a,n) = 1. The smallest
Carmichael number is 561.

Exercise 8.7

In 2002 three Indian scientists published the first deterministic polynomial algorithm decid-
ing the primality problem. The method uses the following theorem.

Let n > 1, a be integers such that gcd(a,n) = 1. Then n is a prime if and only if
(x 4+ a)” = 2" + ain Zy[z].

Prove this theorem.

Solution 8.7.1 by Tom4s Laurinéik
Firstly, we will show that if n is a prime then (z + a)" = 2" + a in Z,,[x]. We have
(1 g ek « (n k n—k
(x+a)" = kzo <k>m a" :a”—i—a:”—i—; <k>a: a"

Since n is a prime,

n\ n! ~ (n=1)!
(k) T Hm—k) T "Rk

Because n is a prime, for all 0 < I < n it holds ged(l,n) = 1. Therefore ged(k!(n — k)!l,n) =1
and n divides (}) for 0 < k < n. Hence (z + )" = 2™ + a™ in Z,[z]. Using the Fermat’s little
theorem we get @™ = a (mod n) and therefore (z + a)" = z" + a in Zj [z].

Secondly, we will show that if n is a composite number, then (z + a)" # 2™ + a in Zy[x].
Because n is composite we can write n = p°m, where p is a prime such that p°*! does not

divide n. We have
n\ n! o (pm)!
k) El(n—k)  kl(pem— k)

n\  (m)!  ptm(p®m —1)!
<p) CPprm = k)L (p— D ptm — k)
It is obvious that p¢ does not divide (;) Since ged(a,n) = 1, it holds that ged(a, p®) = 1 and
also ged(a™?, p°) = 1. There we get (7)aPa" "7 = ca?, where ¢ # 0 in Z,. Hence (z + a)" #
" + ain Zy[x].

for k = p we get
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Chapter 9

User Identification, Message Authentication and Secret Sharing

Most applications of cryptography ask for authentic data rather then secret data. A practi-
cally very important problem is how to protect data and communication against an active
attacker.

9.1 User Identification

User identification is a process at which one party (called a prover) convinces another party
(called verifier) of prover’s identity and that the prover has actually participated in the iden-
tification process. The purpose of any identification process is to preclude impersonation
(pretending to be another person).

User identification has to satisfy following conditions:

e  The verifier has to accept prover’s identity if both parties are honest.

o The verifier cannot later, after succesful identification, pose as a prover and identify
himself to another verifier (as the prover).

o A dishonest party that claims to be the other party has only negligible chance to iden-
tify himself successfully.

Every user identification protocol has to satisfy two security conditions:

) If one party (verifier) gets a message from the other party (prover), then the verifier is
able to verify that the sender is indeed the prover.

e  Thereis no way to pretend for a party when communicating with Bob, that he is Alice,
without Bob having a large chance to find out that.

Identification system can be based on any public key cryptosystem. The identification
goes as follows: Alice chooses a random r and sends ep(r) to Bob (ep is the encryption
algorithm for Bob). Alice identifies a communicating person as Bob, if he can send her back
r. Bob identifies a communicating person as Alice, if she can send him 7.

Identification scheme can be also based on any one way function f and key k. Both Alice
and Bob share a key k£ and a one way function f. The identification goes as follows: Bob
sends Alice a random number or string r. Alice sends Bob P = f(k, ). If Bob gets P, then
he verifies whether P = f(k,r). If yes, he starts to believe that the communicating person is
Alice. The process can be repeated to increase the probability of correct identification.
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9.2 Message Authentication

The goal of the data authentication protocols is to handle the case that data are sent through
insecure channels. By creating so-called Message Authentication Code (MAC) and sending
this MAC together with the message through an insecure channel, the receiver can verify
whether data were not changed in the channel. The price to pay is that the communicating
parties need to share a secret random key that needs to be transmitted through a very secure
channel.

