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Pointer in C++

] Declaration

Node *ptr; IR
1 Create an object Py

ptr = new Node(); >
- A pointer usage ptr

printf(“Data in node: %d”, ptr->data); .
1 Destroy an object 1 S 099

delete ptr; otr /N
I NULL pointer

ptr = NULL; &

ptr
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Pointer in C++

J Be careful in these cases:

Before > Before [\
ptri ptri
ptr2 ptr2
ptr1 = ptr2; delete ptr1; ptr1 = NULL,;
e = e =
\ Garbage |Z|
After otr1 After ptr
A —>
ptr2 ptr2 N

Dangling reference problem
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Parameter Passing Techniques

void func(int* a, int* b){ void main() {
int *t: int *p1 = new Int;
— *p1 =10;
’ Int *p2 = new Iint;
a=Db; *p2 = 20;
b=t; func(p1, p2);
) printf(“%d”, *p1);
void func(int* &a, int* &b){ printf(“%d”, *p2);
int *t; }
I =a;
a=>b;
b=1;
}
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Parameter Passing Techniques

void func(int* &a, int* b){ void main() {
int *t: int *p1 = new Int;
— *p1 =10;
’ Int *p2 = new Iint;
a=Db; *p2 = 20;
b =1t; func(p1, p2);
) printf(“%d”, *p1);
void func(int* a, int* &b){ printf(“%d”, *p2);
int *t; }
I =a;
a=Db;
b =t;
}
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Parameter Passing Techniques

void func(int **a, int **b){ void main() {
int *t: int *p1 = new Int;
. p1=10;
£= 61’ int *p2 = new int;
a="Db; *p2 = 20;
b =1t; func(&p1, &p2);
) printf(“%d”, *p1);

printf(“%d”, *p2);
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Linked Lists

J A linked list is an ordered collection of data in which each
element contains the location of the next element

Element = Data + Link

head data link

v

v

v

v
X

X

empty
linked list
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A node with
one data field

number

Nodes

A node with

three data fields

name

id

number | —+—

A node with one
structured data field

name

id

number

A\
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Nodes

Linked List
Structure

count

list
count <integer>
head <pointer>
end list

Data node
~ structure
head
node
data <dataType>

link <pointer>

end node
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data

link

dataType
key <keyType>
field1 <...>
field2 <...>

fieldN <...>
end dataType
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Nodes — Implementation in C++

struct Node { node
int data; data <dataType>
Node *next; link <pointer>

) end node
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Nodes — Implementation in C++

Node *p = new Node () ; 5 5 |
p—->data = 5; D

cout<< p->data;

Node *g = p; /

cout<< g->data; g

Node *r = new Node(); > 10
r—->data = 10; r
g—->next = r;

cout<< p->next->data;
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Nodes — Implementation in C++

struct Node { struct Node {
Int data; float data;
Node *next; Node *next;
b b

template <class ltemType>
struct Node {
ltemType data;
Node<ltemType> *next;
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Nodes — Implementation in C++

Node<int> *p = new Node<int>(); [ 5 [
p—>data = 5; 0

cout<< p->data;

Node<int> *g = p; /

cout<< g->data; q
Node<int> *r = new Node<int>(); s 10
r->data = 10; r
g—->next = r;

cout<< p->next->data;
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Nodes — Implementation in C++

template <class ItemType>
class Node({
public:
Node () {
this->next = NULL;
}
Node (ItemType data) {
this—->data = data;
this->next = NULL;

TtemType data;
Node<ItemType> *next;

B
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Linked List — Implementation in C++

template <class List_ItemType>

list
class LinkedList{ count <integers
public: head <pointer>
LinkedList () end list

