Chapter 1: Introduction

* Pseudocode
» Abstract data type
 Algorithm efficiency

Cao Hoang Tru 1
CSE Faculty - HCMUT 10 September 2008

Pseudocode

* What is an algorithm?

Cao Hoang Tru 2
CSE Faculty - HCMUT 10 September 2008

Pseudocode

* What is an algorithm?
— The logical steps to solve a problem.

Cao Hoang Tru 3
CSE Faculty - HCMUT 10 September 2008

Pseudocode

 What is a program?
— Program = Data structures + Algorithms (Niklaus Wirth)

Cao Hoang Tru 4
CSE Faculty - HCMUT 10 September 2008

Pseudocode

* The most common tool to define algorithms.

* English-like representation of the code
required for an algorithm.

Cao Hoang Tru 5
CSE Faculty - HCMUT 10 September 2008

Pseudocode

* Pseudocode = English + Code

— ™~

relaxed syntax being Instructions using
easy to read basic control structures

(sequential, conditional, iterative)

Cao Hoang Tru 6
CSE Faculty - HCMUT 10 September 2008

Pseudocode

Algorithm Header

Algorithm Body

Cao Hoang Tru 7
CSE Faculty - HCMUT 10 September 2008

Pseudocode
 Algorithm Header:

— Name
— Parameters and their types
— Purpose

« what the algorithm does
— Precondition

e precursor requirements for the parameters
— Postcondition

» taken action and status of the parameters
— Return condition

 returned value

Cao Hoang Tru 8
CSE Faculty - HCMUT 10 September 2008

Pseudocode
 Algorithm Body:

— Statements

— Statement numbers
« decimal notation to express levels

— Variables
* important data
— Algorithm analysis
« comments to explain salient points

— Statement constructs
e sequence, selection, iteration

Cao Hoang Tru 9
CSE Faculty - HCMUT 10 September 2008

Example

Algorithm average
Pre nothing
Post numbers read and their average printed
1 1=0
2 loop (all data not read)
1 i=i1+1
2 read number
3 sum =sum + number
3 average =sum/i
4 print average
5 return
End average

Cao Hoang Tru 10
CSE Faculty - HCMUT 10 September 2008

Algorithm Design

 Divide-and-conquer

* Top-down design

« Abstraction of instructions
« Step-wise refinement

Cao Hoang Tru 11
CSE Faculty - HCMUT 10 September 2008

Abstract Data Type
 What is a data type?

— Class of data objects that have the same properties

Cao Hoang Tru 12
CSE Faculty - HCMUT 10 September 2008

Abstract Data Type

* Development of programming concepts:
— GOTO programming

« control flow is like spaghetti on a plate
— Modular programming

e programs organized into subprograms
— Structured programming

« structured control statements (sequence, selection, iteration)
— Object-oriented programming

« encapsulation of data and operations

Cao Hoang Tru 13
CSE Faculty - HCMUT 10 September 2008

Abstract Data Type

 ADT = Data structures + Operations

Cao Hoang Tru 14
CSE Faculty - HCMUT 10 September 2008

Abstract Data Type

Interface

User knows what a data

Implementation of type can do.

data and operations

How it is done is hidden.

Cao Hoang Tru 15
CSE Faculty - HCMUT 10 September 2008

Abstract Data Type

data

data

Cao Hoang Tru 16
CSE Faculty - HCMUT 10 September 2008

Example: Variable Access

* Rectangle: r
— length: x
— width: y

* Rectangle: r
— length: x (hidden)
— width: y (hidden)
— get_length()
— get_width()

Cao Hoang Tru 17
CSE Faculty - HCMUT 10 September 2008

Example: List

* |Interface:
— Data:

« sequence of components of a particular data type

— Operations:
e accessing
* insertion
 deletion

* Implementation:
— Array, or
— Linked list

Cao Hoang Tru 18
CSE Faculty - HCMUT 10 September 2008

Algorithm Efficiency

« How fast an algorithm is?
 How much memory does it cost?

