

Cryptography and Network Security 1. Overview

cuu duong than cong . com

Lectured by Nguyễn Đức Thái

cuu duong than cong . com

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

Outline

- Security concepts
- X.800 security architecture
- Security attacks, services, mechanisms
- Models for network (access) security
- Network security terminologies

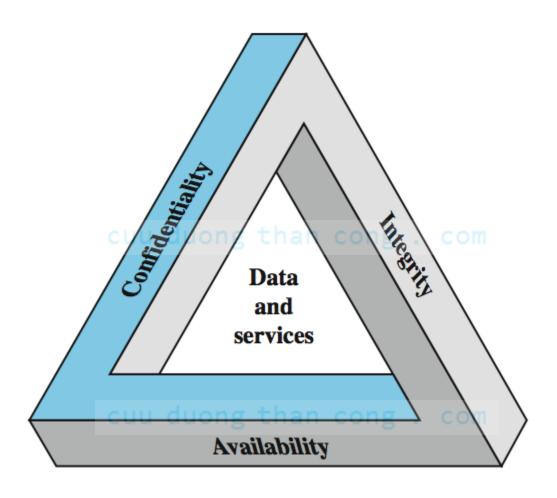
cuu duong than cong . com

Computer Security Objectives

Confidentiality

- Data confidentiality
 - Assures that private or confidential information is not made available or disclosed to unauthorized individuals
- Privacy
 - Assures that individuals control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed

Integrity


- Data integrity
 - Assures that information and programs are changed only in a specified and authorized manner
- System integrity
 - Assures that a system performs its intended function in an unimpaired manner, free from deliberate or inadvertent unauthorized manipulation of the system

Availability

Assures that systems work promptly and service is not denied to authorized users

CIA Triad

The Security Requirements Triad

Possible Additional Concepts

Authenticity

 Verifying that users are who they say they are and that each input arriving at the system came from a trusted source

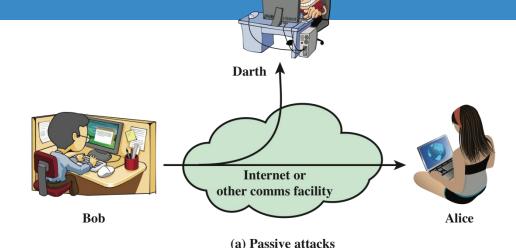
Accountability

 The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity

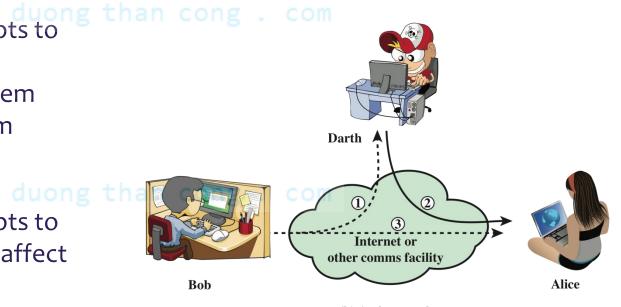
Terms

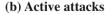
Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.


Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade security services and violate the security policy of a system.




Security Attacks

A means of classifying security attacks, used both in X.800 and RFC 4949, is in terms of passive attacks and active attacks

- A passive attack attempts to learn or make use of information from the system but does not affect system resources
- An active attack attempts to alter system resources or affect their operation

Passive Attacks

- Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions.
- The goal of the opponent is to obtain information that is being transmitted.
- Two types of passive attacks are
 - the release of message contents and
 - ii. traffic analysis.

cuu duong than cong . com

Active Attacks

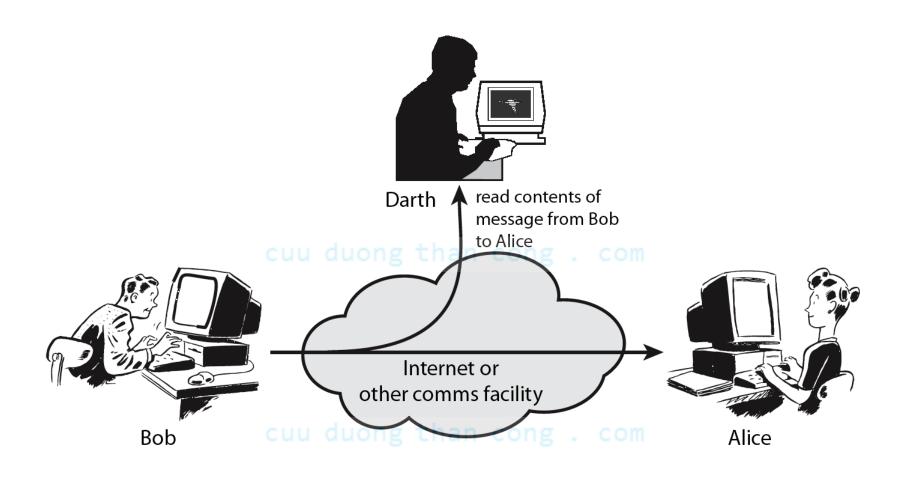
- Involve some modification of the data stream or the creation of a false stream
- Difficult to prevent because of the wide variety of potential physical, software, and network vulnerabilities
- Goal is to detect attacks and to recover from any disruption or delays caused by them

