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Pointer in C++

�Declaration

Node *ptr;

�Create an object

ptr = new Node();

�A pointer usage

printf(“Data in node: %d”, ptr->data);

ptr

ptr

???
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printf(“Data in node: %d”, ptr->data);

�Destroy an object

delete ptr;

�NULL pointer

ptr = NULL;

ptr

???

ptr



Pointer in C++

�Be careful in these cases:

ptr1

ptr2

Before

ptr1 = ptr2;

Before

delete ptr1; ptr1 = NULL;

ptr1

ptr2

Slide 3Faculty of Computer Science and Engineering – HCMUT

After

ptr1 = ptr2;

ptr1

ptr2

After

delete ptr1; ptr1 = NULL;

ptr1

ptr2

Garbage

Dangling reference problem



Parameter Passing Techniques

void func(int* a, int* b){

int *t;

t = a;

a = b;

b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(p1, p2);
printf(“%d”, *p1);
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}
void func(int* &a, int* &b){

int *t;

t = a;

a = b;

b = t;

}

printf(“%d”, *p1);
printf(“%d”, *p2);

}



Parameter Passing Techniques

void func(int* &a, int* b){

int *t;

t = a;

a = b;

b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(p1, p2);
printf(“%d”, *p1);
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}
void func(int* a, int* &b){

int *t;

t = a;

a = b;

b = t;

}

printf(“%d”, *p1);
printf(“%d”, *p2);

}



Parameter Passing Techniques

void func(int **a, int **b){

int *t;

t = *a;

*a = *b;

*b = t;

}

void main() {
int *p1 = new int;
*p1 = 10;
int *p2 = new int;
*p2 = 20;
func(&p1, &p2);
printf(“%d”, *p1);
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} printf(“%d”, *p1);
printf(“%d”, *p2);

}



Linked Lists

�A linked list is an ordered collection of data in which each 
element contains the location of the next element

Element = Data + Link

head data link 
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empty 
linked list



Nodes

number name

A node with 
one data field

number

A node with 
three data fields

id

Slide 8Faculty of Computer Science and Engineering – HCMUT

name numberid

A node with one
structured data field



Nodes

Linked List 
Structure

count head

list
count <integer>

Data node 
structure

data link

node
data <dataType>

dataType
key <keyType>
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count <integer>
head <pointer>

endendendend list
data <dataType>
link <pointer>

endendendend node

key <keyType>
field1 <…>
field2 <…>
…
fieldN <…>

endendendend dataType



Nodes – Implementation in C++

struct Node {

int data;

Node *next;

};

node
data <dataType>
link <pointer>

end node
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Nodes – Implementation in C++

Node *p = new Node();

p->data = 5;

cout<< p->data;

Node *q = p;

cout<< q->data;

Node *r = new Node();

p
5

q
10
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Node *r = new Node();

r->data = 10;

q->next = r;

cout<< p->next->data;

r
10



Nodes – Implementation in C++

struct Node {
int data;
Node *next;

};

struct Node {
float data;
Node *next;

};
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template <class ItemType>
struct Node {

ItemType data;
Node<ItemType> *next;

};



Nodes – Implementation in C++

Node<int> *p = new Node<int>();

p->data = 5;

cout<< p->data;

Node<int> *q = p;

cout<< q->data;

Node<int> *r = new Node<int>();

p
5

q
10
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Node<int> *r = new Node<int>();

r->data = 10;

q->next = r;

cout<< p->next->data;

r
10



Nodes – Implementation in C++

template <class ItemType>

class Node{

public:

Node(){

this->next = NULL;

}

Node(ItemType data){
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Node(ItemType data){

this->data = data;

this->next = NULL;

}

ItemType data;

Node<ItemType> *next;

};



Linked List – Implementation in C++
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

protected:

list
count <integer>
head <pointer>

end list
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protected:

Node<List_ItemType>* head;

int count;

};



Linked List Algorithms

�Create list

� Insert node

�Delete node

�Traverse

�Destroy list
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Linked List Implementation
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

protected:

int InsertNode(Node<List_ItemType>* pPre,

List_ItemType value);

