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Chapter 1: Introduction
• Pseudocode
• Abstract data type
• Algorithm efficiency
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Pseudocode
• What is an algorithm?
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Pseudocode
• What is an algorithm?

– The logical steps to solve a problem.
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Pseudocode
• What is a program?

– Program = Data structures + Algorithms (Niklaus Wirth)
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Pseudocode
• The most common tool to define algorithms.

• English-like representation of the code 
required for an algorithm.
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Pseudocode
• Pseudocode = English + Code

relaxed syntax being instructions using 
easy to read basic control structures

(sequential, conditional, iterative) 
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Pseudocode

Algorithm Header

Algorithm Body
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Pseudocode
• Algorithm Header:

– Name
– Parameters and their types
– Purpose

• what the algorithm does
– Precondition

• precursor requirements for the parameters
– Postcondition

• taken action and status of the parameters
– Return condition

• returned value
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Pseudocode
• Algorithm Body:

– Statements
– Statement numbers

• decimal notation to express levels
– Variables

• important data
– Algorithm analysis

• comments to explain salient points
– Statement constructs

• sequence, selection, iteration
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Example
Algorithm average

Pre nothing
Post numbers read and their average printed
1 i = 0
2 loop (all data not read)

1 i = i + 1
2 read number
3 sum = sum + number

3 average = sum / i
4 print average
5 return
End average
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Algorithm Design 
• Divide-and-conquer
• Top-down design
• Abstraction of instructions 
• Step-wise refinement



Cao Hoang Tru
CSE Faculty - HCMUT

12
10 September 2008

Abstract Data Type
• What is a data type?

– Class of data objects that have the same properties
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Abstract Data Type
• Development of programming concepts:

– GOTO programming
• control flow is like spaghetti on a plate

– Modular programming
• programs organized into subprograms

– Structured programming
• structured control statements (sequence, selection, iteration)

– Object-oriented programming
• encapsulation of data and operations
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Abstract Data Type
• ADT = Data structures + Operations
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Abstract Data Type

Implementation of 
data and operations

Interface

User knows what a data 
type can do.

How it is done is hidden.
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Abstract Data Type

data structure

function A

function B

internal
function

data

data
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Example: Variable Access
• Rectangle: r

– length: x
– width: y

• Rectangle: r
– length: x (hidden)
– width: y (hidden)
– get_length()
– get_width()
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Example: List
• Interface:

– Data: 
• sequence of components of a particular data type

– Operations: 
• accessing
• insertion
• deletion

• Implementation:
– Array, or
– Linked list
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Algorithm Efficiency
• How fast an algorithm is?

• How much memory does it cost?

• Computational complexity: measure of the 
difficulty degree (time or space) of an 
algorithm.
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Algorithm Efficiency
• General format:

f(n)
n is the size of a problem (the key number that determines 
the size of input data)
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Linear Loops
1 i = 1 1 i = 1
2 loop (i <= 1000) 2 loop (i <= 1000)

1 application code 1 application code
2 i = i + 1 2 i = i + 2

The number of times the body The number of times the body
of the loop is replicated is of the loop is replicated is
1000 500
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Linear Loops

n

time
f(n) = n.T

f(n) = (n/2).T
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Logarithmic Loops
Multiply loops
1 i = 1
2 loop (i <= 1000)

1 application code
2 i = i × 2

The number of times the body of the loop is replicated is
log2n
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Logarithmic Loops
Multiply loops Divide loops
1 i = 1 1 i = 1000
2 loop (i <= 1000) 2 loop (i >= 1)

1 application code 1 application code
2 i = i × 2 2 i = i / 2

The number of times the body of the loop is replicated is
log2n
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Logarithmic Loops

n

time

f(n) = (log2n).T
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Nested Loops

Iterations = Outer loop iterations × Inner loop iterations
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Linear Logarithmic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= 10)

1 application code
2 j = j × 2

3 i = i + 1

The number of times the body of the loop is replicated is 
nlog2n
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Linear Logarithmic Loops

n

time f(n) = (nlog2n).T
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Quadratic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= 10)

1 application code
2 j = j + 1

3 i = i + 1

The number of times the body of the loop is replicated is 
n2
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Dependent Quadratic Loops
1 i = 1
2 loop (i <= 10)

1 j = 1
2 loop (j <= i)

1 application code
2 j = j + 1

3 i = i + 1

The number of times the body of the loop is replicated is 
1 + 2 + … + n = n(n + 1)/2 
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Quadratic Loops

n

time f(n) = n2.T
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Asymptotic Complexity
• Algorithm efficiency is considered with only 

big problem sizes.

