
Data Structures and Algorithms –

C++ Implementation

Ho Chi Minh City University of Technology

Faculty of Computer Science and Engineering

BK
TP.HCM

BK
TP.HCM

Huỳnh Tấn Đạt

Email: htdat@cse.hcmut.edu.vn

Home Page: http://www.cse.hcmut.edu.vn/~htdat/

Pointer in C++

�Declaration

Node *ptr;

�Create an object

ptr = new Node();

�A pointer usage

printf(“Data in node: %d”, ptr->data);

ptr

ptr

???

Slide 2Faculty of Computer Science and Engineering – HCMUT

printf(“Data in node: %d”, ptr->data);

�Destroy an object

delete ptr;

�NULL pointer

ptr = NULL;

ptr

???

ptr

Pointer in C++

�Be careful in these cases:

ptr1

ptr2

Before

ptr1 = ptr2;

Before

delete ptr1; ptr1 = NULL;

ptr1

ptr2

Slide 3Faculty of Computer Science and Engineering – HCMUT

After

ptr1 = ptr2;

ptr1

ptr2

After

delete ptr1; ptr1 = NULL;

ptr1

ptr2

Garbage

Dangling reference problem

Parameter Passing Techniques

void func(int* a, int* b){

int *t;

t = a;

a = b;

b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(p1, p2);
printf(“%d”, *p1);

Slide 4Faculty of Computer Science and Engineering – HCMUT

}
void func(int* &a, int* &b){

int *t;

t = a;

a = b;

b = t;

}

printf(“%d”, *p1);
printf(“%d”, *p2);

}

Parameter Passing Techniques

void func(int* &a, int* b){

int *t;

t = a;

a = b;

b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(p1, p2);
printf(“%d”, *p1);

Slide 5Faculty of Computer Science and Engineering – HCMUT

}
void func(int* a, int* &b){

int *t;

t = a;

a = b;

b = t;

}

printf(“%d”, *p1);
printf(“%d”, *p2);

}

Parameter Passing Techniques

void func(int **a, int **b){

int *t;

t = *a;

*a = *b;

*b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(&p1, &p2);
printf(“%d”, *p1);

Slide 6Faculty of Computer Science and Engineering – HCMUT

} printf(“%d”, *p1);
printf(“%d”, *p2);

}

Linked Lists

�A linked list is an ordered collection of data in which each
element contains the location of the next element

Element = Data + Link

head data link

Slide 7Faculty of Computer Science and Engineering – HCMUT

empty
linked list

Nodes

number name

A node with
one data field

number

A node with
three data fields

id

Slide 8Faculty of Computer Science and Engineering – HCMUT

name numberid

A node with one
structured data field

Nodes

Linked List
Structure

count head

list
count <integer>

Data node
structure

data link

node
data <dataType>

dataType
key <keyType>

Slide 9Faculty of Computer Science and Engineering – HCMUT

count <integer>
head <pointer>

endendendend list
data <dataType>
link <pointer>

endendendend node

key <keyType>
field1 <…>
field2 <…>
…
fieldN <…>

endendendend dataType

Nodes – Implementation in C++

struct Node {

int data;

Node *next;

};

node
data <dataType>
link <pointer>

end node

Slide 10Faculty of Computer Science and Engineering – HCMUT

Nodes – Implementation in C++

Node *p = new Node();

p->data = 5;

cout<< p->data;

Node *q = p;

cout<< q->data;

Node *r = new Node();

p
5

q
10

Slide 11Faculty of Computer Science and Engineering – HCMUT

Node *r = new Node();

r->data = 10;

q->next = r;

cout<< p->next->data;

r
10

Nodes – Implementation in C++

struct Node {
int data;
Node *next;

};

struct Node {
float data;
Node *next;

};

Slide 12Faculty of Computer Science and Engineering – HCMUT

template <class ItemType>
struct Node {

ItemType data;
Node<ItemType> *next;

};

Nodes – Implementation in C++

Node<int> *p = new Node<int>();

p->data = 5;

cout<< p->data;

Node<int> *q = p;

cout<< q->data;

Node<int> *r = new Node<int>();

p
5

q
10

Slide 13Faculty of Computer Science and Engineering – HCMUT

Node<int> *r = new Node<int>();

r->data = 10;

q->next = r;

cout<< p->next->data;

r
10

Nodes – Implementation in C++

template <class ItemType>

class Node{

public:

Node(){

this->next = NULL;

}

Node(ItemType data){

Slide 14Faculty of Computer Science and Engineering – HCMUT

Node(ItemType data){

this->data = data;

this->next = NULL;

}

ItemType data;

Node<ItemType> *next;

};

Linked List – Implementation in C++
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

protected:

list
count <integer>
head <pointer>

end list

Slide 15Faculty of Computer Science and Engineering – HCMUT

protected:

