’. Ho Chi Minh City University of Technology
@ Faculty of Computer Science and Engineering

Data Structures and Algorithms —
C++ Implementation

Huynh Tan Dat
Email: htdat@cse.hcmut.edu.vn
Home Page: http://www.cse.hcmut.edu.vn/~htdat/

&

¢

o

Pointer in C++

] Declaration

Node *ptr; IR
1 Create an object Py

ptr = new Node(); >
- A pointer usage ptr

printf(“Data in node: %d”, ptr->data); .
1 Destroy an object 1 S 099

delete ptr; otr /N
I NULL pointer

ptr = NULL; &

ptr

Faculty of Computer Science and Engineering — HCMUT Slide 2

Pointer in C++

J Be careful in these cases:

Before > Before [\
ptri ptri
ptr2 ptr2
ptr1 = ptr2; delete ptr1; ptr1 = NULL,;
e = e =
\ Garbage |Z|
After otr1 After ptr
A —>
ptr2 ptr2 N

Dangling reference problem

Faculty of Computer Science and Engineering — HCMUT Slide 3

Parameter Passing Techniques

void func(int* a, int* b){ void main() {
int *t: int *p1 = new Int;
— *p1 =10;
’ Int *p2 = new Iint;
a=Db; *p2 = 20;
b=t; func(p1, p2);
) printf(“%d”, *p1);
void func(int* &a, int* &b){ printf(“%d”, *p2);
int *t; }
I =a;
a=>b;
b=1;
}

Faculty of Computer Science and Engineering — HCMUT Slide 4

Parameter Passing Techniques

void func(int* &a, int* b){ void main() {
int *t: int *p1 = new Int;
— *p1 =10;
’ Int *p2 = new Iint;
a=Db; *p2 = 20;
b =1t; func(p1, p2);
) printf(“%d”, *p1);
void func(int* a, int* &b){ printf(“%d”, *p2);
int *t; }
I =a;
a=Db;
b =t;
}

Faculty of Computer Science and Engineering — HCMUT Slide 5

Parameter Passing Techniques

void func(int **a, int **b){ void main() {
int *t: int *p1 = new Int;
. p1=10;
£= 61’ int *p2 = new int;
a="Db; *p2 = 20;
b =1t; func(&p1, &p2);
) printf(“%d”, *p1);

printf(“%d”, *p2);

Faculty of Computer Science and Engineering — HCMUT Slide 6

Linked Lists

J A linked list is an ordered collection of data in which each
element contains the location of the next element

Element = Data + Link

head data link

v

v

v

v
X

X

empty
linked list

Faculty of Computer Science and Engineering — HCMUT Slide 7

A node with
one data field

number

Nodes

A node with

three data fields

name

id

number | —+—

A node with one
structured data field

name

id

number

A\

Faculty of Computer Science and Engineering — HCMUT

Slide 8

Nodes

Linked List
Structure

count

list
count <integer>
head <pointer>
end list

Data node
~ structure
head
node
data <dataType>

link <pointer>

end node

Faculty of Computer Science and Engineering — HCMUT

v

data

link

dataType
key <keyType>
field1 <...>
field2 <...>

fieldN <...>
end dataType

Slide 9

Nodes — Implementation in C++

struct Node { node
int data; data <dataType>
Node *next; link <pointer>

) end node

Faculty of Computer Science and Engineering — HCMUT Slide 10

Nodes — Implementation in C++

Node *p = new Node () ; 5 5 |
p—->data = 5; D

cout<< p->data;

Node *g = p; /

cout<< g->data; g

Node *r = new Node(); > 10
r—->data = 10; r
g—->next = r;

cout<< p->next->data;

Faculty of Computer Science and Engineering — HCMUT Slide 11

Nodes — Implementation in C++

struct Node { struct Node {
Int data; float data;
Node *next; Node *next;
b b

template <class ltemType>
struct Node {
ltemType data;
Node<ltemType> *next;

Faculty of Computer Science and Engineering — HCMUT Slide 12

Nodes — Implementation in C++

Node<int> *p = new Node<int>(); [5 [
p—>data = 5; 0

cout<< p->data;

Node<int> *g = p; /

cout<< g->data; q
Node<int> *r = new Node<int>(); s 10
r->data = 10; r
g—->next = r;

cout<< p->next->data;

Faculty of Computer Science and Engineering — HCMUT Slide 13

Nodes — Implementation in C++

template <class ItemType>
class Node({
public:
Node () {
this->next = NULL;
}
Node (ItemType data) {
this—->data = data;
this->next = NULL;

TtemType data;
Node<ItemType> *next;

B

Faculty of Computer Science and Engineering — HCMUT Slide 14

Linked List — Implementation in C++

template <class List_ItemType>

list
class LinkedList{ count <integers
public: head <pointer>
LinkedList () end list

