Chapter 1: Introduction

* Pseudocode
» Abstract data type
 Algorithm efficiency
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Pseudocode

* What is an algorithm?
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Pseudocode

* What is an algorithm?
— The logical steps to solve a problem.
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Pseudocode

 What is a program?
— Program = Data structures + Algorithms (Niklaus Wirth)
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Pseudocode

* The most common tool to define algorithms.

* English-like representation of the code
required for an algorithm.
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Pseudocode

* Pseudocode = English + Code

— ™~

relaxed syntax being Instructions using
easy to read basic control structures

(sequential, conditional, iterative)
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Pseudocode

Algorithm Header

Algorithm Body
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Pseudocode
 Algorithm Header:

— Name
— Parameters and their types
— Purpose

« what the algorithm does
— Precondition

e precursor requirements for the parameters
— Postcondition

» taken action and status of the parameters
— Return condition

 returned value
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Pseudocode
 Algorithm Body:

— Statements

— Statement numbers
« decimal notation to express levels

— Variables
* important data
— Algorithm analysis
« comments to explain salient points

— Statement constructs
e sequence, selection, iteration
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Example

Algorithm average
Pre nothing
Post numbers read and their average printed
1 1=0
2 loop (all data not read)
1 i=i1+1
2 read number
3 sum =sum + number
3 average =sum/i
4  print average
5 return
End average
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Algorithm Design

 Divide-and-conquer

* Top-down design

« Abstraction of instructions
« Step-wise refinement
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Abstract Data Type
 What is a data type?

— Class of data objects that have the same properties
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Abstract Data Type

* Development of programming concepts:
— GOTO programming

« control flow is like spaghetti on a plate
— Modular programming

e programs organized into subprograms
— Structured programming

« structured control statements (sequence, selection, iteration)
— Object-oriented programming

« encapsulation of data and operations
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Abstract Data Type

 ADT = Data structures + Operations
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Abstract Data Type

Interface

User knows what a data

Implementation of type can do.

data and operations

How it is done is hidden.
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Abstract Data Type

data

data
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Example: Variable Access

* Rectangle: r
— length: x
— width: y

* Rectangle: r
— length: x (hidden)
— width: y (hidden)
— get_length()
— get_width()
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Example: List

* |Interface:
— Data:

« sequence of components of a particular data type

— Operations:
e accessing
* insertion
 deletion

* Implementation:
— Array, or
— Linked list
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Algorithm Efficiency

« How fast an algorithm is?
 How much memory does it cost?

« Computational complexity: measure of the
difficulty degree (time or space) of an
algorithm.
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Algorithm Efficiency

 General format:
f(n)

n is the size of a problem (the key number that determines
the size of input data)
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Linear Loops

1 1=1 1 1=1

2 loop (i <= 1000) 2 loop (i <= 1000)
1 application code 1 application code
2 i=i+1 2 i=i+2

The number of times the body The number of times the body

of the loop is replicated is of the loop is replicated is
1000 500
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Linear Loops

time
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Logarithmic Loops

Multiply loops

1 i=1

2 loop (i <= 1000)
1 application code
2 i=ix2

The number of times the body of the loop is replicated is
log,n
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Logarithmic Loops

Multiply loops Divide loops

1 i=1 1 1=1000

2 loop (i <= 1000) 2 loop (i>=1)
1 application code 1 application code
2 i=ix2 2 i=il2

The number of times the body of the loop is replicated is
log,n
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Logarithmic Loops

time

f(n) = (log,n).T

Cao Hoang Tru 25
CSE Faculty - HCMUT 10 September 2008



Nested Loops

lterations = Outer loop iterations x Inner loop iterations
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Linear Logarithmic Loops

1 1=1
2 loop (i <= 10)
1 j=1
2 loop (j <=10)
1 application code
2 |=]x2
3 i=i+1

The number of times the body of the loop is replicated is
nlog,n
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Linear Logarithmic Loops

time f(n) = (nlog,n).T
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Quadratic Loops

1 i=1
2 loop (i <= 10)
1 j=1
2 loop (j <=10)
1 application code
2 j=]+1
3 i=i+1

The number of times the body of the loop is replicated is
n2
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Dependent Quadratic Loops

1 application code
2 j=j+1
3 i=i+1

The number of times the body of the loop is replicated is
1+2+...+n=n(n+1)/2
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Quadratic Loops

time f(n) =n2.T
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Asymptotic Complexity

 Algorithm efficiency is considered with only
big problem sizes.