The basic difference between MACs and digital signatures is that MACs are symmetric.
Anyone who is able to verify MAC of a message is also able to generate the same MAC
and vice versa. A scheme (M, T, K) for data authentication is given by a set of possible
messages (M), a set of possible MACs (T') and a set of possible keys (K). It is required
that to each key k from K there is a single and easy to compute authentication mapping
authy, : {0,1}* x M — T and a single easy to compute verification mapping very : M x T' —
{true, false}. An authentication scheme should also satisfy the condition of correctness: For
each m from M and k from K it holds very(m,c) = true if there exists an r from {0,1}*
such that ¢ = authy(r,m); and the condition of security: For any m from M and k from
K it is computationally unfeasible (without the knowledge of k) to find ¢ from 7T such that
verg(m, c) = true.

9.3 Secret Sharing Scheme

Secret sharing schemes distribute a secret among several users in such a way that only pre-
defined sets of users can recover the secret.

Let t < n be positive integers. A (n,t)-threshold scheme is a method of sharing a secret
S among a set P of n participants, P = {F;|1 < i < n}, in such a way that any ¢, or
more, participants can compute the value .S, but no group of ¢ — 1, or less, participants can
compute S. Secret S is chosen by a dealer D ¢ P.Itis assumed that the dealer distributes the
secret to participants secretly and in such a way that no participant knows shares of other
participants.

9.3.1 Shamir’s (n, t)-secret sharing scheme

Initiation phase: Dealer D chooses a prime p > n, n distinct z;, 1 < i < n and D gives the
value z; to the user P;. The values x; are public.

Share distribution phase: Suppose D wants to share secret S € Z, among the users. D
randomly chooses ¢t — 1 elements from Z,, a1, ...a;—1. For 1 < i < n D computes the
shares y; = f(x;), where f(x) = S + 23;11 a;xz’ mod p. D gives the computed share y;
to the participant P;.

Secret cumulation phase: Let participants P;,, ..., P;, want to determine secret S. Since f(z)
has degree t — 1, f(x) has the form f(z) = ap+ a1+ - - - +a;— 1271, and coefficients ay,
can be determined from ¢ equations f (mzj) = yi;, where all arithmetics is done modulo
p. It can be shown that equations obtained this way are linearly independent and the
system has only one solution. In such a case we get S = ay.
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9.4 Exercises

Exercise 9.1

Consider the following identification scheme (based on RDSA signatures).

Let n be a large integer of size s, v an element of Z; and ¢ a prime of size t (e.g. s = 1024
and t = 160 bits). Values n, v and ¢ are public parameters.

Leta € {2,...,9 — 1} be a private key and a@ = v* mod n be the corresponding public
key.

Identification goes as follows:

1. Prover chooses randomly k£ € {0,...,q — 1}, computes p = ~* mod n and sends p to
Verifier.

2. Verifier chooses challenge e € {0, ...,q — 1} and sends it to Prover.

3. Prover checks whether e € {0,...,¢q — 1} and computes = k — ae. Prover computes

r, I such that x = lg + r. Prover computes \ = 7 mod n and sends \, 7 to Verifier.
4.  Verifier checks whether r € {0,...,¢ — 1} and p = 4"aA? mod n.
Answer the following questions:
1.  Show that the verification is correct if both Prover and Verifier follow the instructions.

2. What happens if Verifier chooses e = 0? Compute [, 7 and X for this case. Does Verifier
learns something about Prover’s private key?

3. Show that Verifier, who sends e = 1 as his challenge, can learn (with high probability)
one bit of Prover’s private key after a few runs of the protocol. Compute /, r and X for
this case.

Solution 9.1.1

1. Letup =~* mod n is u computed by Prover.

Verifier calculates uy = 7 aA modn = 4" (7*)¢(y)?mod n = A" T+t modn =
A*tae mod n = k-l tae mod n = 4% mod n.