List_ItemType DeleteNode(Node<List_ItemType>* pPre,
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List_ItemType DeleteNode(Node<List_ItemType>* pPre,

Node<List_ItemType>* pLoc);

int Search(List_ItemType value, Node<List_ItemType>* 

&pPre, Node<List_ItemType>* &pLoc);

void Traverse();

Node<List_ItemType>* head;

int count;

};



Linked List Implementation
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

void InsertFirst(List_ItemType value);

void InsertLast(List_ItemType value);

int InsertItem(List_ItemType value, int Position);

List_ItemType DeleteFirst();
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List_ItemType DeleteFirst();

List_ItemType DeleteLast();

int DeleteItem(int Postion);

int GetItem(int Position, List_ItemType &dataOut);

void Print2Console();

void Clear();

// Augment your methods for linked list here!!!

LinkedList<List_ItemType>* Clone();

protected:

// ...



Linked List Implementation

�How to use Linked List data structure?

int main(int argc, char* argv[]) {

LinkedList<int>* myList = 

new LinkedList<int>();

myList->InsertFirst(15);

myList->InsertFirst(10);

myList->InsertFirst(5);
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myList->InsertFirst(5);

myList->InsertItem(18, 3);

myList->InsertLast(25);

myList->InsertItem(20, 3);

myList->DeleteItem(2);

printf("List 1:\n");

myList->Print2Console();



Linked List Implementation

// ...

int value;

LinkedList<int>* myList2 = myList->Clone();

printf("\nList 2:\n");

myList2->Print2Console();
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myList2->Print2Console();

myList2->GetItem(1, value);

printf(“Value at position 1: %d”, value);

delete myList;

delete myList2;

return 1;

}



Create List

Before

list.head = null
list.count = 0

? ?

count head
list
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0
count head

After list

list.count = 0



Create List

Algorithm createList (ref list <metadata>)

Initializes metadata for a linked list

Pre list is a metadata structure passed by reference

Post metadata initialized

1 list.head = null

2 list.count = 0

Slide 22Faculty of Computer Science and Engineering – HCMUT

2 list.count = 0

3 return

End createList



Linked List Implementation

template <class List_ItemType>

LinkedList<List_ItemType>::LinkedList(){

this->head = NULL;

this->count = 0;

}
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Insert Node

�Allocate memory for the new node and set up data

�Point the new node to its successor

�Point the new node's predecessor to it
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Insert into Empty List

Before 0

count head
list

pNew -> link = list. head

75

pNew

Slide 25Faculty of Computer Science and Engineering – HCMUT

After

pNew -> link = list. head
list.head = pNew 

1

count head
list

75

pNew



Insert at the Beginning

Before
1

count head
list

pNew -> link = list.head
list.head = pNew 

75

pNew
39

Slide 26Faculty of Computer Science and Engineering – HCMUT

After

list.head = pNew 

2
count head

list

75

pNew
39



Insert in Middle

Before 2
count head

list

pNew -> link = pPre -> link

75

pNew
52

39

pPre
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After

pNew -> link = pPre -> link
pPre -> link = pNew 

3

count head
list

75

pNew
52

39

pPre



Insert at End

Before

pNew -> link = pPre -> link

3
count head

list

52

pNew

7539

pPre
134
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After

pNew -> link = pPre -> link
pPre -> link = pNew 

4
count head

list
pPre

52 7539

pNew
134



Insert Node Algorithm

Algorithm insertNode (ref list <metadata>, 

val pPre <node pointer>,

val dataIn <dataType>)

Inserts data into a new node in the linked list

Pre list is metadata structure to a valid list

pPre is pointer data’s logical predecessor
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pPre is pointer data’s logical predecessor

dataIn contains data to be inserted

Post data have been inserted in sequence

Return true if successful, false if memory overflow



Insert Node Algorithm

1 allocate(pNew)

2 if (memory overflow)

1 return false

3 pNew -> data = dataIn

4 if (pPre = null)

Adding before first node or to empty list

1 pNew -> link  = list.head
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1 pNew -> link  = list.head