Node<List_ItemType>* head;

int count;

};

Linked List Algorithms

�Create list

� Insert node

�Delete node

�Traverse

�Destroy list

Slide 16Faculty of Computer Science and Engineering – HCMUT

Linked List Implementation
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

protected:

int InsertNode(Node<List_ItemType>* pPre,

List_ItemType value);

List_ItemType DeleteNode(Node<List_ItemType>* pPre,

Slide 17Faculty of Computer Science and Engineering – HCMUT

List_ItemType DeleteNode(Node<List_ItemType>* pPre,

Node<List_ItemType>* pLoc);

int Search(List_ItemType value, Node<List_ItemType>*

&pPre, Node<List_ItemType>* &pLoc);

void Traverse();

Node<List_ItemType>* head;

int count;

};

Linked List Implementation
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

void InsertFirst(List_ItemType value);

void InsertLast(List_ItemType value);

int InsertItem(List_ItemType value, int Position);

List_ItemType DeleteFirst();

Slide 18Faculty of Computer Science and Engineering – HCMUT

List_ItemType DeleteFirst();

List_ItemType DeleteLast();

int DeleteItem(int Postion);

int GetItem(int Position, List_ItemType &dataOut);

void Print2Console();

void Clear();

// Augment your methods for linked list here!!!

LinkedList<List_ItemType>* Clone();

protected:

// ...

Linked List Implementation

�How to use Linked List data structure?

int main(int argc, char* argv[]) {

LinkedList<int>* myList =

new LinkedList<int>();

myList->InsertFirst(15);

myList->InsertFirst(10);

myList->InsertFirst(5);

Slide 19Faculty of Computer Science and Engineering – HCMUT

myList->InsertFirst(5);

myList->InsertItem(18, 3);

myList->InsertLast(25);

myList->InsertItem(20, 3);

myList->DeleteItem(2);

printf("List 1:\n");

myList->Print2Console();

Linked List Implementation

// ...

int value;

LinkedList<int>* myList2 = myList->Clone();

printf("\nList 2:\n");

myList2->Print2Console();

Slide 20Faculty of Computer Science and Engineering – HCMUT

myList2->Print2Console();

myList2->GetItem(1, value);

printf(“Value at position 1: %d”, value);

delete myList;

delete myList2;

return 1;

}

Create List

Before

list.head = null
list.count = 0

? ?

count head
list

Slide 21Faculty of Computer Science and Engineering – HCMUT

0
count head

After list

list.count = 0

Create List

Algorithm createList (ref list <metadata>)

Initializes metadata for a linked list

Pre list is a metadata structure passed by reference

Post metadata initialized

1 list.head = null

2 list.count = 0

Slide 22Faculty of Computer Science and Engineering – HCMUT

2 list.count = 0

3 return

End createList

Linked List Implementation

template <class List_ItemType>

LinkedList<List_ItemType>::LinkedList(){

this->head = NULL;

this->count = 0;

}

Slide 23Faculty of Computer Science and Engineering – HCMUT

Insert Node

�Allocate memory for the new node and set up data

�Point the new node to its successor

�Point the new node's predecessor to it

Slide 24Faculty of Computer Science and Engineering – HCMUT

Insert into Empty List

Before 0

count head
list

pNew -> link = list. head

75

pNew

Slide 25Faculty of Computer Science and Engineering – HCMUT

After

pNew -> link = list. head
list.head = pNew

1

count head
list

75

pNew

Insert at the Beginning

Before
1

count head
list

pNew -> link = list.head
list.head = pNew

75

pNew
39

Slide 26Faculty of Computer Science and Engineering – HCMUT

After

list.head = pNew

2
count head

list

75

pNew
39

Insert in Middle

Before 2
count head

list

pNew -> link = pPre -> link

75

pNew
52

39

pPre

Slide 27Faculty of Computer Science and Engineering – HCMUT

After

pNew -> link = pPre -> link
pPre -> link = pNew

3

count head
list

75

pNew
52

39

pPre

Insert at End

Before

pNew -> link = pPre -> link

3
count head

list

52

pNew

7539

pPre
134

Slide 28Faculty of Computer Science and Engineering – HCMUT

After

pNew -> link = pPre -> link
pPre -> link = pNew

4
count head

list
pPre

52 7539

pNew
134

Insert Node Algorithm

Algorithm insertNode (ref list <metadata>,

val pPre <node pointer>,

val dataIn <dataType>)

Inserts data into a new node in the linked list

Pre list is metadata structure to a valid list

pPre is pointer data’s logical predecessor

Slide 29Faculty of Computer Science and Engineering – HCMUT

pPre is pointer data’s logical predecessor

dataIn contains data to be inserted

Post data have been inserted in sequence

Return true if successful, false if memory overflow

Insert Node Algorithm

1 allocate(pNew)