If both Prover and Verifier follow the protocol then pp = py.
2. If Verifier chooses ¢ = 0 then x = k. Because 0 < k < ¢ we have x = 0¢ + r and
l

we can see that r = k, 1 = 0 and A = 4" mod n = 1. Verifier then calculates ;1 =
Y'atAYmodn=+"-1-1modn =+" mod n.

If 4 = a we can see that 7" = 7% (mod n). Let o be the order of v in Z} then r = a
(mod o). If 0 > g then r = a. Because we don’t know anything about the order of -y nor
about the factorization of n, we cannot be sure that » = a, there is only the possibility
that it holds.

3. If Verifier chooses e = 1 then z = k£ — a.

e Ifk>athen0<z<gandhencex=0¢+ (k—a),sol=0,r=k—aand A = 1.

66

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

9. USER IDENTIFICATION, MESSAGE AUTHENTICATION AND SECRET SHARING

o Ifk<athen—g<z<0hencex=—qg+(k—a+gq),sol=-1,r=k—a+gqgand
A =~y Imodn.If v # 1 then \ # 1. If v = 1 then this protocol makes no sense.

With each run of the protocol we calculate dist and put the value into the the set Dist.

, r ifA=1(k—a>0),
dist =
r—q ifA#1(k—-a<0).

We can see that each d € Dist satisfies d > —a (theleastd =r—q¢=k—-a+q—q =
k—a=—afork=0)andd < q—1—a (thebiggestd =r =k —a=¢q—1—afor
k=gqg—1).Sowehave —a <d<qg—a—1whatisequalto -d <a<¢g—1-d.

Because this unequality is satisfied for each d € Dist it must hold also for d,;, =
min{d € Dist} and dp,q; = max{d € Dist}. We can see that —dp,q; < —dpmi, and
q_l_dmam S q—l—dmm-NOW we have _dmasc S _dmin S a S q_l_dmaz S q_l_dmin
and therefore —d, i, < a < q¢—1 — dpmas-

Now, we know the interval where a lies. That means that we can learn several most
significant bits of a.

Exercise 9.2

Consider Shamir’s (10, 3)-secret sharing scheme over Z, where p is a large prime. There is
one cheating share holder. His goal is to give a bad share in the secret cumulation phase. The
point is that nobody knows which share holder is the cheater.

1.  Describe a method to reconstruct the secret given all 10 shares and explain why it
works.

2. Determine the smallest number z of shares that are sufficient to reconstruct s. Explain.

3. Let us take any collection of fewer than x share holders. Can they obtain any informa-

tion about the secret? Explain.

Solution 9.2.1 by Maria Svoreiiova

1. We can compute secrets s1, s2, s3 for three disjoint sets of shares. We obtain at least two
same secrets s; = s; = s, because the cheater’s bad share can be in only one set. If we
have three disjoint sets of three shares and s; = s, = s3, we know that the cheater is
the one, not being in any set.

2. We know, that © must be greater then 3, otherwise we cannot reconstruct the secret.

If z = 4, then we obtain up to (g) = 4 different secrets. If all four reconstructed secrets
are the same, then there is no cheater in the group and we get the secret s. If the recon-
structed secrets are all different or do not exist, there is the cheater in the group and
only one of these secrets is our secret s — and we cannot find out which one it is.

If z = 5, then we obtain (g) = 10 possible secrets. If there is the bad share, then the se-

cret s appears (g) = 4 times. The other 6 secrets are different or do not exist. Therefore,
the smallest number z of shares sufficient to reconstruct the secret s is 5.
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3. If there are less then three share holders, they cannot obtain any information about the
secret.

Any three share holders can compute some secret, but they cannot be sure whether
9

they have recover the secret s. The probability, that they have found it is ((13))) =& =

70 %, what is not bad.

A group of four share holders can compute up to four possible secrets. If they are
all equal, they reconstructed the secret s. Otherwise, if one of the share holders is the
cheater, they know, that only one of the computed secrets is the secret s.