;
~LinkedList () ;

protected:
Node<List_TItemType>* head;

int count;

by

Faculty of Computer Science and Engineering — HCMUT Slide 15

Linked List Algorithms

J Create list
.l Insert node
1 Delete node
J Traverse

J Destroy list

Faculty of Computer Science and Engineering — HCMUT Slide 16

Linked List Implementation

template <class List_ItemType>
class LinkedList({
public:
LinkedList () ;
~LinkedList () ;
protected:
int InsertNode (Node<List_TItemType>* pPre,
List_ItemType value);
List_TItemType DeleteNode (Node<List_ItemType>* pPre,
Node<List_TItemType>* pLoc);
int Search(List_TItemType value, Node<List_TItemType>*
&pPre, Node<List_ItemType>* &ploc);
volid Traverse();

Node<List_TtemType>* head;
int count;

by

Faculty of Computer Science and Engineering — HCMUT Slide 17

Linked List Implementation

template <class List_TItemType>
class LinkedList{
public:
LinkedList () ;
~LinkedList () ;
vold InsertFirst(List_ItemType value);
vold InsertlLast (List_ItemType value);
int InsertlItem(List_TItemType value, int Position);
List_TItemType DeleteFirst();
List_ItemType DeletelLast();
int Deleteltem(int Postion);
int GetItem(int Position, List_ItemType &datalOut);
vold Print2Console() ;
vold Clear () ;
// Augment your methods for linked list here!!!
LinkedList<List_TItemType>* Clone();
protected:
//

Faculty of Computer Science and Engineering — HCMUT Slide 18

Linked List Implementation

J How to use Linked List data structure?

int main(int argc, char* argv[]) {
LinkedLilist<int>* myList =

new LinkedList<int>();

myList—->InsertFirst (15);
myList—->InsertFirst (10);
myList->InsertFirst (5);
myList->InsertItem (18, 3);
myList->InsertLast (25);
myList->InsertItem (20, 3);
myList->Deleteltem(2);
printf ("List 1:\n");
myList—->Print2Console();

Faculty of Computer Science and Engineering — HCMUT Slide 19

Linked List Implementation

//

int value;
LinkedList<int>* myListZ2 = myList->Clone();

printf ("\nList 2:\n");
myListZ2->PrintZ2Console () ;

myList2->GetItem(1l, wvalue);
printf (“Value at position 1: %d”, wvalue);

delete myList;
delete myList?2;
return 1;

}
Faculty of Computer Science and Engineering — HCMUT Slide 20

Create List

Before list || 2 .

count head

After list 0 .

count head

Faculty of Computer Science and Engineering — HCMUT Slide 21

Create List

Algorithm createl.ist (ref list <metadata>)
Initializes metadata for a linked list
Pre listis a metadata structure passed by reference
Post metadata initialized
1 list.head = null
2 list.count=0
3 return
End createlist

Faculty of Computer Science and Engineering — HCMUT Slide 22

Linked List Implementation

template <class List_ItemType>
LinkedList<List_ItemType>::LinkedList () {
this—->head = NULL;

this—->count = 0;

Faculty of Computer Science and Engineering — HCMUT Slide 23

Insert Node

1 Allocate memory for the new node and set up data
1 Point the new node to its successor
J Point the new node's predecessor to it

Faculty of Computer Science and Engineering — HCMUT Slide 24

Insert into Empty List
Before 0 . 75 .

count head

list

pNew

A2

v [[1] [

count head

=X

N

list

pNew
Faculty of Computer Science and Engineering — HCMUT Slide 25

Insert at the Beginning

Before

\ 4

}
count head

75

list J 39 .

pNew

pNew -> link = list.head
list.head = pNew

After

2 75
count head T
list J 39
pNew

Faculty of Computer Science and Engineering — HCMUT

Slide 26

Before

After

Insert in Middle

2 > 39 > 75
count head 1
list J 5o
pPre pNew
pNew -> link = pPre -> link
pPre -> link = pNew
3 > 3? \ 75
count head \4‘ /
list J 50
pPre pNew

Faculty of Computer Science and Engineering — HCMUT

Slide 27

Insert at End

Before 3 30 | = 52 | 75
count head 0\
list J 134
pPre pNew
pNew -> link = pPre -> link
pPre -> link = pNew
After 4 > 39 > 52 | 75 |/
count head ':/
list J 134
pPre pNew

Faculty of Computer Science and Engineering — HCMUT Slide 28

Insert Node Algorithm

Algorithm insertNode (ref list <metadata>,
val pPre <node pointer>,
val dataln <dataType>)
Inserts data into a new node in the linked list
Pre list is metadata structure to a valid list
pPre is pointer data’s logical predecessor
dataln contains data to be inserted
Post data have been inserted in sequence
Return true if successful, false if memory overflow