;
~LinkedList () ;

protected:
Node<List_TItemType>* head;

int count;

by
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Linked List Algorithms

J Create list
.l Insert node
1 Delete node
J Traverse

J Destroy list
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Linked List Implementation

template <class List_ItemType>
class LinkedList({
public:
LinkedList () ;
~LinkedList () ;
protected:
int InsertNode (Node<List_TItemType>* pPre,
List_ItemType value);
List_TItemType DeleteNode (Node<List_ItemType>* pPre,
Node<List_TItemType>* pLoc);
int Search(List_TItemType value, Node<List_TItemType>*
&pPre, Node<List_ItemType>* &ploc);
volid Traverse();

Node<List_TtemType>* head;
int count;

by
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Linked List Implementation

template <class List_TItemType>
class LinkedList{
public:
LinkedList () ;
~LinkedList () ;
vold InsertFirst(List_ItemType value);
vold InsertlLast (List_ItemType value);
int InsertlItem(List_TItemType value, int Position);
List_TItemType DeleteFirst();
List_ItemType DeletelLast();
int Deleteltem(int Postion);
int GetItem(int Position, List_ItemType &datalOut);
vold Print2Console() ;
vold Clear () ;
// Augment your methods for linked list here!!!
LinkedList<List_TItemType>* Clone();
protected:
//
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Linked List Implementation

J How to use Linked List data structure?

int main(int argc, char* argv[]) {
LinkedLilist<int>* myList =

new LinkedList<int>();

myList—->InsertFirst (15);
myList—->InsertFirst (10);
myList->InsertFirst (5);
myList->InsertItem (18, 3);
myList->InsertLast (25);
myList->InsertItem (20, 3);
myList->Deleteltem(2);
printf ("List 1:\n");
myList—->Print2Console();
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Linked List Implementation

//

int value;
LinkedList<int>* myListZ2 = myList->Clone();

printf ("\nList 2:\n");
myListZ2->PrintZ2Console () ;

myList2->GetItem(1l, wvalue);
printf (“Value at position 1: %d”, wvalue);

delete myList;
delete myList?2;
return 1;

}
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Create List

Before list || 2 .

count head

After list 0 .

count head
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Create List

Algorithm createl.ist (ref list <metadata>)
Initializes metadata for a linked list
Pre listis a metadata structure passed by reference
Post metadata initialized
1 list.head = null
2 list.count=0
3 return
End createlist
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Linked List Implementation

template <class List_ItemType>
LinkedList<List_ItemType>::LinkedList () {
this—->head = NULL;

this—->count = 0;
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Insert Node

1 Allocate memory for the new node and set up data
1 Point the new node to its successor
J Point the new node's predecessor to it
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Insert into Empty List
Before 0 . 75 .

count head

list

pNew

A2

v [[1] [

count head

=X

N

list

pNew
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Insert at the Beginning

Before

\ 4

}
count head

75

list J 39 .

pNew

pNew -> link = list.head
list.head = pNew

After

2 75
count head T
list J 39
pNew
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Before

After

Insert in Middle

2 > 39 > 75
count head 1
list J 5o
pPre pNew
pNew -> link = pPre -> link
pPre -> link = pNew
3 > 3? \ 75
count head \4‘ /
list J 50
pPre pNew
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Insert at End

Before 3 30 | = 52 | 75
count head 0\
list J 134
pPre pNew
pNew -> link = pPre -> link
pPre -> link = pNew
After 4 > 39 > 52 | 75 |/
count head ':/
list J 134
pPre pNew
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Insert Node Algorithm

Algorithm insertNode (ref list <metadata>,
val pPre <node pointer>,
val dataln <dataType>)
Inserts data into a new node in the linked list
Pre list is metadata structure to a valid list
pPre is pointer data’s logical predecessor
dataln contains data to be inserted
Post data have been inserted in sequence
Return true if successful, false if memory overflow
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6
/

Insert Node Algorithm

allocate(pNew)

If (memory overflow)

1 return false

pNew -> data = dataln

If (pPre = null)

