
Cao Hoang Tru
CSE Faculty - HCMUT

1
10 September 2008

Chapter 1: Introduction
• Pseudocode
• Abstract data type
• Algorithm efficiency

Cao Hoang Tru
CSE Faculty - HCMUT

2
10 September 2008

Pseudocode
• What is an algorithm?

Cao Hoang Tru
CSE Faculty - HCMUT

3
10 September 2008

Pseudocode
• What is an algorithm?

– The logical steps to solve a problem.

Cao Hoang Tru
CSE Faculty - HCMUT

4
10 September 2008

Pseudocode
• What is a program?

– Program = Data structures + Algorithms (Niklaus Wirth)

Cao Hoang Tru
CSE Faculty - HCMUT

5
10 September 2008

Pseudocode
• The most common tool to define algorithms.

• English-like representation of the code
required for an algorithm.

Cao Hoang Tru
CSE Faculty - HCMUT

6
10 September 2008

Pseudocode
• Pseudocode = English + Code

relaxed syntax being instructions using
easy to read basic control structures

(sequential, conditional, iterative)

Cao Hoang Tru
CSE Faculty - HCMUT

7
10 September 2008

Pseudocode

Algorithm Header

Algorithm Body

Cao Hoang Tru
CSE Faculty - HCMUT

8
10 September 2008

Pseudocode
• Algorithm Header:

– Name
– Parameters and their types
– Purpose

• what the algorithm does
– Precondition

• precursor requirements for the parameters
– Postcondition

• taken action and status of the parameters
– Return condition

• returned value

Cao Hoang Tru
CSE Faculty - HCMUT

9
10 September 2008

Pseudocode
• Algorithm Body:

– Statements
– Statement numbers

• decimal notation to express levels
– Variables

• important data
– Algorithm analysis

• comments to explain salient points
– Statement constructs

• sequence, selection, iteration

Cao Hoang Tru
CSE Faculty - HCMUT

10
10 September 2008

Example
Algorithm average

Pre nothing
Post numbers read and their average printed
1 i = 0
2 loop (all data not read)

1 i = i + 1
2 read number
3 sum = sum + number

3 average = sum / i
4 print average
5 return
End average

Cao Hoang Tru
CSE Faculty - HCMUT

11
10 September 2008

Algorithm Design
• Divide-and-conquer
• Top-down design
• Abstraction of instructions
• Step-wise refinement

Cao Hoang Tru
CSE Faculty - HCMUT

12
10 September 2008

Abstract Data Type
• What is a data type?

– Class of data objects that have the same properties

Cao Hoang Tru
CSE Faculty - HCMUT

13
10 September 2008

Abstract Data Type
• Development of programming concepts:

– GOTO programming
• control flow is like spaghetti on a plate

– Modular programming
• programs organized into subprograms

– Structured programming
• structured control statements (sequence, selection, iteration)

– Object-oriented programming
• encapsulation of data and operations

Cao Hoang Tru
CSE Faculty - HCMUT

14
10 September 2008

Abstract Data Type
• ADT = Data structures + Operations

Cao Hoang Tru
CSE Faculty - HCMUT

15
10 September 2008

Abstract Data Type

Implementation of
data and operations

Interface

User knows what a data
type can do.

How it is done is hidden.

Cao Hoang Tru
CSE Faculty - HCMUT

16
10 September 2008

Abstract Data Type

data structure

function A

function B

internal
function

data

data

Cao Hoang Tru
CSE Faculty - HCMUT

17
10 September 2008

Example: Variable Access
• Rectangle: r

– length: x
– width: y

• Rectangle: r
– length: x (hidden)
– width: y (hidden)
– get_length()
– get_width()

Cao Hoang Tru
CSE Faculty - HCMUT

18
10 September 2008

Example: List
• Interface:

– Data:
• sequence of components of a particular data type

– Operations:
• accessing
• insertion
• deletion

• Implementation:
– Array, or
– Linked list

Cao Hoang Tru
CSE Faculty - HCMUT

19
10 September 2008

Algorithm Efficiency
• How fast an algorithm is?