Faculty of Computer Science and Engineering — HCMUT Slide 29

—h

~ W

6
/

Insert Node Algorithm

allocate(pNew)

If (memory overflow)

1 return false

pNew -> data = dataln

If (pPre = null)

Adding before first node or to empty list
1 pNew -> link = list.head

2 list.head = pNew

else

Adding in middle or at end

1 pNew -> link = pPre -> link
2 pPre ->link = pNew
list.count = list.count + 1

return true

End insertNode
Faculty of Computer Science and Engineering — HCMUT

Slide 30

Insert Node

template <class List_ItemType>

int LinkedList<List_TItemType>::InsertNode (
Node<List_ItemType> *pPre, List_TItemType value) {
Node<List_TItemType> *pNew = new Node<List_ItemType> () ;
if (pNew == NULL)
return O;
pNew—>data = value;
if (pPre == NULL) {
this->head;
this->head = pNew;

pNew—->next

} else {
pNew—->next = pPre->next;
pPre—->next = pNew;

}

this—->count++;

return 1;

—
Faculty of Computer Science and Engineering — HCMUT Slide 31

Delete Node

J Locate the node to be deleted.

o

Point the node predecessor's link to its successor.

1 Release the memory for the deleted node

Faculty of Computer Science and Engineering — HCMUT Slide 32

Before

After

Delete First Node

3 >l 39 > 52 > 75
count head T
list
pPre plLoc
list.head = pLoc -> link
recycle(pLoc)
Kﬁ
//. ———————
2 1| !recyded E 52 sl 75
count head l“T_ T
list |

pPre plLoc

Faculty of Computer Science and Engineering — HCMUT

Slide 33

Before

After

General Delete Case

3 > 39 > 52 > 75
count head 1 1
list
pPre pLoc
pPre -> link = pLoc -> link
recycle (pLoc)
> J 39 recydled! | 75
count head 1 T
list |
pPre plLoc

Faculty of Computer Science and Engineering — HCMUT

Slide 34

Delete Node Algorithm

Algorithm deleteNode (ref list <metadata>,
val pPre <node pointer>,
val pLoc <node pointer>
ref dataOut <dataType>)

Delete data from a linked list and returns it to calling
module

Pre listis metadata structure to a valid list
pPre is a pointer to predecessor node
pLoc is a pointer to node to be deleted
dataOut is variable to receive deleted data
Post data have been deleted and returned to caller

Faculty of Computer Science and Engineering — HCMUT Slide 35

Delete Node Algorithm

1 dataOut = pLoc -> data
2 if (pPre = null)
Delete first node
1 list.head =ploc -> link
3 else
Delete other nodes
1 pPre ->link = plLoc -> link
4 list.count = list.count - 1
5 recycle (pLoc)
6 return
End deleteNode

Faculty of Computer Science and Engineering — HCMUT

Slide 36

Delete Node

template <class List_TItemType>

List_TItemType LinkedList<List_ItemType>::DeleteNode (
Node<List_TItemType> *pPre, Node<List_ItemType> *pLoc) {

List_ItemType result = pLoc->data;
1f (pPre == NULL)
list->head = pLoc->next;

else

pPre—->next pLoc—>next;
this->count—-—;
delete pLoc;

return result;

Faculty of Computer Science and Engineering — HCMUT Slide 37

Traverse List

J Traverse module controls the loop:
calling a user-supplied algorithm to process data

pWalker = list.head

loop (pWalker not null)
process (pWalker -> data)
pWalker = pWalker -> link

Faculty of Computer Science and Engineering — HCMUT Slide 38

Traverse List

template <class List_ItemType>

volid LinkedList<List_TItemType>::Traverse () {
Node<List_TItemType> *p = head;
while (p != NULL) {

p—>data++; // process data here!!!
P = p—->next;
}
}

template <class List_ItemType>
void LinkedList<List_TItemType>::Traverse(void
(*visit) (List_TItemType &)) {
Node<List_TItemType> *p = head;
while (p != NULL) {
(*visit) (p—>data);
P = p—->next;
}
}

Faculty of Computer Science and Engineering — HCMUT Slide 39

Searching in Linked List

template <class List_TItemType>

int LinkedList<List_TItemType>::
Search (List_ItemType value, Node<List_ItemType>* &pPre,
Node<List_TtemType>* &pLoc) {

pPre = NULL;

pLoc = this->head;

while (pLoc != NULL && pLoc->data != wvalue) {
pPre = pLoc;
pLoc = pLoc—>next;

}
return (pLoc != NULL); // found: 1; notfound: O

Faculty of Computer Science and Engineering — HCMUT Slide 40

Destroy List Algorithm

Algorithm destroyList (val list <metadata>)
Deletes all data in list.