Adding before first node or to empty list
1 pNew -> link = list.head

2 list.head = pNew

else

Adding in middle or at end

1 pNew -> link = pPre -> link
2 pPre ->link = pNew
list.count = list.count + 1

return true

End insertNode
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Insert Node

template <class List_ItemType>

int LinkedList<List_TItemType>::InsertNode (
Node<List_ItemType> *pPre, List_TItemType value) {
Node<List_TItemType> *pNew = new Node<List_ItemType> () ;
if (pNew == NULL)
return O;
pNew—>data = value;
if (pPre == NULL) {
this->head;
this->head = pNew;

pNew—->next

} else {
pNew—->next = pPre->next;
pPre—->next = pNew;

}

this—->count++;

return 1;

—
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Delete Node

J Locate the node to be deleted.

o

Point the node predecessor's link to its successor.

1 Release the memory for the deleted node
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Before

After

Delete First Node

3 >l 39 > 52 > 75
count head T
list
pPre plLoc
list.head = pLoc -> link
recycle(pLoc)
Kﬁ
//. ———————
2 1| !recyded E 52 sl 75
count head l“T_ T
list |

pPre plLoc
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Before

After

General Delete Case

3 > 39 > 52 > 75
count head 1 1
list
pPre pLoc
pPre -> link = pLoc -> link
recycle (pLoc)
> J 39 recydled! | 75
count head 1 T
list |
pPre plLoc
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Delete Node Algorithm

Algorithm deleteNode (ref list <metadata>,
val pPre <node pointer>,
val pLoc <node pointer>
ref dataOut <dataType>)

Delete data from a linked list and returns it to calling
module

Pre listis metadata structure to a valid list
pPre is a pointer to predecessor node
pLoc is a pointer to node to be deleted
dataOut is variable to receive deleted data
Post data have been deleted and returned to caller
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Delete Node Algorithm

1 dataOut = pLoc -> data
2 if (pPre = null)
Delete first node
1 list.head =ploc -> link
3 else
Delete other nodes
1 pPre ->link = plLoc -> link
4 list.count = list.count - 1
5 recycle (pLoc)
6 return
End deleteNode
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Delete Node

template <class List_TItemType>

List_TItemType LinkedList<List_ItemType>::DeleteNode (
Node<List_TItemType> *pPre, Node<List_ItemType> *pLoc) {

List_ItemType result = pLoc->data;
1f (pPre == NULL)
list->head = pLoc->next;

else

pPre—->next pLoc—>next;
this->count—-—;
delete pLoc;

return result;
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Traverse List

J Traverse module controls the loop:
calling a user-supplied algorithm to process data

pWalker = list.head

loop (pWalker not null)
process (pWalker -> data)
pWalker = pWalker -> link
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Traverse List

template <class List_ItemType>

volid LinkedList<List_TItemType>::Traverse () {
Node<List_TItemType> *p = head;
while (p != NULL) {

p—>data++; // process data here!!!
P = p—->next;
}
}

template <class List_ItemType>
void LinkedList<List_TItemType>::Traverse(void
(*visit) (List_TItemType &)) {
Node<List_TItemType> *p = head;
while (p != NULL) {
(*visit) (p—>data);
P = p—->next;
}
}
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Searching in Linked List

template <class List_TItemType>

int LinkedList<List_TItemType>::
Search (List_ItemType value, Node<List_ItemType>* &pPre,
Node<List_TtemType>* &pLoc) {

pPre = NULL;

pLoc = this->head;

while (pLoc != NULL && pLoc->data != wvalue) {
pPre = pLoc;
pLoc = pLoc—>next;

}
return (pLoc != NULL); // found: 1; notfound: O
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Destroy List Algorithm

Algorithm destroyList (val list <metadata>)
Deletes all data in list.