Exercise 9.3

Sender S broadcasts messages to n receivers Ry, ..., R,. Privacy is not important but mes-
sage authenticity is. Each of the receivers wants to be assured that the messages he has re-
ceived were sent by S. The subjects decide to use a MAC.

1.  Suppose all subjects share a secret key k. Sender S adds the MAC to every message he
sends using k and each receiver verifies it. Explain why this scheme is insecure.

2. Suppose sender S has a set A = {ki,...,ky,} of m secret keys. Each receiver R; has
some subset A; C A of the keys. Before sending a message, S computes MAC ¢; of the
message for each key k;. Then S sends all MACs ¢y, ..., ¢, with the message. When
receiver I?; receives a message, he accepts it as authentic if and only if all MACs corre-
sponding to keys in A; are valid. Which property should sets A, ..., A, satisfy to be
resistant to the attack from (1). Assume that the receivers cannot collude.

3. Suppose that n = 6. Show that it is sufficient for the sender to append 4 MACs to every
message to satisfy the condition derived in (2). Describe sets Ay, ..., A C {ki,...,ka}.

Solution 9.3.1

1.  When all receivers Ry, ..., R, share the same key £ for verifying that the received mes-
sage was sent by S, each of them can calculate the MAC using the key & for any mes-
sage m of his choice. When this cheater broadcasts this message m and its MAC calcu-
lated using the key k of S, all receivers verify that the message was sent by S.

2. Let1 <i,j <n,i+#jthen A; ¢ A;.If the keyset A; of receiver R; is a subset of keyset
A; of receiver R; then the receiver R; can send a message m with MACs cy,...,cp
where ¢; is computed using the key k; € A, ¢, such that k, ¢ A; is chosen randomly.
Now the receiver R; accepts the message (and thinks that the sender was .S) because
for each k,, € A; is the MAC ¢, valid.

If there are no such key sets A; C A; then the scheme is secure.

3. This scheme is secure because we can make 6 different sets A; such that |4;| = 2 and
A; C {k1, ko, k3, ks}. When we have elements &, ko, k3 and k4 we can get six different

pairs of them because
N _ 443
2) 22t 2 7
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Now, there is no receiver R; who can make another receiver think that the sender was
someone else.

Exercise 9.4

Alice wishes to prove to Bob that she really does know the private key d corresponding to
her RSA public key (n, ). They decide to use the following protocol:

2.

Bob chooses a random 7 and sends its encryption s = ¢ (mod n) to Alice.
Alice decrypts s by computing s? (mod n) and returns the result to Bob.

Bob accepts if and only if the returned message is 7.

Prove that the protocol is zero knowledge under the assumption that Bob is honest.

What kind of information can dishonest Bob learn?

Solution 9.4.1 by Toma$ Laurinéik

1.

Assume that Bob is honest. Bob chooses a random number r and encrypts it with Al-
ice’s public key. Since the number r is random, it gives no information about Alice’s
private key. Alice uses her private key to decrypt the number r and sends it back to
Bob. Bob cannot get any information about Alice’s private key, because everything he
gets is the random number r, that he already knows. If the parameters for RSA are
properly chosen, then this protocol is zero knowledge.

A dishonest Bob can use this protocol to decrypt messages sent to Alice by someone
else. He only sends the message he wants to decrypt (with some salt, so that Alice does
not recognize, that it is message sent to her) to Alice, Alice decrypts it and sends it back
to Bob.

Bob can also misuse this protocol. He can send a message m to Alice (not encrypted
with her public key), Alice sends him back m® mod n, what is Alice’s signature of mes-
sage m. Then, Bob can send any message m pretending that the sender is Alice.
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Chapter 10

Bit Commitment Protocols and Zero Knowledge Proofs

A protocol is an algorithm two (or more) parties have to follow to perform a communication.
A cryptographical protocol is a protocol to achieve secure communication during some goal
oriented cooperation.