Pre
Post

list Is metadata structure to a valid list
all data deleted

1 loop (list.head not null)

’
2
3

dItPtr = list.head
list.head = this.head -> link
recycle (dltPtr)

No data left in list. Reset metadata
2 list.count=0
3 return
End destroyList

Faculty of Computer Science and Engineering — HCMUT

Slide 41

Destroy list

template <class List_TItemType>
vold LinkedList<List_TItemType>::Clear () {
Node<List_TItemType> *temp;
while (this—->head != NULL) {
temp = this->head;
this—->head = this->head->next;
delete temp;
}
this—->count = 0;
}
template <class List_ItemType>
LinkedList<List_TItemType>::~LinkedList () {
this->Clear () ;

Faculty of Computer Science and Engineering — HCMUT

Slide 42

Exercises

template <class List_TItemType>
class LinkedList({
public:

LinkedList () ;

~LinkedList () ;

int InsertFirst(List_ItemType value);
int InsertlLast(List_ItemType value);
int InsertlItem(List_TItemType value, int Position);
List_TItemType DeleteFirst();
List_ItemType DeletelLast();
int Deleteltem(int Postion);
int GetItem(int Position, List_TItemType &datalOut);
vold Print2Console() ;
// Augment more methods for linked list here!!!
LinkedList<List_ItemType>* Clone();
protected: // as previous slide

Faculty of Computer Science and Engineering — HCMUT Slide 43

Pointer vs. Object Variable

vold main () {

LinkedList *p = new LinkedList();

p—>InsertLast (20);

// do sth with p here | 4+—

func (p) ; D
delete p;

}

vold main () {
LinkedList ob;
ob.InsertLast (20);
// do sth with ob here
func (ob) ;

J

Faculty of Computer Science and Engineering — HCMUT

1

count head

20

1

count head

ob

20

Slide 44

Pointer vs. Object Variable

vold func(LinkedList *a)
a—->InsertFist (10);

A

a

}

void func(LinkedList myOb) —
myOb.InsertFist (10); count head

} myOb

J What are the pros and cons?

Faculty of Computer Science and Engineering — HCMUT Slide 45

Sample Solution: Insert

template <class List_ItemType>

int position) {

if (position < 0 || position > this->count)

return O;
Node<List_ItemType>* newPtr, *pPre;
newPtr = new Node<List_TItemType> () ;
if (newPtr == NULL)

return 0O;

newPtr—->data = value;
if (head == NULL) {
head = newPtr;

newPtr—->next = NULL;
}
else if (position == 0) {
newPtr->next = head;
head = newPtr;

}

Faculty of Computer Science and Engineering — HCMUT

int LinkedList<List_ItemType>::Insertltem(List_TItemType value,

Slide 46

Sample Solution: Insert

else {
// Find the position of pPre

pPre = this->head;
for (int 1 = 0; 1 < position-1; i++)
pPre = pPre—->next;
// Insert new node
newPtr—->next = pPre->next;
pPre—->next = newPtr;
}
this—->count++;
return 1;

Faculty of Computer Science and Engineering — HCMUT Slide 47

Sample Solution: Delete

template <class List_ItemType>
int LinkedList<List_ItemType>::Deleteltem(int position) {
if (position < 0 || position > this->count)
return O;
Node<List_ItemType> *dltPtr, *pPre;
if (position == 0) {
dltPtr = head;
head = head->next;

} else {
pPre = this->head;
for (int i = 0; 1 < position-1; i++)

pPre = pPre->next;
dltPtr = pPre->next;
pPre->next = dltPtr->next;
}
delete dltPtr;
this—->count——;
return 1;

Faculty of Computer Science and Engineering — HCMUT Slide 48

Sample Solution: Clone

template <class List_ItemType>
LinkedList<List_TItemType>*
LinkedList<List_TItemType>::Clone () {
LinkedList<List_TItemType>* result =
New LinkedList<List_TItemType>();
Node<List_TItemType>* p = this->head;
while (p != NULL) {
result—->InsertlLast (p—>data) ;
P = p—->next;
}
result—->count = this->count;
return result;

Faculty of Computer Science and Engineering — HCMUT Slide 49

Homework

1 Reverse a linked list

head @

a > b » a » b " C

Result:

M ininiy

Faculty of Computer Science and Engineering — HCMUT Slide 50

Homework
JHint 1

head @ /
a > b > a > b >
\\ n t->next = head;

head->next = NULL:
a (b J, a g b

ew_head;
new tail

new head

Faculty of Computer Science and Engineering — HCMUT Slide 51

Homework
JHint 2

headQ\
a * b > a > b " C

p->next = head;

Result: head = p;
p=p1;
p1=p1->next

head@

Faculty of Computer Science and Engineering — HCMUT Slide 52

Homework

template <class List_ItemType>
vold LinkedList<List_ItemType>::Reverse () {

Faculty of Computer Science and Engineering — HCMUT Slide 53