2 if (memory overflow)

1 return false

3 pNew -> data = dataIn

4 if (pPre = null)

Adding before first node or to empty list

1 pNew -> link = list.head

Slide 30Faculty of Computer Science and Engineering – HCMUT

1 pNew -> link = list.head

2 list.head = pNew

5 else

Adding in middle or at end
1 pNew -> link = pPre -> link

2 pPre -> link = pNew

6 list.count = list.count + 1

7 return true

End insertNode

Insert Node
template <class List_ItemType>

int LinkedList<List_ItemType>::InsertNode(

Node<List_ItemType> *pPre, List_ItemType value) {

Node<List_ItemType> *pNew = new Node<List_ItemType>();

if (pNew == NULL)

return 0;

pNew->data = value;

if (pPre == NULL){

Slide 31Faculty of Computer Science and Engineering – HCMUT

if (pPre == NULL){

pNew->next = this->head;

this->head = pNew;

} else {

pNew->next = pPre->next;

pPre->next = pNew;

}

this->count++;

return 1;

}

Delete Node

�Locate the node to be deleted.

�Point the node predecessor's link to its successor.

�Release the memory for the deleted node

Slide 32Faculty of Computer Science and Engineering – HCMUT

Delete First Node

Before

list.head = pLoc -> link

3
count head

list

52 7539

pPre pLoc

Slide 33Faculty of Computer Science and Engineering – HCMUT

recycledAfter

list.head = pLoc -> link
recycle(pLoc)

2
count head

list

52 75

pPre pLoc

General Delete Case

Before

pPre -> link = pLoc -> link

3

count head

list

52 7539

pLocpPre

Slide 34Faculty of Computer Science and Engineering – HCMUT

recycledAfter

pPre -> link = pLoc -> link
recycle (pLoc)

2

count head

list

39 75

pLocpPre

Delete Node Algorithm

Algorithm deleteNode (ref list <metadata>,

val pPre <node pointer>,

val pLoc <node pointer>

ref dataOut <dataType>)

Delete data from a linked list and returns it to calling
module

Slide 35Faculty of Computer Science and Engineering – HCMUT

module

Pre list is metadata structure to a valid list

pPre is a pointer to predecessor node

pLoc is a pointer to node to be deleted

dataOut is variable to receive deleted data

Post data have been deleted and returned to caller

Delete Node Algorithm

1 dataOut = pLoc -> data

2 if (pPre = null)

Delete first node

1 list.head = pLoc -> link

3 else

Delete other nodes

Slide 36Faculty of Computer Science and Engineering – HCMUT

Delete other nodes

1 pPre -> link = pLoc -> link

4 list.count = list.count - 1

5 recycle (pLoc)

6 return

End deleteNode

Delete Node
template <class List_ItemType>

List_ItemType LinkedList<List_ItemType>::DeleteNode(

Node<List_ItemType> *pPre, Node<List_ItemType> *pLoc){

List_ItemType result = pLoc->data;

if (pPre == NULL)

list->head = pLoc->next;

else

Slide 37Faculty of Computer Science and Engineering – HCMUT

pPre->next = pLoc->next;

this->count--;

delete pLoc;

return result;

}

Traverse List

�Traverse module controls the loop:

calling a user-supplied algorithm to process data

pWalker = list.head

loop (pWalker not null)

process (pWalker -> data)

Slide 38Faculty of Computer Science and Engineering – HCMUT

process (pWalker -> data)

pWalker = pWalker -> link

Traverse List
template <class List_ItemType>
void LinkedList<List_ItemType>::Traverse() {
Node<List_ItemType> *p = head;
while (p != NULL){

p->data++; // process data here!!!
p = p->next;

}
}

Slide 39Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>
void LinkedList<List_ItemType>::Traverse(void
(*visit)(List_ItemType &)) {
Node<List_ItemType> *p = head;
while (p != NULL){

(*visit)(p->data);
p = p->next;

}
}

Searching in Linked List
template <class List_ItemType>

int LinkedList<List_ItemType>::

Search(List_ItemType value, Node<List_ItemType>* &pPre,

Node<List_ItemType>* &pLoc){

pPre = NULL;

pLoc = this->head;

while (pLoc != NULL && pLoc->data != value){

Slide 40Faculty of Computer Science and Engineering – HCMUT

pPre = pLoc;

pLoc = pLoc->next;

}

return (pLoc != NULL); // found: 1; notfound: 0

}

Destroy List Algorithm

Algorithm destroyList (val list <metadata>)
Deletes all data in list.