10.1 Bit Commitment Protocols

In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the sense, that
Bob has no way of knowing which commitment Alice had made, and Alice has no way of
changing her commitment once she has made it (after Bob announces his guess as to what
Alice has chosen).

The basis of bit commitment protocols are bit commitment schemes. A bit commitment
scheme is a mapping f : {0,1} x X — Y, where X and Y are finite sets. A commitment to
bit b € {0, 1} is any value f(b, z) for x € X. Each bit commitment protocol has two phases —
the commitment phase and the opening phase. In the commitment phase, the sender sends
a bit b he wants to commit to (in an encrypted form) to the receiver. In the opening phase,
the sender sends to the receiver information that enables the receiver to get the bit b.

Each bit commitment scheme should have three properties:

Hiding(privacy): For no b € {0,1} and =z € X, it is feasible for Bob to determine b from
B = f(b,x).

Binding: Alice can open her commitment B by revealing x and b such that B = f(b, ), but
she should not be able to open a commitment B with both 0, 1.

Correctness: If both, the sender and the receiver, follow the protocol, then the receiver will
always learn the commitment b.

10.2 Oblivious Transfer Problem

The oblivious transter problem: Design a protocol for sending messages from Alice to Bob in
such a way that Bob receives the message with probability  and garbage otherwise. More-
over, Bob knows whether he got the message or garbage, but Alice has no idea which one he
got.

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to Bob in such a
way that Bob can choose which of the messages he receives (but he cannot choose both of
them), but Alice cannot learn Bob’s decision.
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10.3 Zero Knowledge Proof Protocols

One of the most important, and at the same time very counterintuitive, primitives for crypto-
graphic protocols are so called zero knowledge proof protocols. We can say that zero knowl-
edge proof protocol allows one party, usually called prover, to convince another party, called
verifier, that prover knows some facts without revealing to the verifier any information about
his knowledge. Zero knowledge proof protocols are a special type of so called interactive
proof systems.

An interactive proof system has the property of being zero knowledge if verifier, who
interacts with the honest prover, learns nothing from the interaction beyond the validity of
the statement being proved. There are several variants of zero knowledge, that differs in the
way how ”learning nothing” is specified.

In an interactive proof system, there are two parties: a prover, often called Peggy (a ran-
domized algorithm using a private random number generator), and a verifier, often called
Vic (a polynomial time randomized algorithm using a private random number generator).
Prover knows some secret, or knowledge, or a fact about a specific object, and wishes to
convince the verifier, through a communication with him, that he has this knowledge.

The interactive proof system consists of several rounds. In each round prover and verifier
alternatively do the following: receive a message from the other party, perform a private
computation and send a message to the other party. The communication starts usually by a
challenge of verifier and a response of prover. At the end, verifier either accepts or rejects
prover’s attempts to convince him.

A zero knowledge proof of a theorem 7' is an interactive two party protocol, in which
prover is able to convince verifier who follows the same protocol, by the overwhelming
statistical evidence, that T is true, if 1" is really true, but no prover is able to convince verifier,
that T is true, if 7" is not true. In addition, during the interaction, the prover does not reveal
to verifier any other information, except whether 7' is true or not. Therefore, after verifier
gets convinced, he can only believe that 7' is true.

10.4 3-Colorability of Graphs

With the following protocol Peggy can convince Vic that a particular graph G, known to both
of them, is 3-colorable and that Peggy knows such a coloring, without revealing to Vic any
information how such coloring looks.

Peggy colors the graph G = (V, E) with three colors and then she perform with Vic |E|?
times the following interaction, where vy, ..., v, are vertices of V.

1.  Peggy chooses a random permutation of colors, recolors G and encrypts, fori = 1,...,n,
the color ¢; of vertex v; by an encryption procedure e; (different for each 7).

Peggy then removes colors from vertices, labels the ith vertex of G with cryptotext
yi = ei(c;) and designs for her a table containing the color and cryptotext of each
vertex. Then Peggy shows Vic the graph with vertices labeled by cryptotexts.