2 list.head = pNew

5 else

Adding in middle or at end
1 pNew -> link  = pPre -> link

2 pPre -> link = pNew

6 list.count = list.count + 1

7 return true

End insertNode



Insert Node
template <class List_ItemType>

int LinkedList<List_ItemType>::InsertNode(

Node<List_ItemType> *pPre, List_ItemType value) {

Node<List_ItemType> *pNew = new Node<List_ItemType>();

if (pNew == NULL)

return 0;

pNew->data = value;

if (pPre == NULL){
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if (pPre == NULL){

pNew->next = this->head;

this->head = pNew;

} else {

pNew->next = pPre->next;

pPre->next = pNew;

}

this->count++;

return 1;

}



Delete Node

�Locate the node to be deleted.

�Point the node predecessor's link to its successor.

�Release the memory for the deleted node
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Delete First Node

Before

list.head = pLoc -> link

3
count head

list

52 7539

pPre pLoc

Slide 33Faculty of Computer Science and Engineering – HCMUT

recycledAfter

list.head = pLoc -> link
recycle(pLoc)

2
count head

list

52 75

pPre pLoc



General Delete Case

Before

pPre -> link = pLoc -> link

3

count head

list

52 7539

pLocpPre
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recycledAfter

pPre -> link = pLoc -> link
recycle (pLoc)

2

count head

list

39 75

pLocpPre



Delete Node Algorithm

Algorithm deleteNode (ref list <metadata>, 

val pPre <node pointer>,

val pLoc <node pointer>

ref dataOut <dataType>)

Delete data from a linked list and returns it to calling 
module
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module

Pre list is metadata structure to a valid list

pPre is a pointer to predecessor node

pLoc is a pointer to node to be deleted

dataOut is variable to receive deleted data

Post data have been deleted and returned to caller



Delete Node Algorithm

1 dataOut = pLoc -> data

2 if (pPre = null)

Delete first node

1 list.head = pLoc -> link

3 else

Delete other nodes
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Delete other nodes

1 pPre -> link  = pLoc -> link

4 list.count = list.count - 1

5 recycle (pLoc)

6 return

End deleteNode



Delete Node
template <class List_ItemType>

List_ItemType LinkedList<List_ItemType>::DeleteNode( 

Node<List_ItemType> *pPre, Node<List_ItemType> *pLoc){

List_ItemType result = pLoc->data;

if (pPre == NULL)

list->head = pLoc->next;

else
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pPre->next = pLoc->next;

this->count--;

delete pLoc;

return result;

}



Traverse List

�Traverse module controls the loop:

calling a user-supplied algorithm to process data

pWalker = list.head

loop (pWalker not null)

process (pWalker -> data)
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process (pWalker -> data)

pWalker = pWalker -> link



Traverse List
template <class List_ItemType>
void LinkedList<List_ItemType>::Traverse() {
Node<List_ItemType> *p = head;
while (p != NULL){

p->data++; // process data here!!!
p = p->next;

}
}
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template <class List_ItemType>
void LinkedList<List_ItemType>::Traverse(void 
(*visit)(List_ItemType &)) {
Node<List_ItemType> *p = head;
while (p != NULL){

(*visit)(p->data);
p = p->next;

}
}



Searching in Linked List
template <class List_ItemType>

int LinkedList<List_ItemType>::

Search(List_ItemType value, Node<List_ItemType>* &pPre, 

Node<List_ItemType>* &pLoc){

pPre = NULL;

pLoc = this->head;

while (pLoc != NULL && pLoc->data != value){
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pPre = pLoc;

pLoc = pLoc->next;

}

return (pLoc != NULL); // found: 1; notfound: 0

}



Destroy List Algorithm

Algorithm destroyList (val list <metadata>)
Deletes all data in list.

