





- Instructor: Assoc. Prof. Dr. Tran Ngoc Thinh
  - Email: tnthinh@cse.hcmut.edu.vn
  - Phone: 38647256 (5843)
  - Office: A3 building, CE Department
  - Office hours: Mondays, 09:00-11:00

# cuu duong than cong . com

#### Administrative Issues

- Class
  - Time and venue: Fridays, 15:05 17:30, 407A4
  - Web page:
    - http://www.cse.hcmut.edu.vn/~tnthinh/DS1
  - Textbook:
- [1] "Digital Systems 8th Edition" Ronald J. Tocci, Prentice-Hall 2001
- [2] "Digital Logic Design Principles" N. Balabanian, B. Carlson, John Wiley & Sons, Inc , 2004
- [3] "Digital Design -3<sup>rd</sup> Edition"—John F. Wakerly, Prentice-Hall 2001
- [4] "Fundamentals of Digital Logic 2<sup>nd</sup> edition" Stephen Brown, Zvonko Vranesic, McGraw Hill 2008



#### Administrative Issues (cont.)

- Grades
  - 20% Lab
  - 20% assignments/quizzes + presentation
  - -30% midterm
  - -30% final exam



#### What is This Course All About?

- What is covered?
  - This course provides fundamentals of logic design, such as: number presentation and codes, Boolean algebra and logic gates, analysis and design of combinational and sequential circuits.

#### · Learning outcomes

- Knowledge: Number presentation and codes, Boolean algebra and logic gates.
- Skill: Design and Analyze combinational circuits and sequential circuits.



- > Number presentation and codes
- ➤ Boolean algebra and logic gates
- > Combinational circuits
- ➤ Sequential circuits



#### Course Outline – Part I

- Number system and codes
  - Decimal, Binary, Octal, Hexadecimal Number Systems
  - Conversions
  - Codes: Gray, Alphanumeric Codes
  - Parity Method for Error Detection
- Logic gates and Boolean Algebra
  - Boolean Constants and Variables
  - Truth Tables
  - Basic gates: OR AND NOT Operation with OR Gates
  - NOR Gates and NAND Gates
  - Boolean Theorems
  - DeMorgan's, DeMorgan's Theorems

#### Course Outline – Part II

- Combinational Logic Circuits
  - Sum-of-Product Form
  - Simplifying Logic Circuits
  - Algebraic Simplification
  - Designing Combinational Logic Circuits
  - Karnaugh Map Method
  - Parity Generator and Checker
  - Enable/Disable Circuits
  - Basic Characteristics of Digital ICs
  - Troubleshooting Digital Systems



#### Course Outline - Part III

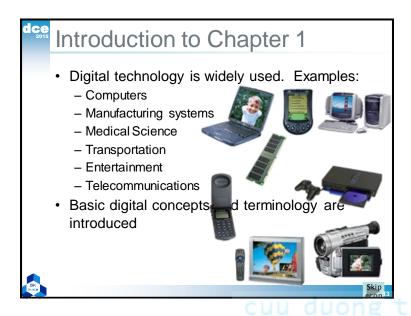
- · Flip-Flops and Related Devices
  - Latches, D Latch
  - Clock Signals and Clocked Flip-Flops
  - S-C, J-K, D Master/Slave Flip-Flops
  - Flip-Flop Application
    - · Detecting an Input Sequence
    - · Data Storage and Transfer
    - · Serial Data Transfer: Shift Registers
    - · Frequency Division and Counting
    - · Microcomputer Application
  - Schmitt-Trigger, On-shot Devices
  - Analyzing Sequential & Clock Generator Circuits
  - Troubleshooting Flip-Flop Circuits



- · Operation and Circuits
  - Representing Signed Numbers
  - Addition, Subtraction in the 2's-Complement System
  - Multiplication, Division of Binary Numbers
  - BCD Addition
  - Hexadecimal Arithmetic
  - Arithmetic Circuits
    - · Parallel Binary Adder
    - Design of a Full Adder
    - · Carry Propagation
    - · Integrated Circuit Parallel Adder
  - 2's Complement System
  - BCD Adder
  - ALU Integrated Circuits