2. Vic chooses an edge and ask Peggy to show him coloring of the adjacent vertices.

3. Peggy shows Vic the colors and encryption procedures corresponding to the selected
vertices.
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4. Vic performs encryption to verify that vertices really have colors as shown.

10.5 Exercises

Exercise 10.1

There is a cryptographic conference in Monaco. The best student of a cryptographic course
will be allowed to participate. Keiko and Hiroki are students with the maximum number of
points from exercises. Unfortunately, only one of them is allowed to participate so they have
to decide which one. Hiroki is now abroad, therefore Keiko suggest the following protocol
that allows them to remotely flip a coin.

) Keiko chooses either x = "THEAD” or + = “"TAIL” and picks a random number k. She
encrypts « with DES cipher using the key k. She obtains y = DESy(x).

. Keiko sends y to Hiroki.
° Hiroki flips a coin and tells Keiko which face is up.
° Keiko reveals k.

o Hiroki decrypts y with DES using the key k£ and obtains the guess of Keiko. If Keiko’s
guess is correct, she travels to Monte Carlo.

Is Keiko able to cheat?

Solution 10.1.1

Keiko would be able to cheat only if she knew such keys ki, k2 that DES;, (HEAD) =
y = DESy,(TAIL). To find such keys, she can built two lists DESy, (HEAD),k;) and
(DESy,(TAIL), kg). Both lists are sorted according to the first field of each entry. Keiko then
looks for collisions between the two lists and obtains keys k1, k2, such that DES), (HEAD) =
DES,,(TAIL).

Then when she sends y to Hiroki she learns what face of coin is up. Then she can send
back to Hiroki such k; that DE Sy, (z) = y where z is the face.

Because of the computational complexity, it is not easy to find such k; and k»; by the
Birthday paradox, we need to perform about 232 DES evaluations for getting one collision.
Therefore, we can say that Keiko is not able to cheat.

Exercise 10.2

Let p be a large prime. Let g be a generator of the group (Z,, -). Discuss the security of the
following commitment scheme.

o To committom € {0,1,...,p—1}, Alice randomly picksr € {0,1,...,p—1} and sends
¢ =g"m (mod p) to Bob.

. To open her commitment, Alice sends r and m to Bob.
1. Is this protocol hiding?

2. Is this protocol binding?
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Solution 10.2.1 by Lukés Mojzi$

1.

The protocol is hiding if m > 0 because when Bob gets ¢, he knows that ¢ = g mod p.
But he doesn’t know the two elements [; and ls such that [; 4 I3 = k. So he is not able
to learn anything about m.

There is only one exception: if m = 0 then ¢ = 0 irrespective of r that Alice chooses (g
is a generator of group Z,, - and there is no s such that g° = 0 because 0 ¢ Z;). And
because m = 0 is allowed, the protocol is not hiding.

The protocol is not binding because Alice can choose two distinct 71, 72 € {0,...,p—1}
and commit to m = ¢"2. Then she sends to Bob ¢ = ¢g"'m = ¢"¢"™ = m/¢g"™ and that
means that Alice can open her commitment with m and r; or with m’ and ry and it is
up to her which of the two pairs she sends to Bob.

Exercise 10.3

Consider the following implementation of 1-out-of-2 oblivious transfer which uses standard
oblivious transfer as the underlying primitive:

Let m = 3n where n is a security parameter. Alice randomly chooses a bit string r =
r1T2 ... Ty. Using standard oblivious transfer m times, she transfers it to Bob, one bit at
a time. Bob learns approximately one half of the bits of r. Let I C {1,...,m} be a set of
indices for which Bob learns r;.

Bob wants to learn Alice’s bit b,. He randomly chooses subset I, C I of size n and
I_s C{1,...,m}\ I also of size n. He sends Iy, I; in this order to Alice.

