’. Ho Chi Minh City University of Technology
@ Faculty of Computer Science and Engineering

Data Structures and Algorithms —
C++ Implementation

Huynh Tan Dat
Email: htdat@cse.hcmut.edu.vn
Home Page: http://www.cse.hcmut.edu.vn/~htdat/

&

¢

o

Stacks

] Basic stack operations
 Linked-list implementation
1 Stack applications

J Array implementation

Faculty of Computer Science and Engineering — HCMUT Slide 2

Linear List Concepts

J General list: no restrictions on where data can be
inserted/deleted, and on which operations can be used
on the list

] Restricted list: data can be inserted/deleted and
operations are performed only at the ends of the list

Faculty of Computer Science and Engineering — HCMUT Slide 3

Stack

] All insertions and deletions are restricted to one end
called the top

 Last-In First-Out (LIFO) data structure

Faculty of Computer Science and Engineering — HCMUT Slide 4

Basic Stack Operations

Push

Data 1
Top ‘

Stack Stack

Top

Faculty of Computer Science and Engineering — HCMUT Slide 5

Basic Stack Operations

Overflow

-

Data Top

Stack

Faculty of Computer Science and Engineering — HCMUT Slide 6

Basic Stack Operations

Pop

‘ Data
- Top

Stack Stack

Top

Faculty of Computer Science and Engineering — HCMUT Slide 7

Basic Stack Operations

Underflow

Top Stack

Faculty of Computer Science and Engineering — HCMUT Slide 8

Basic Stack Operations

Stack Top

‘ Data
=)

Top Top

Stack Stack

Faculty of Computer Science and Engineering — HCMUT Slide 9

Linked-List Implementation

Top

)

Conceptual

Faculty of Computer Science and Engineering — HCMUT

Stack structure

top

9

A4

A4

A4

A4

A4

Physical

Slide 10

Linked-List Implementation

Stack
structure

Stack node
structure

V

count

top

V

data

next

stack
count <integer>
top <node pointer>
end stack

node
data <dataType>
next <node pointer>
end node

Faculty of Computer Science and Engineering — HCMUT Slide 11

Linked-List Implementation

template <class ItemType>
struct Node {
TtemType data;
Node<ItemType> *next;

b s

template <class List_ItemType>
class Stack {
public:

Stack () ;

~Stack () ;

Faculty of Computer Science and Engineering — HCMUT Slide 12

Linked-List Implementation

void Push(List_TItemType dataln);
int Pop(List_TItemType &datalOut);

int GetStackTop(List_ItemType &datalOut);
vold Clear () ;

int IsEmpty () ;
int GetSize();
Stack<List_TItemType>* Clone();
vold Print2Console () ;

private:
Node<List_ItemType>* top;
int count;

b s

Faculty of Computer Science and Engineering — HCMUT Slide 13

Create Stack

Before

?

?

count

top

(no stack)

After

0

]

count

top

(empty stack)

Faculty of Computer Science and Engineering — HCMUT

Slide 14

Create Stack

Algorithm createStack (ref stack <metadata>)
Initializes metadata for a stack

Pre stack is structure for metadata

Post metadata initialized

1 stack.count=0

2 stack.top = null

3 return

End createStack

Faculty of Computer Science and Engineering — HCMUT Slide 15

Linked-List Implementation

template <class List_ItemType>

Stack<List_TItemType>::Stack () {
this->top = NULL;
this—->count = 0;

template <class List_ItemType>
Stack<List_TItemType>::~Stack () {
this—->Clear () ;

Faculty of Computer Science and Engineering — HCMUT

Slide 16

Push Stack

Before After
pNew > | red pNew > | red /
data next data / next
stack stack /
7
2 > | blue / 3 / blue /
count top data / next count top data / next
green green
data next data next

Faculty of Computer Science and Engineering — HCMUT Slide 17

Push Stack

Algorithm pushStack (ref stack <metadata>,
val data <datalype>)
Inserts (pushes) one item into the stack
Pre stack is a metadata structure to a valid stack
data contains data to be pushed into stack
Post data have been pushed in stack
Return true if successful; false if memory overflow

Faculty of Computer Science and Engineering — HCMUT Slide 18

Push Stack

1 1f (stack full)

Before

1 success = false

2 else pNew > | red
1 allocate (pNew) <tack data next
2 pNew -> data = data
3 pNew -> next = stack.top 2 7 | blue ||z
4 stack.top = pNew count top dat/a/next
5 stack.count = stack.count + 1

6 success = true
3 return success
End pushStack

Faculty of Computer Science and Engineering — HCMUT

data

next

Slide 19

Push Stack

template <class List_TItemType>

volid Stack<List_ItemType>::Push
(List_TItemType value) {
Node<List_TItemType>* pNew = new