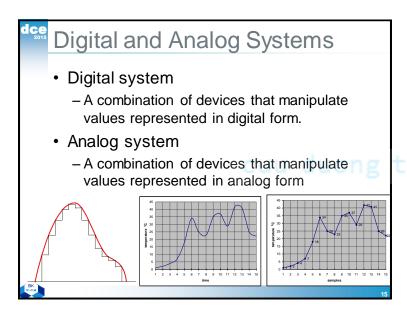







- · Counters and Registers
  - Asynchronous & Synchronous Counters
  - Up/Down Counters
  - Cascading BCD Counters
  - Synchronous Counter Design
  - Shift-Register Counters
  - Counter Application: Frequency Counter, Digital Clock
  - Integrated-Circuit Registers
  - Some ICs:
    - Parallel In/Parallel Out The 74ALS174/HC174
    - Serial In/Serial Out The 4731B
    - Parallel In/Serial Out The 74ALS185/HC165
    - Serial In/Parallel Out The 74ALS164/HC164

#### Course Outline - Part VI

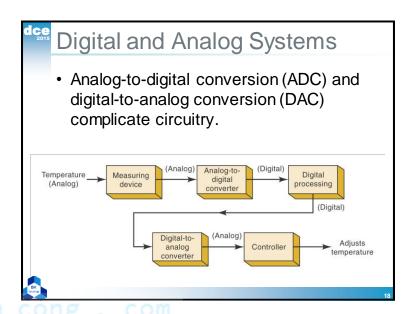

- · MSI Logic Circuits
  - Decoders
  - Encoders
  - Multiplexers
  - Demultiplexers





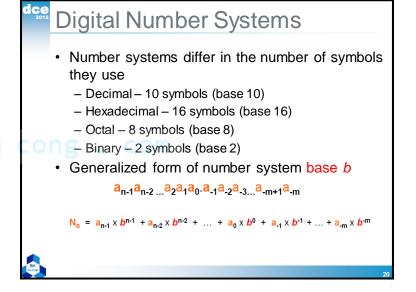
## Numerical Representations

- Analog Representation
  - A continuously variable, proportional indicator.
  - Examples of analog representation:
    - · Sound through a microphone causes voltage changes.
    - · Mercury thermometer varies over a range of values with temperature.
- Digital Representation
  - Varies in discrete (separate) steps.
  - Examples of digital representation:
    - Passing time is shown as a change in the display on a digital clock at one minute intervals.

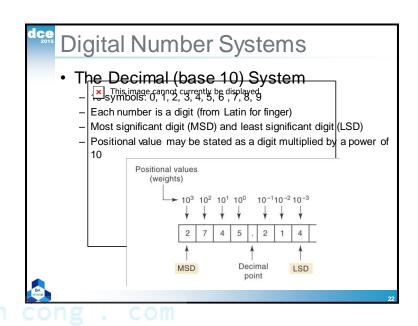


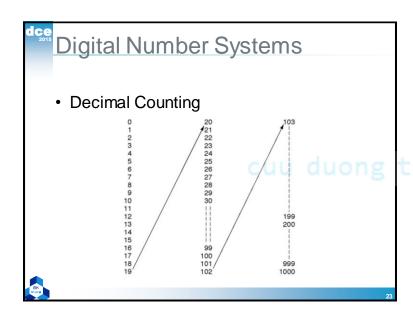

#### Digital and Analog Systems

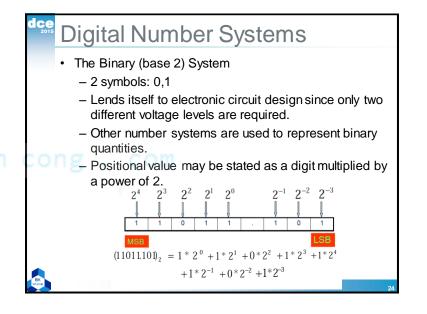
- Advantages of digital
  - Ease of design
  - Well suited for storing information.
  - Accuracy and precision are easier to maintain
  - Programmable operation
  - Less affected by noise
  - Ease of fabrication on IC chips