Alice checks that Iy and I; are of the correct form. She computes ¢; = b; ® P e T
where i € {0,1} and sends ¢, ¢; (in this order) to Bob.

Bob computes bs = ¢; & D¢/, 75-

Answer the following questions:

This protocol can fail sometimes. Explain why.

Explain how can Bob learn the desired value b;.

Can cheating Bob obtain any information about b;_?

Explain why Alice learns nothing about s.

Can cheating Bob learn both by and b,?

Why does Alice need to check correctness of Iy and I in the third step?

Could the number m be defined to be 2n instead of 3n? Could it be defined to be 5n?
Explain.
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Solution 10.3.1

1.

The protocol fails if Bob learns less then n bits of R because then he cannot construct
the set I,. If Bob learns more then 2n bits of R then the protocol also fails because Bob
is not able to construct the correct set I; _;.

Bob knows I and he learns ¢, from Alice. Then he computes:

CS@@Tj:bS@@Tj@Tj:bs

J€l j€ls  jels
because the operation @ is commutative and it holds that x = 2 ® a @ a for each a.

Cheating Bob can learn both values b, and b;—; only if he knows more then or equal to
2n bits of R. When he knows less then 2n bits of R then he cannot learn anything about
bi_s.

She cannot learn anything about s because the only information she gets from Bob is
the two distinct sets Iy and I;. The information about the set I is hidden to her and so
she doesn’t know which set I is the subset of 1.

When Bob knows more then or equal to 2n bits of R. Then he construct such sets I and
I that Iy, I; C I and IoNI; = 0. Because he knows all the values r; where i € IoUI; C I,
he can compute both values by and b;.

Alice need to check the correctness of Iy and I; because if |I5| < n then the probability
that I U I; C I increases so as insecurity. If Ip N I; = A # () then the probability that
Iy U I; C I also increases.

If m = 2n than the security of the protocol increases but the probability that Bob learns
at least n bits of R decreases. However, if Bob is lucky and learns more then n of R,
he cannot follow the protocol correctly, because he is unable to construct correct sets I
and I;.

If m = 5n than Bob learns approximately % = 2, 5n bits of R and so he can learn both
bo and by with higher probability and hence the protocol is less secure.

Exercise 10.4

Consider the zero knowledge proof protocol for 3-colorability of graphs that was described
in the section 10.4.

1.

Suppose Peggy does not know 3-coloring of a 3-colorable graph G = (V, E), where
|V| = nand |E| = m. What is the maximal probability that Peggy makes Vic accept her
proof in single iteration of the protocol? Explain.

Suppose Peggy is honest but her random number generator is faulty. The identity per-
mutation is chosen with probability 2 and each of the other permutations is chosen
with probability %0. Explain how cheating Vic can discover 3-coloring of G with high
probability after sufficiently many iterations of the protocol.
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Solution 10.4.1 by Martin Vejnar

1.  Peggy does not know the 3-coloring of graph GG, but according to the protocol, she must
commit to a permutation of her coloring to Vic. Once committed, Peggy cannot change
the coloring. Vic then chooses a random edge and asks Peggy to reveal the coloring
of its adjacent vertices. Peggy cannot lie and Vic can check, whether the vertices have
different color.

Since Peggy does not know the coloring, she must color the graph randomly. The prob-
ability, that both vertices have the same color, for any given pair of vertices, is .

Hence, after one iteration of the protocol, the probability of Vic accepting the proof is
2. After k iteration of the protocol, the probability would be (2)*.

2. With the broken generator, Vic will be able to determine the coloring of an arbitrary
pair of adjacent vertices. In every iteration of the protocol, he just has to choose the
same edge (the one connecting the aforementioned vertices), until a sufficient number
of colorings is retrieved. Then, statistically, about half of the colorings will be the same.
Such a dominant coloring is the Peggy’s original coloring. Thus, Vic retrieves a coloring
for the two vertices.

Now, Vic merely has to use this procedure repeatedly, until the coloring of all vertices
is revealed.
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