
Data Structures and Algorithms –

C++ Implementation

Ho Chi Minh City University of Technology

Faculty of Computer Science and Engineering

BK
TP.HCM

BK
TP.HCM

Huỳnh Tấn Đạt

Email: htdat@cse.hcmut.edu.vn

Home Page: http://www.cse.hcmut.edu.vn/~htdat/

Stacks

�Basic stack operations

�Linked-list implementation

�Stack applications

�Array implementation

Slide 2Faculty of Computer Science and Engineering – HCMUT

Linear List Concepts

�General list: no restrictions on where data can be
inserted/deleted, and on which operations can be used
on the list

�Restricted list: data can be inserted/deleted and
operations are performed only at the ends of the list

Slide 3Faculty of Computer Science and Engineering – HCMUT

operations are performed only at the ends of the list

Stack

�All insertions and deletions are restricted to one end
called the top

�Last-In First-Out (LIFO) data structure

Slide 4Faculty of Computer Science and Engineering – HCMUT

Basic Stack Operations

Top

Push

Data

Slide 5Faculty of Computer Science and Engineering – HCMUT

Top

Stack

Top

Stack

Basic Stack Operations

Top

Overflow

Data

Slide 6Faculty of Computer Science and Engineering – HCMUT

Stack

Basic Stack Operations

Pop

Data

Slide 7Faculty of Computer Science and Engineering – HCMUT

Top

Stack

Top

Stack

Basic Stack Operations

Underflow

Slide 8Faculty of Computer Science and Engineering – HCMUT

Top
Stack

Basic Stack Operations

Top Top

Stack Top

Data

Slide 9Faculty of Computer Science and Engineering – HCMUT

Top

Stack

Top

Stack

Linked-List Implementation

Top

Stack structure
top

5

Slide 10Faculty of Computer Science and Engineering – HCMUT

Conceptual Physical

Linked-List Implementation

Stack
structure count top

stack
count <integer>
top <node pointer>

end stack

Slide 11Faculty of Computer Science and Engineering – HCMUT

end stack

Stack node
structure data next

node
data <dataType>
next <node pointer>

end node

Linked-List Implementation

template <class ItemType>

struct Node {

ItemType data;

Node<ItemType> *next;

};

Slide 12Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>

class Stack {

public:

Stack();

~Stack();

Linked-List Implementation

void Push(List_ItemType dataIn);

int Pop(List_ItemType &dataOut);

int GetStackTop(List_ItemType &dataOut);

void Clear();

int IsEmpty();

int GetSize();

Stack<List_ItemType>* Clone();

Slide 13Faculty of Computer Science and Engineering – HCMUT

Stack<List_ItemType>* Clone();

void Print2Console();

private:

Node<List_ItemType>* top;

int count;

};

Create Stack

Before After

0

count top

? ?

count top

Slide 14Faculty of Computer Science and Engineering – HCMUT

count top

(no stack) (empty stack)

count top

Create Stack

Algorithm createStack (ref stack <metadata>)

Initializes metadata for a stack

Pre stack is structure for metadata

Post metadata initialized

1 stack.count = 0

Slide 15Faculty of Computer Science and Engineering – HCMUT

1 stack.count = 0

2 stack.top = null

3 return

End createStack

Linked-List Implementation
template <class List_ItemType>

Stack<List_ItemType>::Stack(){

this->top = NULL;

this->count = 0;

}

template <class List_ItemType>

Slide 16Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>

Stack<List_ItemType>::~Stack(){

this->Clear();

}

Push Stack

Before

red

data next

After

red

data next
stack stack

pNew pNew

Slide 17Faculty of Computer Science and Engineering – HCMUT

2

count top

blue

data next

green

data next

3

count top

blue

data next

green

data next

Push Stack

Algorithm pushStack (ref stack <metadata>,

val data <dataType>)

Inserts (pushes) one item into the stack

Pre stack is a metadata structure to a valid stack

data contains data to be pushed into stack

Slide 18Faculty of Computer Science and Engineering – HCMUT

data contains data to be pushed into stack

Post data have been pushed in stack

Return true if successful; false if memory overflow

Push Stack

1 if (stack full)

1 success = false

2 else

1 allocate (pNew)

2 pNew -> data = data

3 pNew -> next = stack.top

Before

2 blue

red

data next
stack

pNew

Slide 19Faculty of Computer Science and Engineering – HCMUT

3 pNew -> next = stack.top

4 stack.top = pNew

5 stack.count = stack.count + 1

6 success = true

3 return success

End pushStack

2

count top

blue

data next

green

data next

Push Stack

template <class List_ItemType>

void Stack<List_ItemType>::Push

(List_ItemType value){

Node<List_ItemType>* pNew = new

Node<List_ItemType>();

pNew->data = value;