* We are not concerned with an exact
measurement of an algorithm's efficiency.

* Terms that do not substantially change the
function’s magnitude are eliminated.
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Big-O Notation
* f(n) = c.n = f(n) = O(n).
« f(n) =n(n +1)/2=n2%/2 + n/2 = f(n) = O(n?).
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Big-O Notation

« Set the coefficient of the term to one.

« Keep the largest term and discard the
others.

log,n n nlog,n n?2 n3 ... nk .. 2" nl
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Standard Measures of Efficiency

Efficiency Big-O Iterations Est. Time
logarithmic O(log,n) 14 microseconds
linear O(n) 10,000 .1 seconds
linear logarithmic | O(nlog,n) 140,000 2 seconds
quadratic O(n?) 10,0007 15-20 min.
polynomial O(nk) 10,000k hours
exponential O(2") 210,000 intractable
factorial O(n!) 10,000! Intractable

Assume instruction speed of 1 microsecond and 10 instructions in loop.

n = 10,000

Cao Hoang Tru
CSE Faculty - HCMUT

35

10 September 2008



Standard Measures of Efficiency

O(n) n2 nlog,n N
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Big-O Analysis Examples

Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,
val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post matrices added - result in matrix3

1 r=1
2 loop (r <= size)
1 c=1

2 loop (c <= size)
1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]

2 c=c+1
3 r=r+1
3 return

End addMatrix
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Big-O Analysis Examples

Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,
val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post matrices added - result in matrix3

1 r=1
2 loop (r <= size)
1 c=1

2 loop (c <= size)
1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]

2 c=c+1
3 r=r+1 : : ._ 9
3 return Nested linear loop: f(size) = O(size?)

End addMatrix
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Time Costing Operations

* The most time consuming: data movement
to/from memory/storage.

* Operations under consideration:

— Comparisons
— Arithmetic operations
— Assignments
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Recurrence Equation

* An equation or inequality that describes a
function in terms of its value on smaller
input.
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Recurrence Equation

 Example: binary search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 |7 | 8 (10141212236 |62 |77 |81]|91
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Recurrence Equation

 Example: binary search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 |7 | 8 (10141212236 |62 |77 |81]|91

f(n) =1+ f(n/2) = f(n) = O(log,n)
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Best, Average, Worst Cases

* Best case: when the number of steps is
smallest.

» \Worst case: when the number of steps is
largest.

* Average case: in between.
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Best, Average, Worst Cases

 Example: sequential search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 18| 7 (1021114 22|36 |62|91 |77 |81

Best case: f(n) = O(1)
Worst case: f(n) = O(n)
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Best, Average, Worst Cases

Example: sequential search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 18| 7 (1021114 22|36 |62|91 |77 |81

Average case: f(n) = Zi-pi
p:: probability for the target being at a[i]

p.=1/n = f(n) = (2.i)/n = O(n)
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P and NP Problems

* P: Polynomial (can be solved in polynomial
time on a deterministic machine).

* NP: Nondeterministic Polynomial (can be
solved in polynomial time on a non-
deterministic machine).
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P and NP Problems

Travelling Salesman Problem:

A salesman has a list of cities, each of which he must visit
exactly once. There are direct roads between each pair of
cities on the list.

Find the route the salesman should follow for the shortest
possible round trip that both starts and finishes at any one of
the cities.
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P and NP Problems

Travelling Salesman Problem:
Deterministic machine: f(n) = n(n-1)(n-2) ... 1 = O(n!)

= NP problem
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P and NP Problems

 NP-complete: NP and every other problem
iIn NP is polynomially reducible to it.

* Open question: P = NP?

NP-complete
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