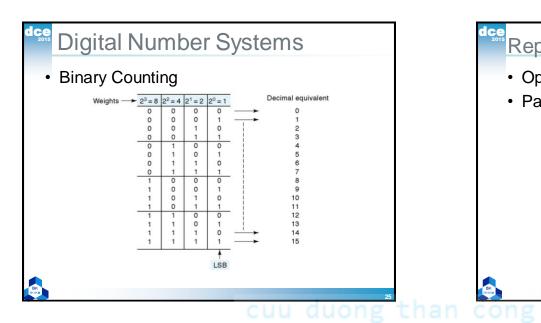

#### Digital and Analog Systems

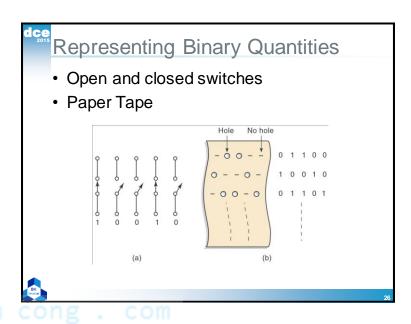
- There are limits to digital techniques:
  - The world is analog
  - The analog nature of the world requires a time consuming conversion process:
    - 1. Convert the physical variable to an electrical signal (analog).
    - 2. Convert the analog signal to digital form.
    - 3. Process (operate on) the digital information
    - 4. Convert the digital output back to real-world analog form.

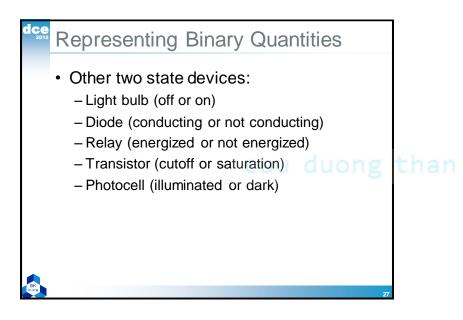


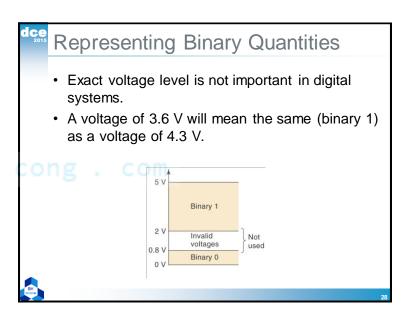


# Digital and Analog Systems


- The audio CD is a typical hybrid (combination) system.
  - Analog sound is converted into analog voltage.
  - Analog voltage is changed into digital through an ADC in the recorder.
  - Digital information is stored on the CD.
  - At playback the digital information is changed into analog by a DAC in the CD player.
  - The analog voltage is amplified and used to drive a speaker that produces the original analog sound.





# • Example • $(7,239)_{10} = 7 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 9 \times 10^0$ • $(4103.2)_5 = 4 \times 5^3 + 1 \times 5^2 + 0 \times 5^1 + 3 \times 5^0 + 2 \times 5^1 = 4 \times 125 + 1 \times 25 + 0 \times 5 + 3 \times 1 + 2 \times 5^1 = (528.4)10$ • $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = (27)10$ • $(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0$ $24.6_{(8)} = 2 \times 8^1 + 4 \times 8^0 + 6 \times 8^{-1} = 20.75_{(10)}$







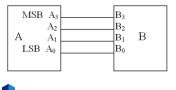


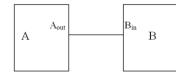





#### Representing Binary Quantities

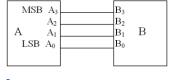
- Digital Signals and Timing Diagrams
  - Timing diagrams show voltage versus time.
  - Horizontal scale represents regular intervals of time beginning at time zero.
  - Timing diagrams are used to show how digital signals change with time.
  - Timing diagrams are used to compare two or more digital signals.
  - The oscilloscope and logic analyzer are used to produce timing diagrams.

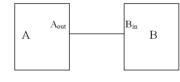

#### Digital Circuits/Logic Circuits


- Digital circuits produce and respond to predefined voltage ranges.
- Logic circuits used interchangeably with the term, digital circuits.
- Digital integrated circuits (ICs) provide logic operations in a small reliable package.



#### Parallel and Serial Transmission


- Parallel transmission all bits in a binary number are transmitted simultaneously. A separate line is required for each bit.
- Serial transmission each bit in a binary number is transmitted per some time interval.