Slide 20Faculty of Computer Science and Engineering – HCMUT

pNew->data = value;

pNew->next = top;

this->top = pNew;

this->count++;

}

Pop Stack

recycled

Before

red

data next

dltPtr

After

data next

dltPtr

stack stack

Slide 21Faculty of Computer Science and Engineering – HCMUT

3

count top

blue

data next

green

data next

2

count top

blue

data next

green

data next

Pop Stack

Algorithm popStack (ref stack <metadata>,

ref dataOut <dataType>)

Pops the item on the top of the stack and returns it to caller

Pre stack is a metadata structure to a valid stack

dataOut is to receive the popped data

Slide 22Faculty of Computer Science and Engineering – HCMUT

dataOut is to receive the popped data

Post data have been returned to caller

Return true if successful; false if underflow

Pop Stack

1 if (stack empty)

1 success = false

2 else

1 dltPtr = stack.top

2 dataOut = stack.top -> data

3 stack.top = stack.top -> next

Before

red

data next

dltPtr

stack

Slide 23Faculty of Computer Science and Engineering – HCMUT

3 stack.top = stack.top -> next

4 stack.count = stack.count - 1

5 recycle (dltPtr)

6 success = true

3 return success

End popStack

3

count top

blue

data next

green

data next

Pop Stack
template <class List_ItemType>

int Stack<List_ItemType>::Pop(List_ItemType

&dataOut){

if (count == 0)

return 0;

Node<List_ItemType>* dltPtr = this->top;

dataOut = this->top->data;

Slide 24Faculty of Computer Science and Engineering – HCMUT

dataOut = this->top->data;

this->top = this->top->next;

this->count--;

delete dltPtr;

return 1;

}

Stack Top

Algorithm stackTop (val stack <metadata>,

ref dataOut <dataType>)

Retrieves the data from the top of the stack without
changing the stack

Pre stack is a metadata structure to a valid stack

dataOut is to receive top stack data

Slide 25Faculty of Computer Science and Engineering – HCMUT

dataOut is to receive top stack data

Post data have been returned to caller

Return true if successful; false

Stack Top

1 if (stack empty)

1 success = false

2 else

1 dataOut = stack.top -> data

2 success = true

3 return success

Slide 26Faculty of Computer Science and Engineering – HCMUT

3 return success

End stackTop

Stack Top

template <class List_ItemType>

int Stack<List_ItemType>::GetStackTop

(List_ItemType &dataOut){

if (count == 0)

return 0;

dataOut = this->top->data;

Slide 27Faculty of Computer Science and Engineering – HCMUT

dataOut = this->top->data;

return 1;

}

Destroy Stack

Algorithm destroyStack (ref stack <metadata>)

Releases all nodes back to memory

Pre stack is a metadata structure to a valid stack

Post stack empty and all nodes recycled

1 if (stack not empty)

1 loop (stack.top not null)

Slide 28Faculty of Computer Science and Engineering – HCMUT

1 loop (stack.top not null)

1 temp = stack.top

2 stack.top = stack.top -> next

3 recycle (temp)

2 stack.count = 0

3 return

End destroyStack

Destroy Stack

template <class List_ItemType>

void Stack<List_ItemType>::Clear() {

Node<List_ItemType>* temp;

while (this->top != NULL){

temp = this->top;

this->top = this->top->next;

Slide 29Faculty of Computer Science and Engineering – HCMUT

this->top = this->top->next;

delete temp;

}

this->count = 0;

}

Stack Empty
template <class List_ItemType>

int Stack<List_ItemType>::IsEmpty() {

return (count == 0);

}

template <class List_ItemType>

int Stack<List_ItemType>::GetSize() {

return count;

Slide 30Faculty of Computer Science and Engineering – HCMUT

return count;

}

Print a stack
template <class List_ItemType>

void Stack<List_ItemType>::Print2Console() {

Node<List_ItemType>* p;

p = this->top;

while (p != NULL){

printf("%d\t", p->data);

Slide 31Faculty of Computer Science and Engineering – HCMUT

p = p->next;

}

printf("\n");

}

Using Stacks

int main(int argc, char* argv[]){

Stack<int> *myStack = new Stack<int>();

int val;

myStack->Push(7);

myStack->Push(9);

myStack->Push(10);

myStack->Push(8);

Slide 32Faculty of Computer Science and Engineering – HCMUT

myStack->Push(8);

myStack->Print2Console();

myStack->Pop(val);

myStack->Print2Console();

delete myStack;

return 0;

}

Exercises

template <class List_ItemType>

Stack<List_ItemType>*

Stack<List_ItemType>::Clone() {

// ...

}

Slide 33Faculty of Computer Science and Engineering – HCMUT