• How much memory does it cost?

• Computational complexity: measure of the
difficulty degree (time or space) of an
algorithm.

Cao Hoang Tru
CSE Faculty - HCMUT

20
10 September 2008

Algorithm Efficiency
• General format:

f(n)
n is the size of a problem (the key number that determines
the size of input data)

Cao Hoang Tru
CSE Faculty - HCMUT

21
10 September 2008

Linear Loops
1 i = 1 1 i = 1
2 loop (i <= 1000) 2 loop (i <= 1000)

1 application code 1 application code
2 i = i + 1 2 i = i + 2

The number of times the body The number of times the body
of the loop is replicated is of the loop is replicated is
1000 500

Cao Hoang Tru
CSE Faculty - HCMUT

22
10 September 2008

Linear Loops

n

time
f(n) = n.T

f(n) = (n/2).T

Cao Hoang Tru
CSE Faculty - HCMUT

23
10 September 2008

Logarithmic Loops
Multiply loops
1 i = 1
2 loop (i <= 1000)

1 application code
2 i = i × 2

The number of times the body of the loop is replicated is
log2n

Cao Hoang Tru
CSE Faculty - HCMUT

24
10 September 2008

Logarithmic Loops
Multiply loops Divide loops
1 i = 1 1 i = 1000
2 loop (i <= 1000) 2 loop (i >= 1)

1 application code 1 application code
2 i = i × 2 2 i = i / 2

The number of times the body of the loop is replicated is
log2n

Cao Hoang Tru
CSE Faculty - HCMUT

25
10 September 2008

Logarithmic Loops

n

time

f(n) = (log2n).T

Cao Hoang Tru
CSE Faculty - HCMUT

26
10 September 2008

Nested Loops

Iterations = Outer loop iterations × Inner loop iterations

Cao Hoang Tru
CSE Faculty - HCMUT

27
10 September 2008

Linear Logarithmic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= 10)

1 application code
2 j = j × 2

3 i = i + 1

The number of times the body of the loop is replicated is
nlog2n

Cao Hoang Tru
CSE Faculty - HCMUT

28
10 September 2008

Linear Logarithmic Loops

n

time f(n) = (nlog2n).T

Cao Hoang Tru
CSE Faculty - HCMUT

29
10 September 2008

Quadratic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= 10)

1 application code
2 j = j + 1

3 i = i + 1

The number of times the body of the loop is replicated is
n2

Cao Hoang Tru
CSE Faculty - HCMUT

30
10 September 2008

Dependent Quadratic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= i)

1 application code
2 j = j + 1

3 i = i + 1

The number of times the body of the loop is replicated is
1 + 2 + … + n = n(n + 1)/2

Cao Hoang Tru
CSE Faculty - HCMUT

31
10 September 2008

Quadratic Loops

n

time f(n) = n2.T

Cao Hoang Tru
CSE Faculty - HCMUT

32
10 September 2008

Asymptotic Complexity
• Algorithm efficiency is considered with only

big problem sizes.

• We are not concerned with an exact
measurement of an algorithm's efficiency.

• Terms that do not substantially change the
function’s magnitude are eliminated.

Cao Hoang Tru
CSE Faculty - HCMUT

33
10 September 2008

Big-O Notation
• f(n) = c.n ⇒ f(n) = O(n).

• f(n) = n(n + 1)/2 = n2/2 + n/2 ⇒ f(n) = O(n2).

Cao Hoang Tru
CSE Faculty - HCMUT

34
10 September 2008

Big-O Notation
• Set the coefficient of the term to one.

• Keep the largest term and discard the
others.
log2n n nlog2n n2 n3 ... nk ... 2n n!