Masquerade

- Takes place when one entity pretends to be a different entity
- Usually includes one of the other forms of active attack

Replay

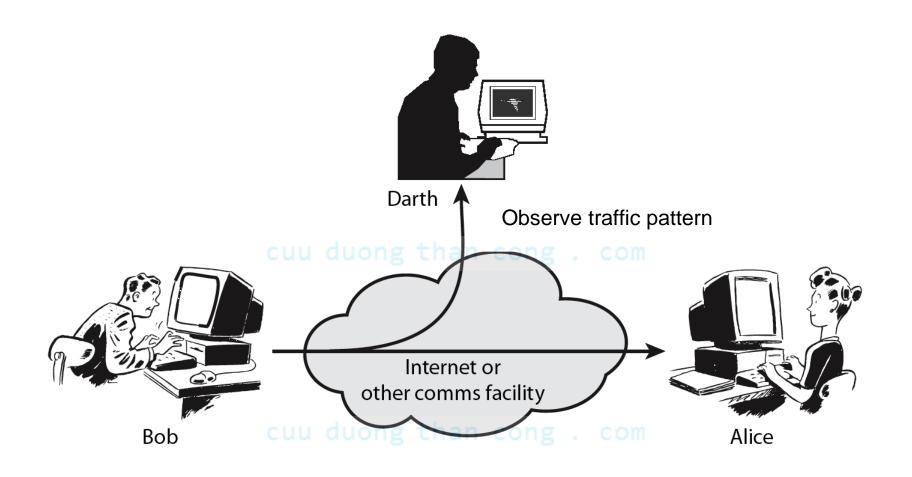
 Involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect


Modification of messages

 Some portion of a legitimate message is altered, or messages are delayed or reordered to produce an unauthorized effect

Denial of service

 Prevents or inhibits the normal use or management of communications facilities


Passive Attacks - Interception

Release of message contents

Passive Attacks – Traffic Analysis

Traffic analysis

Handling Attacks

- Passive attacks focus on <u>Prevention</u>
 - Easy to stop
 - Hard to detect

- Active attacks focus on <u>Detection</u> and <u>Recovery</u>
 - Hard to stop
 - Easy to detect

cuu duong than cong . com

Security Services (X.800)

- Authentication assurance that communicating entity is the one claimed
 - have both peer-entity & data origin authentication
- Access Control prevention of the unauthorized use of a resource
- Data Confidentiality protection of data from unauthorized disclosure
- Data Integrity assurance that data received is as sent by an authorized entity
- Non-Repudiation protection against denial by one of the parties in a communication
- Availability resource accessible/usable

Authentication

- Concerned with assuring that a communication is authentic
 - In the case of a single message, assures the recipient that the message is from the source that it claims to be from

cuu duong than cong . com

 In the case of ongoing interaction, assures the two entities are authentic and that the connection is not interfered with in such a way that a third party can masquerade as one of the two legitimate parties

cuu duong than cong . com

Two specific authentication services are defined in X.800:

- Peer entity authentication
- Data origin authentication

Access Control

- The ability to <u>limit</u> and <u>control</u> the access to host systems and applications via communications links
- To achieve this, each entity trying to gain access must first be identified, or authenticated, so that access rights can be tailored to the individual

cuu duong than cong . com

Data Confidentiality

- The protection of transmitted data from passive attacks
 - Broadest service protects all user data transmitted between two users over a period of time
 - Narrower forms of service includes the protection of a single message or even specific fields within a message
- The protection of traffic flow from analysis
 - This requires that an attacker not be able to observe the source and destination, frequency, length, or other characteristics of the traffic on a communications facility

Data Integrity

Can apply to a stream of messages, a single message, or selected fields within a message

Connection-oriented integrity service, one that deals with a stream of messages, assures that messages are received as sent with no duplication, insertion, modification, reordering, or replays

A connectionless integrity service, one that deals with individual messages without regard to any larger context, generally provides protection against message modification only

Non-repudiation

 Prevents either sender or receiver from denying a transmitted message

 When a message is sent, the receiver can prove that the alleged sender in fact sent the message

 When a message is received, the sender can prove that the alleged receiver in fact received the message