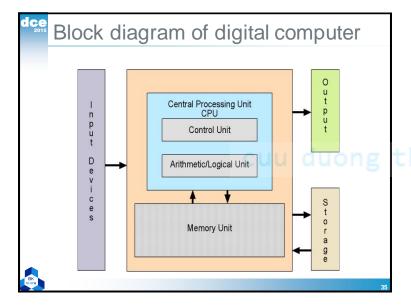

#### Parallel and Serial Transmission

- Parallel transmission is faster but requires more paths.
- · Serial is slower but requires a single path.
- Both methods have useful applications which will be seen in later chapters.





B


#### Memory

- A circuit which retains a response to a momentary input is displaying memory.
- · Memory is important because it provides a way to store binary numbers temporarily or permanently.
- · Memory elements include:
  - Magnetic
  - Optical
  - Electronic latching circuits

## **Digital Computers**

- Computer a system of hardware that performs arithmetic operations, manipulates data (usually in binary form), and makes decisions.
- Computers perform operations based on instructions in the form of a program at high speed and with a high degree of accuracy.





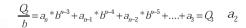
#### **Digital Computers**

- · Major parts of a computer
  - Input unit processes instructions and data into the memory.
  - Memory unit stores data and instructions.
  - Control unit interprets instructions and sends appropriate signals to other units as instructed.
  - Arithmetic/logic unit arithmetic calculations and logical decisions are performed.
  - Output unit presents information from the memory to the operator or process.
  - The control and arithmetic/logic units are often treated as one and called the central processing unit (CPU)



# Digital Computers

- · Types of computers
  - Microcomputer
    - Most common (desktop PCs)
    - · Has become very powerful
  - Minicomputer (workstation)
  - Mainframe
  - Microcontroller
    - · Designed for a specific application
    - · Dedicated or embedded controllers
    - Used in appliances, manufacturing processes, auto ignition systems, ABS systems, and many other applications.




- · The hexadecimal number system is introduced.
- Since different number systems may be used in a system, it is important for a technician to understand how to convert between them.
- Binary codes that are used to represent different information are also described.

$$\begin{aligned} \mathbf{N}_{10} &= (\mathbf{a}_n \mathbf{a}_{n-1} \mathbf{a}_{n-2} \dots \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_0)_b \\ &= \mathbf{a}_n \times \mathbf{b}^n + \mathbf{a}_{n-1} \times \mathbf{b}^{n-1} + \mathbf{a}_{n-2} \times \mathbf{b}^{n-2} + \dots + \mathbf{a}_0 \times \mathbf{b}^0 \end{aligned}$$

$$\frac{N}{h} = a_n * b^{n-1} + a_{n-1} * b^{n-2} + a_{n-2} * b^{n-3} + \dots + a_1 = Q_1 \qquad a_0$$

$$\frac{Q}{b} = a_n * b^{n-2} + a_{n-1} * b^{n-3} + a_{n-2} * b^{n-4} + \dots + a_2 = Q \qquad a_1$$





#### Binary to Decimal Conversion

 Convert binary to decimal by summing the positions that contain a 1.

$$2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} =$$

$$32 + 0 + 0 + 4 + 0 + 1 = 37_{10}$$

$$1011.101_2 = ?$$

#### Decimal to Binary Conversion

- Two methods to convert decimal to binary:
  - Reverse process described above
  - Use repeated division



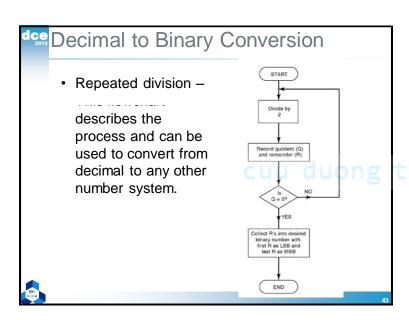
#### dce Decimal to Binary Conversion

- · Reverse process described above
  - Note that all positions must be accounted for

$$37_{10} = 2^5 + 0 + 0 + 2^2 + 0 + 2^0$$

$$1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1_2$$

#### Decimal to Binary Conversion


- · Repeated division steps:
  - Divide the decimal number by 2
  - Write the remainder after each division until a quotient of zero is obtained.
  - The first remainder is the LSB and the last is the MSB