« Computational complexity: measure of the
difficulty degree (time or space) of an
algorithm.

Cao Hoang Tru 19
CSE Faculty - HCMUT 10 September 2008

Algorithm Efficiency

 General format:
f(n)

n is the size of a problem (the key number that determines
the size of input data)

Cao Hoang Tru 20
CSE Faculty - HCMUT 10 September 2008

Linear Loops

1 1=1 1 1=1

2 loop (i <= 1000) 2 loop (i <= 1000)
1 application code 1 application code
2 i=i+1 2 i=i+2

The number of times the body The number of times the body

of the loop is replicated is of the loop is replicated is
1000 500
Cao Hoang Tru 21

CSE Faculty - HCMUT 10 September 2008

Linear Loops

time

Cao Hoang Tru 22
CSE Faculty - HCMUT 10 September 2008

Logarithmic Loops

Multiply loops

1 i=1

2 loop (i <= 1000)
1 application code
2 i=ix2

The number of times the body of the loop is replicated is
log,n

Cao Hoang Tru 23
CSE Faculty - HCMUT 10 September 2008

Logarithmic Loops

Multiply loops Divide loops

1 i=1 1 1=1000

2 loop (i <= 1000) 2 loop (i>=1)
1 application code 1 application code
2 i=ix2 2 i=il2

The number of times the body of the loop is replicated is
log,n

Cao Hoang Tru 24
CSE Faculty - HCMUT 10 September 2008

Logarithmic Loops

time

f(n) = (log,n).T

Cao Hoang Tru 25
CSE Faculty - HCMUT 10 September 2008

Nested Loops

lterations = Outer loop iterations x Inner loop iterations

Cao Hoang Tru 26
CSE Faculty - HCMUT 10 September 2008

Linear Logarithmic Loops

1 1=1
2 loop (i <= 10)
1 j=1
2 loop (j <=10)
1 application code
2 |=]x2
3 i=i+1

The number of times the body of the loop is replicated is
nlog,n

Cao Hoang Tru 27
CSE Faculty - HCMUT 10 September 2008

Linear Logarithmic Loops

time f(n) = (nlog,n).T

Cao Hoang Tru 28
CSE Faculty - HCMUT 10 September 2008

Quadratic Loops

1 i=1
2 loop (i <= 10)
1 j=1
2 loop (j <=10)
1 application code
2 j=]+1
3 i=i+1

The number of times the body of the loop is replicated is
n2

Cao Hoang Tru 29
CSE Faculty - HCMUT 10 September 2008

Dependent Quadratic Loops

1 application code
2 j=j+1
3 i=i+1

The number of times the body of the loop is replicated is
1+2+...+n=n(n+1)/2

Cao Hoang Tru 30
CSE Faculty - HCMUT 10 September 2008

Quadratic Loops

time f(n) =n2.T

Cao Hoang Tru 31
CSE Faculty - HCMUT 10 September 2008

Asymptotic Complexity

 Algorithm efficiency is considered with only
big problem sizes.

* We are not concerned with an exact
measurement of an algorithm's efficiency.

* Terms that do not substantially change the
function’s magnitude are eliminated.

Cao Hoang Tru 32
CSE Faculty - HCMUT 10 September 2008

Big-O Notation
* f(n) = c.n = f(n) = O(n).
« f(n) =n(n +1)/2=n2%/2 + n/2 = f(n) = O(n?).

Cao Hoang Tru 33
CSE Faculty - HCMUT 10 September 2008

Big-O Notation

« Set the coefficient of the term to one.