Node<List_TItemType> () ;

pNew—->data value;
pNew—->next = top;
this->top = pNew;
this—->count++;

Faculty of Computer Science and Engineering — HCMUT Slide 20

Pop Stack

Before
dItPtr > | red /
data / next
stack /
3 / blue | |,
count top data / next
green
data next

Faculty of Computer Science and Engineering — HCMUT

After
ditPtr 5! recycled | 3 1
i data next;
stack TTTTTTTTTTTTT
2 > | blue /
count top data / next
green
data next

Slide 21

Pop Stack

Algorithm popStack (ref stack <metadata>,
ref dataOut <dataType>)
Pops the item on the top of the stack and returns it to caller
Pre stack is a metadata structure to a valid stack
dataOut is to receive the popped data
Post data have been returned to caller
Return true if successful; false if underflow

Faculty of Computer Science and Engineering — HCMUT Slide 22

Pop Stack

1 1f (stack empty)

1 success = false Before
2 else P -
I >
1 dlItPtr = stack.top = 1
data/next
2 dataOut = stack.top -> data stack /
3 stack.top = stack.top -> next ; 7 oue |
4 stack.count = stack.count - 1
count top data / next
5 recycle (dltPtr) /
6 success = true
green
3 return success data next
End popStack
Faculty of Computer Science and Engineering — HCMUT Slide 23

Pop Stack

template <class List_ItemType>
int Stack<List_ItemType>::Pop(List_TItemType
&datalOut) {
1f (count == 0)
return 0O;
Node<List_TItemType>* dltPtr = this->top;
dataOut = this->top->data;
this->top = this->top->next;
this—->count——;
delete dltPtr;
return 1;

Faculty of Computer Science and Engineering — HCMUT Slide 24

Stack Top

Algorithm stackTop (val stack <metadata>,
ref dataOut <dataType>)

Retrieves the data from the top of the stack without
changing the stack

Pre stack is a metadata structure to a valid stack
dataOut is to receive top stack data

Post data have been returned to caller

Return true if successful; false

Faculty of Computer Science and Engineering — HCMUT Slide 25

Stack Top

1 1f (stack empty)
1 success = false

2 else
1 dataOut = stack.top -> data
2 success = true

3 return success

End stackTop

Faculty of Computer Science and Engineering — HCMUT Slide 26

Stack Top

template <class List_TItemType>
int Stack<List_ItemType>::GetStackTop
(List_TItemType &datalOut) {
1f (count == 0)
return 0O;
dataOut = this->top->data;
return 1;

Faculty of Computer Science and Engineering — HCMUT Slide 27

Destroy Stack

Algorithm destroyStack (ref stack <metadata>)
Releases all nodes back to memory
Pre stack is a metadata structure to a valid stack
Post stack empty and all nodes recycled
1 if (stack not empty)
1 loop (stack.top not null)
1 temp = stack.top
2 stack.top = stack.top -> next
3 recycle (temp)
2 stack.count=0
3 return

End destroyStack
Faculty of Computer Science and Engineering — HCMUT Slide 28

Destroy Stack

template <class List_TItemType>
volid Stack<List_TItemType>::Clear () {
Node<List_ItemType>* temp;
while (this—->top != NULL) {
temp = this->top;
this->top = this->top—->next;
delete temp;
}

this—->count = 0;

Faculty of Computer Science and Engineering — HCMUT Slide 29

Stack Empty

template <class List_ItemType>

int Stack<List_ItemType>::IsEmpty () {
return (count == 0);

}

template <class List_ItemType>

int Stack<List_ItemType>::GetSize () {
return count;

Faculty of Computer Science and Engineering — HCMUT Slide 30

Print a stack

template <class List_ItemType>

void Stack<List_ItemType>::PrintZ2Console ()

Node<List_TItemType>* p;
p = this->top;
while (p != NULL) {
printf ("%d\t", p->data);
p = p—->next;
}
printf ("\n");

Faculty of Computer Science and Engineering — HCMUT

Slide 31

Using Stacks

int main(int argc, char* argvl|[]) {
Stack<int> *myStack = new Stack<int>();
int val;

myStack—->Push (7
myStack—>Push (9
myStack—->Push (1
myStack—->Push (8
myStack->Print2Z2Console() ;
myStack->Pop (val) ;
myStack->Print2Z2Console() ;
delete myStack;

return O;

}

4

)
)/
O)/
) 7

Faculty of Computer Science and Engineering — HCMUT Slide 32

Exercises

template <class List_ItemType>
Stack<List_TItemType>*
Stack<List_TItemType>::Clone () {
//

Faculty of Computer Science and Engineering — HCMUT Slide 33