$$\frac{41}{2} = 20 \quad a_0 = 1 \qquad \frac{5}{2} = 2 \qquad a_3 = 1$$

$$\frac{20}{2} = 10 \quad a_1 = 0 \qquad \frac{2}{2} = 1 \qquad a_4 = 0$$

$$\frac{10}{2} = 5 \qquad a_2 = 0 \qquad \frac{1}{2} = 0 \qquad a_5 = 1$$

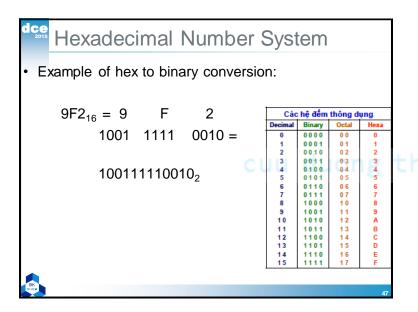
$$(41)_{10} = (a_5 a_4 a_3 a_2 a_1 a_0)_2 = (101001)_2$$

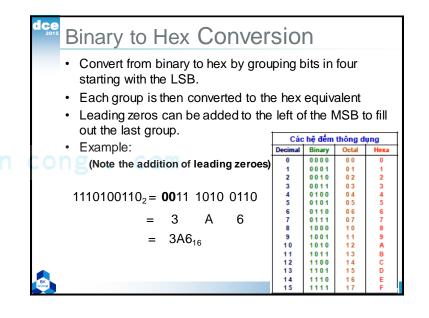


#### Hexadecimal Number System

- Most digital systems deal with groups of bits in even powers of 2 such as 8, 16, 32, and 64 bits.
- · Hexadecimal uses groups of 4 bits.
- Base 16
  - 16 possible symbols
  - 0-9 and A-F
- Allows for convenient handling of long binary strings.

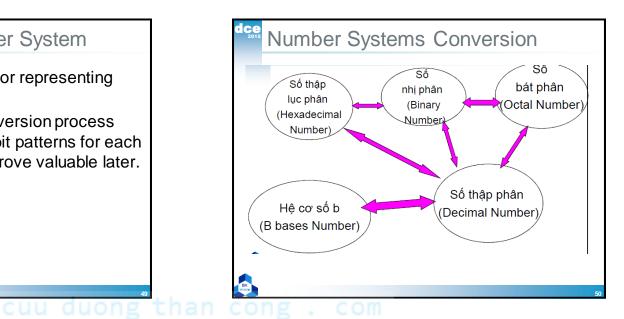
# Hexadecimal Number System

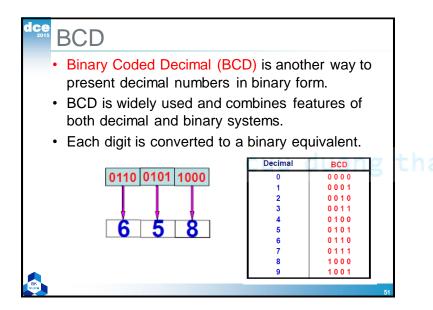

 Convert from hex to decimal by multiplying each hex digit by its positional weight.

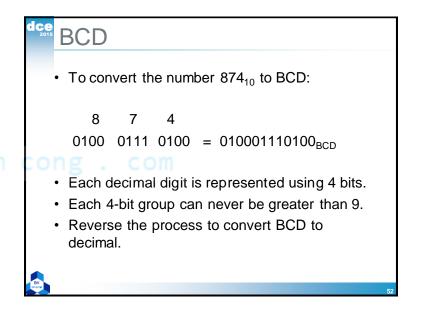

Example: 163<sub>16</sub>

$$163_{16} = 1 \times (16^{2}) + 6 \times (16^{1}) + 3 \times (16^{0})$$
$$= 1 \times 256 + 6 \times 16 + 3 \times 1$$
$$= 355_{10}$$




- Convert from decimal to hex by using the repeated division method used for decimal to binary and decimal to octal conversion.
- Divide the decimal number by 16
- The first remainder is the LSB and the last is the MSB.
  - Note, when done on a calculator a decimal remainder can be multiplied by 16 to get the result.
     If the remainder is greater than 9, the letters A through F are used.