Pre
Post

list Is metadata structure to a valid list
all data deleted

1 loop (list.head not null)

’
2
3

dItPtr = list.head
list.head = this.head -> link
recycle (dltPtr)

No data left in list. Reset metadata
2 list.count=0
3 return
End destroyList
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Destroy list

template <class List_TItemType>
vold LinkedList<List_TItemType>::Clear () {
Node<List_TItemType> *temp;
while (this—->head != NULL) {
temp = this->head;
this—->head = this->head->next;
delete temp;
}
this—->count = 0;
}
template <class List_ItemType>
LinkedList<List_TItemType>::~LinkedList () {
this->Clear () ;
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Exercises

template <class List_TItemType>
class LinkedList({
public:

LinkedList () ;

~LinkedList () ;

int InsertFirst(List_ItemType value);
int InsertlLast(List_ItemType value);
int InsertlItem(List_TItemType value, int Position);
List_TItemType DeleteFirst();
List_ItemType DeletelLast();
int Deleteltem(int Postion);
int GetItem(int Position, List_TItemType &datalOut);
vold Print2Console() ;
// Augment more methods for linked list here!!!
LinkedList<List_ItemType>* Clone();
protected: // as previous slide
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Pointer vs. Object Variable

vold main () {

LinkedList *p = new LinkedList();

p—>InsertLast (20);

// do sth with p here | 4+—

func (p) ; D
delete p;

}

vold main () {
LinkedList ob;
ob.InsertLast (20);
// do sth with ob here
func (ob) ;

J
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count head

20

1

count head

ob

20
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Pointer vs. Object Variable

vold func(LinkedList *a)
a—->InsertFist (10);

A

a

}

void func(LinkedList myOb) —
myOb.InsertFist (10); count head

} myOb

J What are the pros and cons?
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Sample Solution: Insert

template <class List_ItemType>

int position) {

if (position < 0 || position > this->count)

return O;
Node<List_ItemType>* newPtr, *pPre;
newPtr = new Node<List_TItemType> () ;
if (newPtr == NULL)

return 0O;

newPtr—->data = value;
if (head == NULL) {
head = newPtr;

newPtr—->next = NULL;
}
else if (position == 0) {
newPtr->next = head;
head = newPtr;

}
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int LinkedList<List_ItemType>::Insertltem(List_TItemType value,
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Sample Solution: Insert

else {
// Find the position of pPre

pPre = this->head;
for (int 1 = 0; 1 < position-1; i++)
pPre = pPre—->next;
// Insert new node
newPtr—->next = pPre->next;
pPre—->next = newPtr;
}
this—->count++;
return 1;
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Sample Solution: Delete

template <class List_ItemType>
int LinkedList<List_ItemType>::Deleteltem(int position) {
if (position < 0 || position > this->count)
return O;
Node<List_ItemType> *dltPtr, *pPre;
if (position == 0) {
dltPtr = head;
head = head->next;

} else {
pPre = this->head;
for (int i = 0; 1 < position-1; i++)

pPre = pPre->next;
dltPtr = pPre->next;
pPre->next = dltPtr->next;
}
delete dltPtr;
this—->count——;
return 1;
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Sample Solution: Clone

template <class List_ItemType>
LinkedList<List_TItemType>*
LinkedList<List_TItemType>::Clone () {
LinkedList<List_TItemType>* result =
New LinkedList<List_TItemType>();
Node<List_TItemType>* p = this->head;
while (p != NULL) {
result—->InsertlLast (p—>data) ;
P = p—->next;
}
result—->count = this->count;
return result;
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Homework

1 Reverse a linked list

head @

a > b » a » b " C

Result:

M ininiy
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Homework
JHint 1

head @ /
a > b > a > b >
\\ n t->next = head;

head->next = NULL:
a ( b J, a g b

ew_head;
new tail

new head
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Homework
JHint 2

headQ\
a * b > a > b " C

p->next = head;

Result: head = p;
p=p1;
p1=p1->next

head@
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Homework

template <class List_ItemType>
vold LinkedList<List_ItemType>::Reverse () {
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