Security Mechanism

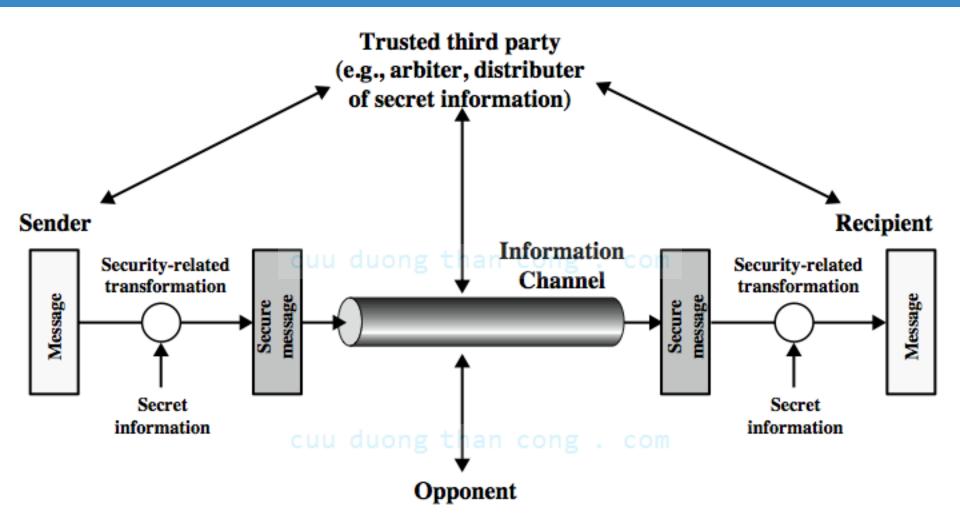
- As known as control
- Feature designed to <u>detect</u>, <u>prevent</u>, or <u>recover</u> from a security attack
- No single mechanism that will support all services required
- However <u>one particular element</u> underlies many of the security mechanisms in use:
 - cryptographic techniques

cuu duong than cong . com

Security Mechanism (X.800)

Specific Security Mechanisms

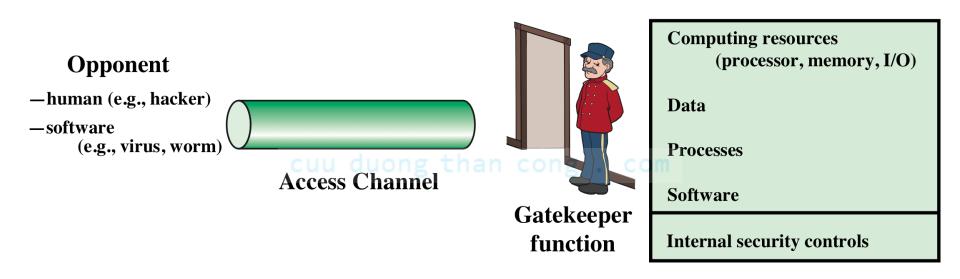
- Encipherment
- Digital signatures
- Access controls
- Data integrity
- Authentication exchange
- Traffic padding
- Routing control
- Notarization


cuu duong

Pervasive Security Mechanisms

- Trusted functionality
- Security labels
- Event detection
- Security audit trails
- Security recovery

A Model for Network Security



A Model for Network Security

- Using this model requires us to:
 - 1. <u>design a suitable algorithm</u> for the security transformation
 - 2. <u>generate the secret information</u> (keys) used by the algorithm
 - 3. <u>develop methods</u> to distribute and share the secret information
 - 4. specify a protocol enabling the principals to use the transformation and secret information for a security service

A Model for Network Access Security

Figure 1.3 Network Access Security Model

CuuDuongThanCong.com https://fb.com/tailieudientucntt 23

Information System

A Model for Network Access Security

Using this model requires us to:

- 1. Select appropriate gatekeeper functions to identify users
- Implement security controls to ensure only authorised users access designated information or resources

Note that model does not include:

- 1. monitoring of system for successful penetration
- 2. monitoring of authorized users for misuse
- 3. audit logging for forensic uses, etc.

Unwanted Access

- Placement in a computer system of logic that exploits vulnerabilities in the system and that can affect application programs as well as utility programs such as editors and compilers
- Programs can present two kinds of threats:
 - Information access threats
 - Intercept or modify data on behalf of users who should not have access to that data
 - Service threats duong than cong . com
 - o Exploit service flaws in computers to inhibit use by legitimate users

Some Basic Terminologies

- plaintext original message
- ciphertext coded message
- <u>cipher</u> algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- <u>decipher</u> (decrypt) recovering plaintext from ciphertext
- <u>cryptography</u> study of encryption principles/methods
- <u>cryptanalysis</u> (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- <u>cryptology</u> field of both cryptography and cryptanalysis

Summary

- Security concepts
 - Confidentiality,
 - Integrity,
 - Availability
- X.800 security architecture
- Security attacks, services, mechanisms
- Models for network (access) security

cuu duong than cong . com

References

 Cryptography and Network Security, Principles and Practice, William Stallings, Prentice Hall, Sixth Edition, 2013

cuu duong than cong . com

cuu duong than cong . com