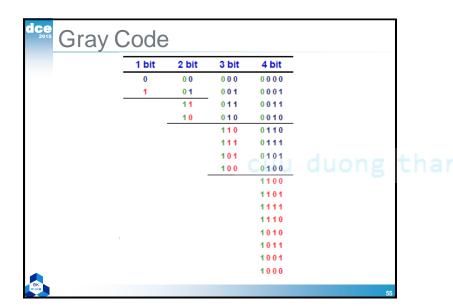

#### Hexadecimal Number System

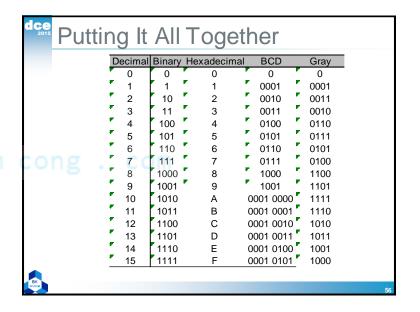
- Hexadecimal is useful for representing long strings of bits.
- Understanding the conversion process and memorizing the 4 bit patterns for each hexadecimal digit will prove valuable later.








#### BCD


- BCD is not a number system.
- BCD is a decimal number with each digit encoded to its binary equivalent.
- A BCD number is not the same as a straight binary number.
- The primary advantage of BCD is the relative ease of converting to and from decimal.

#### Gray Code

- The gray code is used in applications where numbers change rapidly.
- In the gray code, only one bit changes from each value to the next.

|                  |    |    | <u>Binary</u> | Gray Code |    |
|------------------|----|----|---------------|-----------|----|
| e of BCD is the  |    |    | 000           | 000       |    |
|                  |    |    | 001           | 001       |    |
| ting to and from |    |    | 010           | 011       |    |
|                  |    |    | 011           | 010       |    |
|                  |    |    | 100           | 110       |    |
|                  |    |    | 101           | 111       |    |
|                  |    |    | 110           | 101       |    |
|                  |    |    | 111           | 100       |    |
|                  | 53 | BK |               |           | 54 |
|                  |    |    |               |           |    |





#### The Byte, Nibble, and Word

- 1 byte = 8 bits
- 1 nibble = 4 bits
- 1 word = size depends on data pathway size.
  - Word size in a simple system may be one byte (8 bits)
  - Word size in a PC is eight bytes (64 bits)

#### Alphanumeric Codes

- Represents characters and functions found on a computer keyboard.
- ASCII American Standard Code for Information Interchange.
  - Seven bit code:  $2^7 = 128$  possible code groups
  - Examples of use are: to transfer information between computers, between computers and printers, and for internal storage.

#### BK TPJICM

#### Parity Method for Error Detection

- Binary data and codes are frequently moved between locations. For example:
  - Digitized voice over a microwave link.
  - Storage and retrieval of data from magnetic and optical disks.
  - Communication between computer systems over telephone lines using a modem.
- Electrical noise can cause errors during transmission.
- Many digital systems employ methods for error detection (and sometimes correction).

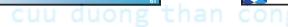
#### Parity Method for Error Detection

- The parity method of error detection requires the addition of an extra bit to a code group.
- This extra bit is called the parity bit.
- The bit can be either a 0 or 1, depending on the number of 1s in the code group.

15

• There are two methods, even and odd.






#### Parity Method for Error Detection

- Even parity method the total number of bits in a group including the parity bit must add up to an even number.
  - The binary group 1 0 1 1 would require the addition of a parity bit 1 1 0 1 1

#### Parity Method for Error Detection

- Odd parity method the total number of bits in a group including the parity bit must add up to an odd number.
  - The binary group 1 1 1 1 would require the addition of a parity bit 1 1 1 1 1



#### Parity Method for Error Detection

- The transmitter and receiver must "agree" on the type of parity checking used.
- Two bit errors would not indicate a parity error.
- Both odd and even parity methods are used, but even seems to be used more often.

#### Odd Parity Error Detection

- Original data 10011010
- With Odd Parity <u>1</u>10011010
- 1-bit error 110<u>1</u>11010
- Number of 1s even indicates 1-bit error
- 2-bit error 110<u>1</u>1<u>0</u>010
- Number of 1s odd no error indicated
- 3-bit error 1<u>001</u>1<u>0</u>010
- Number of 1s even indicates error