• We are not concerned with an exact 
measurement of an algorithm's efficiency.

• Terms that do not substantially change the 
function’s magnitude are eliminated.
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Big-O Notation
• f(n) = c.n ⇒ f(n) = O(n).

• f(n) = n(n + 1)/2 = n2/2 + n/2 ⇒ f(n) = O(n2).
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Big-O Notation
• Set the coefficient of the term to one.

• Keep the largest term and discard the 
others.
log2n n nlog2n n2 n3 ... nk ... 2n n!
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Standard Measures of Efficiency

intractable10,000!O(n!)factorial

intractable210,000O(2n)exponential

hours10,000kO(nk)polynomial

15-20 min. 10,0002O(n2)quadratic

2 seconds140,000O(nlog2n)linear logarithmic

.1 seconds10,000O(n)linear

microseconds14O(log2n)logarithmic

Est. TimeIterationsBig-OEfficiency

Assume instruction speed of 1 microsecond and 10 instructions in loop.
n = 10,000
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Standard Measures of Efficiency

n

O(n)

log2n

nlog2nn2 n
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Big-O Analysis Examples
Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,

val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data

size is number of columns and rows in matrix
Post matrices added - result in matrix3
1 r = 1
2 loop (r <= size)

1 c = 1
2 loop (c <= size)

1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c] 
2 c = c + 1

3 r = r + 1
3 return
End addMatrix
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Big-O Analysis Examples
Algorithm addMatrix (val matrix1 <matrix>, val matrix2 <matrix>,

val size <integer>, ref matrix3 <matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre matrix1 and matrix2 have data

size is number of columns and rows in matrix
Post matrices added - result in matrix3
1 r = 1
2 loop (r <= size)

1 c = 1
2 loop (c <= size)

1 matrix3[r, c] = matrix1[r, c] + matrix2[r, c] 
2 c = c + 1

3 r = r + 1
3 return
End addMatrix

Nested linear loop: f(size) = O(size2)



Cao Hoang Tru
CSE Faculty - HCMUT

39
10 September 2008

Time Costing Operations
• The most time consuming: data movement

to/from memory/storage.

• Operations under consideration:
– Comparisons
– Arithmetic operations
– Assignments
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Recurrence Equation
• An equation or inequality that describes a 

function in terms of its value on smaller 
input.
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Recurrence Equation
• Example: binary search.

918177623622211410874

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]



Cao Hoang Tru
CSE Faculty - HCMUT

42
10 September 2008

Recurrence Equation
• Example: binary search.

918177623622211410874

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

f(n) = 1 + f(n/2) ⇒ f(n) = O(log2n)
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Best, Average, Worst Cases
• Best case: when the number of steps is 

smallest.

• Worst case: when the number of steps is 
largest.

• Average case: in between.



Cao Hoang Tru
CSE Faculty - HCMUT

44
10 September 2008

Best, Average, Worst Cases
• Example: sequential search.

817791623622142110784

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

Best case: f(n) = O(1)
Worst case: f(n) = O(n)
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Best, Average, Worst Cases
• Example: sequential search.

817791623622142110784

a[12]a[11]a[10]a[9]a[8]a[7]a[6]a[5]a[4]a[3]a[2]a[1]

Average case: f(n) = ∑i.pi

pi: probability for the target being at a[i]

pi = 1/n  ⇒ f(n) = (∑i)/n = O(n) 
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P and NP Problems
• P: Polynomial (can be solved in polynomial 

time on a deterministic machine).

• NP: Nondeterministic Polynomial (can be 
solved in polynomial time on a non-
deterministic machine).
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P and NP Problems
Travelling Salesman Problem:
A salesman has a list of cities, each of which he must visit 
exactly once. There are direct roads between each pair of 
cities on the list. 
Find the route the salesman should follow for the shortest 
possible round trip that both starts and finishes at any one of 
the cities.

A

B

C

D E

1 10

5 5
515
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P and NP Problems
Travelling Salesman Problem:

Deterministic machine: f(n) = n(n-1)(n-2) … 1 = O(n!)

⇒ NP problem

A

B

C

D E

1 10

5 5
515
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P and NP Problems
• NP-complete: NP and every other problem 

in NP is polynomially reducible to it. 

• Open question: P = NP?

NP

P

NP-complete