Pre list is metadata structure to a valid list
Post all data deleted
1 loop (list.head not null)

1 dltPtr = list.head
2 list.head = this.head -> link
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2 list.head = this.head -> link
3 recycle (dltPtr)
No data left in list. Reset metadata

2 list.count = 0
3 return
End destroyList



Destroy list
template <class List_ItemType>

void LinkedList<List_ItemType>::Clear(){

Node<List_ItemType> *temp;

while (this->head != NULL){

temp = this->head;

this->head = this->head->next;

delete temp;
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}

this->count = 0;

}

template <class List_ItemType>

LinkedList<List_ItemType>::~LinkedList(){

this->Clear();

}



Exercises
template <class List_ItemType>

class LinkedList{

public:

LinkedList();

~LinkedList();

int InsertFirst(List_ItemType value);

int InsertLast(List_ItemType value);

int InsertItem(List_ItemType value, int Position);
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int InsertItem(List_ItemType value, int Position);

List_ItemType DeleteFirst();

List_ItemType DeleteLast();

int DeleteItem(int Postion);

int GetItem(int Position, List_ItemType &dataOut);

void Print2Console();

// Augment more methods for linked list here!!!

LinkedList<List_ItemType>* Clone();

protected: // as previous slide



void main(){

LinkedList *p = new LinkedList();

p->InsertLast(20);

// do sth with p here

func(p);

delete p;

}

Pointer vs. Object Variable

p

1

count head

20
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}

void main(){

LinkedList ob;

ob.InsertLast(20);

// do sth with ob here

func(ob);

}

ob

1

count head

20



Pointer vs. Object Variable

void func(LinkedList *a)

a->InsertFist(10);

}

void func(LinkedList myOb)

myOb.InsertFist(10);

a

count head
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myOb.InsertFist(10);

}

�What are the pros and cons?

count head

myOb



Sample Solution: Insert
template <class List_ItemType>

int LinkedList<List_ItemType>::InsertItem(List_ItemType value, 

int position) {

if (position < 0 || position > this->count)

return 0;

Node<List_ItemType>* newPtr, *pPre;

newPtr = new Node<List_ItemType>();

if (newPtr == NULL)

return 0;
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return 0;

newPtr->data = value;

if (head == NULL) {

head = newPtr;

newPtr->next = NULL;

}

else if (position == 0) {

newPtr->next = head;

head = newPtr;

}



Sample Solution: Insert
else {

// Find the position of pPre

pPre = this->head;

for (int i = 0; i < position-1; i++)

pPre = pPre->next;

// Insert new node

newPtr->next = pPre->next;
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newPtr->next = pPre->next;

pPre->next = newPtr;

}

this->count++;

return 1;

}



Sample Solution: Delete
template <class List_ItemType>

int LinkedList<List_ItemType>::DeleteItem(int position){

if (position < 0 || position > this->count)

return 0;

Node<List_ItemType> *dltPtr, *pPre;

if (position == 0) {

dltPtr = head;

head = head->next;

} else {

pPre = this->head;
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pPre = this->head;

for (int i = 0; i < position-1; i++)

pPre = pPre->next;

dltPtr = pPre->next;

pPre->next = dltPtr->next;

}

delete dltPtr;

this->count--;

return 1;

}



Sample Solution: Clone
template <class List_ItemType>

LinkedList<List_ItemType>*

LinkedList<List_ItemType>::Clone(){

LinkedList<List_ItemType>* result =

New LinkedList<List_ItemType>();

Node<List_ItemType>* p = this->head;

while (p != NULL) {
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while (p != NULL) {

result->InsertLast(p->data);

p = p->next;

}

result->count = this->count;

return result;

}



Homework

�Reverse a linked list

a b c

head

a b

Slide 50Faculty of Computer Science and Engineering – HCMUT

a b c

head

a b

Result:



Homework

�Hint 1

a b c

head

a b

new_tail->next = head;
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a b c

new head

a b

Result:

new tail

new_tail->next = head;
head->next = NULL;
head = new_head;



Homework

�Hint 2

a b ca b

Result:
p->next = head;
head = p;

head
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a b c

p

a b

Result:

head

head = p;
p= p1;
p1=p1->next

p1



Homework

template <class List_ItemType>

void LinkedList<List_ItemType>::Reverse(){

...

}
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