Cao Hoang Tru
CSE Faculty - HCMUT

35
10 September 2008

Standard Measures of Efficiency

intractable10,000!O(n!)factorial

intractable210,000O(2n)exponential

hours10,000kO(nk)polynomial

15-20 min. 10,0002O(n2)quadratic

2 seconds140,000O(nlog2n)linear logarithmic

.1 seconds10,000O(n)linear

microseconds14O(log2n)logarithmic

Est. TimeIterationsBig-OEfficiency

Assume instruction speed of 1 microsecond and 10 instructions in loop.
n = 10,000

Cao Hoang Tru
CSE Faculty - HCMUT

36
10 September 2008

Standard Measures of Efficiency

n

O(n)

log2n

nlog2nn2 n

Cao Hoang Tru
CSE Faculty - HCMUT

37
10 September 2008

Big-O Analysis Examples
Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,

val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data

size is number of columns and rows in matrix
Post matrices added - result in matrix3
1 r = 1
2 loop (r <= size)

1 c = 1
2 loop (c <= size)

1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]
2 c = c + 1

3 r = r + 1
3 return
End addMatrix

Cao Hoang Tru
CSE Faculty - HCMUT

38
10 September 2008

Big-O Analysis Examples
Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,

val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data

size is number of columns and rows in matrix
Post matrices added - result in matrix3
1 r = 1
2 loop (r <= size)

1 c = 1
2 loop (c <= size)

1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]
2 c = c + 1

3 r = r + 1
3 return
End addMatrix

Nested linear loop: f(size) = O(size2)

Cao Hoang Tru
CSE Faculty - HCMUT

39
10 September 2008

Time Costing Operations
• The most time consuming: data movement

to/from memory/storage.

• Operations under consideration:
– Comparisons
– Arithmetic operations
– Assignments

Cao Hoang Tru
CSE Faculty - HCMUT

40
10 September 2008

Recurrence Equation
• An equation or inequality that describes a

function in terms of its value on smaller
input.

Cao Hoang Tru
CSE Faculty - HCMUT

41
10 September 2008

Recurrence Equation
• Example: binary search.

918177623622211410874

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

Cao Hoang Tru
CSE Faculty - HCMUT

42
10 September 2008

Recurrence Equation
• Example: binary search.

918177623622211410874

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

f(n) = 1 + f(n/2) ⇒ f(n) = O(log2n)

Cao Hoang Tru
CSE Faculty - HCMUT

43
10 September 2008

Best, Average, Worst Cases
• Best case: when the number of steps is

smallest.

• Worst case: when the number of steps is
largest.

• Average case: in between.

Cao Hoang Tru
CSE Faculty - HCMUT

44
10 September 2008

Best, Average, Worst Cases
• Example: sequential search.

817791623622142110784

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

Best case: f(n) = O(1)
Worst case: f(n) = O(n)

Cao Hoang Tru
CSE Faculty - HCMUT

45
10 September 2008

Best, Average, Worst Cases
• Example: sequential search.

817791623622142110784

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

Average case: f(n) = ∑i.pi

pi: probability for the target being at a[i]

pi = 1/n ⇒ f(n) = (∑i)/n = O(n)

Cao Hoang Tru
CSE Faculty - HCMUT

46
10 September 2008

P and NP Problems
• P: Polynomial (can be solved in polynomial

time on a deterministic machine).

• NP: Nondeterministic Polynomial (can be
solved in polynomial time on a non-
deterministic machine).

Cao Hoang Tru
CSE Faculty - HCMUT

47
10 September 2008

P and NP Problems
Travelling Salesman Problem:
A salesman has a list of cities, each of which he must visit
exactly once. There are direct roads between each pair of
cities on the list.
Find the route the salesman should follow for the shortest
possible round trip that both starts and finishes at any one of
the cities.

A

B

C

D E

1 10

5 5
515

Cao Hoang Tru
CSE Faculty - HCMUT

48
10 September 2008

P and NP Problems
Travelling Salesman Problem:

Deterministic machine: f(n) = n(n-1)(n-2) … 1 = O(n!)

⇒ NP problem

A

B

C

D E

1 10

5 5
515

Cao Hoang Tru
CSE Faculty - HCMUT

49
10 September 2008

P and NP Problems
• NP-complete: NP and every other problem

in NP is polynomially reducible to it.

• Open question: P = NP?

NP

P

NP-complete