Pre list is metadata structure to a valid list
Post all data deleted
1 loop (list.head not null)

1 dltPtr = list.head
2 list.head = this.head -> link

Slide 41Faculty of Computer Science and Engineering – HCMUT

2 list.head = this.head -> link
3 recycle (dltPtr)
No data left in list. Reset metadata

2 list.count = 0
3 return
End destroyList

Destroy list
template <class List_ItemType>

void LinkedList<List_ItemType>::Clear(){

Node<List_ItemType> *temp;

while (this->head != NULL){

temp = this->head;

this->head = this->head->next;

delete temp;

Slide 42Faculty of Computer Science and Engineering – HCMUT

}

this->count = 0;

}

template <class List_ItemType>

LinkedList<List_ItemType>::~LinkedList(){

this->Clear();

}

Exercises
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

int InsertFirst(List_ItemType value);

int InsertLast(List_ItemType value);

int InsertItem(List_ItemType value, int Position);

Slide 43Faculty of Computer Science and Engineering – HCMUT

int InsertItem(List_ItemType value, int Position);

List_ItemType DeleteFirst();

List_ItemType DeleteLast();

int DeleteItem(int Postion);

int GetItem(int Position, List_ItemType &dataOut);

void Print2Console();

// Augment more methods for linked list here!!!

LinkedList<List_ItemType>* Clone();

protected: // as previous slide

void main(){

LinkedList *p = new LinkedList();

p->InsertLast(20);

// do sth with p here

func(p);

delete p;

}

Pointer vs. Object Variable

p

1

count head

20

Slide 44Faculty of Computer Science and Engineering – HCMUT

}

void main(){

LinkedList ob;

ob.InsertLast(20);

// do sth with ob here

func(ob);

}

ob

1

count head

20

Pointer vs. Object Variable

void func(LinkedList *a)

a->InsertFist(10);

}

void func(LinkedList myOb)

myOb.InsertFist(10);

a

count head

Slide 45Faculty of Computer Science and Engineering – HCMUT

myOb.InsertFist(10);

}

�What are the pros and cons?

count head

myOb

Sample Solution: Insert
template <class List_ItemType>

int LinkedList<List_ItemType>::InsertItem(List_ItemType value,

int position) {

if (position < 0 || position > this->count)

return 0;

Node<List_ItemType>* newPtr, *pPre;

newPtr = new Node<List_ItemType>();

if (newPtr == NULL)

return 0;

Slide 46Faculty of Computer Science and Engineering – HCMUT

return 0;

newPtr->data = value;

if (head == NULL) {

head = newPtr;

newPtr->next = NULL;

}

else if (position == 0) {

newPtr->next = head;

head = newPtr;

}

Sample Solution: Insert
else {

// Find the position of pPre

pPre = this->head;

for (int i = 0; i < position-1; i++)

pPre = pPre->next;

// Insert new node

newPtr->next = pPre->next;

Slide 47Faculty of Computer Science and Engineering – HCMUT

newPtr->next = pPre->next;

pPre->next = newPtr;

}

this->count++;

return 1;

}

Sample Solution: Delete
template <class List_ItemType>

int LinkedList<List_ItemType>::DeleteItem(int position){

if (position < 0 || position > this->count)

return 0;

Node<List_ItemType> *dltPtr, *pPre;

if (position == 0) {

dltPtr = head;

head = head->next;

} else {

pPre = this->head;

Slide 48Faculty of Computer Science and Engineering – HCMUT

pPre = this->head;

for (int i = 0; i < position-1; i++)

pPre = pPre->next;

dltPtr = pPre->next;

pPre->next = dltPtr->next;

}

delete dltPtr;

this->count--;

return 1;

}

Sample Solution: Clone
template <class List_ItemType>

LinkedList<List_ItemType>*

LinkedList<List_ItemType>::Clone(){

LinkedList<List_ItemType>* result =

New LinkedList<List_ItemType>();

Node<List_ItemType>* p = this->head;

while (p != NULL) {

Slide 49Faculty of Computer Science and Engineering – HCMUT

while (p != NULL) {

result->InsertLast(p->data);

p = p->next;

}

result->count = this->count;

return result;

}

Homework

�Reverse a linked list

a b c

head

a b

Slide 50Faculty of Computer Science and Engineering – HCMUT

a b c

head

a b

Result:

Homework

�Hint 1

a b c

head

a b

new_tail->next = head;

Slide 51Faculty of Computer Science and Engineering – HCMUT

a b c

new head

a b

Result:

new tail

new_tail->next = head;
head->next = NULL;
head = new_head;

Homework

�Hint 2

a b ca b

Result:
p->next = head;
head = p;

head

Slide 52Faculty of Computer Science and Engineering – HCMUT

a b c

p

a b

Result:

head

head = p;
p= p1;
p1=p1->next

p1

Homework

template <class List_ItemType>

void LinkedList<List_ItemType>::Reverse(){

...

}

Slide 53Faculty of Computer Science and Engineering – HCMUT