« Keep the largest term and discard the
others.

log,n n nlog,n n?2 n3 ... nk .. 2" nl

Cao Hoang Tru 34
CSE Faculty - HCMUT 10 September 2008

Standard Measures of Efficiency

Efficiency Big-O Iterations Est. Time
logarithmic O(log,n) 14 microseconds
linear O(n) 10,000 .1 seconds
linear logarithmic | O(nlog,n) 140,000 2 seconds
quadratic O(n?) 10,0007 15-20 min.
polynomial O(nk) 10,000k hours
exponential O(2") 210,000 intractable
factorial O(n!) 10,000! Intractable

Assume instruction speed of 1 microsecond and 10 instructions in loop.

n = 10,000

Cao Hoang Tru
CSE Faculty - HCMUT

35

10 September 2008

Standard Measures of Efficiency

O(n) n2 nlog,n N

Cao Hoang Tru 36
CSE Faculty - HCMUT 10 September 2008

Big-O Analysis Examples

Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,
val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post matrices added - result in matrix3

1 r=1
2 loop (r <= size)
1 c=1

2 loop (c <= size)
1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]

2 c=c+1
3 r=r+1
3 return

End addMatrix

Cao Hoang Tru 37
CSE Faculty - HCMUT 10 September 2008

Big-O Analysis Examples

Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,
val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post matrices added - result in matrix3

1 r=1
2 loop (r <= size)
1 c=1

2 loop (c <= size)
1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c]

2 c=c+1
3 r=r+1 : : ._ 9
3 return Nested linear loop: f(size) = O(size?)

End addMatrix

Cao Hoang Tru 38
CSE Faculty - HCMUT 10 September 2008

Time Costing Operations

* The most time consuming: data movement
to/from memory/storage.

* Operations under consideration:

— Comparisons
— Arithmetic operations
— Assignments

Cao Hoang Tru 39
CSE Faculty - HCMUT 10 September 2008

Recurrence Equation

* An equation or inequality that describes a
function in terms of its value on smaller
input.

Cao Hoang Tru 40
CSE Faculty - HCMUT 10 September 2008

Recurrence Equation

 Example: binary search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 |7 | 8 (10141212236 |62 |77 |81]|91

Cao Hoang Tru 41
CSE Faculty - HCMUT 10 September 2008

Recurrence Equation

 Example: binary search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 |7 | 8 (10141212236 |62 |77 |81]|91

f(n) =1+ f(n/2) = f(n) = O(log,n)

Cao Hoang Tru 42
CSE Faculty - HCMUT 10 September 2008

Best, Average, Worst Cases

* Best case: when the number of steps is
smallest.

» \Worst case: when the number of steps is
largest.

* Average case: in between.

Cao Hoang Tru 43
CSE Faculty - HCMUT 10 September 2008

Best, Average, Worst Cases

 Example: sequential search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 18| 7 (1021114 22|36 |62|91 |77 |81

Best case: f(n) = O(1)
Worst case: f(n) = O(n)
Cao Hoang Tru 44

CSE Faculty - HCMUT 10 September 2008

Best, Average, Worst Cases

Example: sequential search.

a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[ll1l] a[12]

4 18| 7 (1021114 22|36 |62|91 |77 |81

Average case: f(n) = Zi-pi
p:: probability for the target being at a[i]

p.=1/n = f(n) = (2.i)/n = O(n)

Cao Hoang Tru 45
CSE Faculty - HCMUT 10 September 2008

P and NP Problems

* P: Polynomial (can be solved in polynomial
time on a deterministic machine).

* NP: Nondeterministic Polynomial (can be
solved in polynomial time on a non-
deterministic machine).

Cao Hoang Tru 46
CSE Faculty - HCMUT 10 September 2008

P and NP Problems

Travelling Salesman Problem:

A salesman has a list of cities, each of which he must visit
exactly once. There are direct roads between each pair of
cities on the list.

Find the route the salesman should follow for the shortest
possible round trip that both starts and finishes at any one of
the cities.

Cao Hoang Tru 47
CSE Faculty - HCMUT 10 September 2008

P and NP Problems

Travelling Salesman Problem:
Deterministic machine: f(n) = n(n-1)(n-2) ... 1 = O(n!)

= NP problem

Cao Hoang Tru 48
CSE Faculty - HCMUT 10 September 2008

P and NP Problems

 NP-complete: NP and every other problem
iIn NP is polynomially reducible to it.

* Open question: P = NP?

NP-complete

Cao Hoang Tru 49
CSE Faculty - HCMUT 10 September 2008

NP

