
Data Structures and Algorithms –

C++ Implementation

Ho Chi Minh City University of Technology

Faculty of Computer Science and Engineering

BK
TP.HCM

BK
TP.HCM

Huỳnh Tấn Đạt

Email: htdat@cse.hcmut.edu.vn

Home Page: http://www.cse.hcmut.edu.vn/~htdat/

Queues

�Basic queue operations

�Linked-list implementation

�Queue applications

�Array implementation

Slide 2Faculty of Computer Science and Engineering – HCMUT

Queues

�Data can only be inserted at one end called the rear, and
deleted from the other end called the front.

�First-In-First-Out (FIFO) data structure.

Slide 3Faculty of Computer Science and Engineering – HCMUT

front rear

Basic Queue Operations

Enqueue

grape

Data

Slide 4Faculty of Computer Science and Engineering – HCMUT

Queue

plum kiwi
front rear

plum kiwi grape
front rear

Queue

Basic Queue Operations

Dequeue

plum

Data

Slide 5Faculty of Computer Science and Engineering – HCMUT

Queue

kiwi grape
front rear

plum kiwi grape
front rear

Queue

Basic Queue Operations

Queue Front

plum

Data

Slide 6Faculty of Computer Science and Engineering – HCMUT

plum kiwi grape
front rear

Queue

plum kiwi grape
front rear

Queue

Basic Queue Operations

Queue Rear

grape

Data

Slide 7Faculty of Computer Science and Engineering – HCMUT

plum kiwi grape
front rear

Queue

plum kiwi grape
front rear

Queue

Basic Queue Operations

Conceptual

plum kiwi grape
front rear

fig

Slide 8Faculty of Computer Science and Engineering – HCMUT

figgrapekiwiplum

Physical

4
front rearcount

Linked-List Implementation

Queue
structure count rear

queue
front <node pointer>
count <integer>
rear <node pointer>

end queue

front

Slide 9Faculty of Computer Science and Engineering – HCMUT

end queue

Queue node
structure data next

node
data <dataType>
next <node pointer>

end node

Linked-List Implementation

template <class ItemType>

struct Node {

ItemType data;

Node<ItemType> *next;

};

Slide 10Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>

class Queue{

public:

Queue();

~Queue();

Linked-List Implementation

void Enqueue(List_ItemType dataIn);

int Dequeue(List_ItemType &dataOut);

int GetQueueFront(List_ItemType &dataOut);

int GetQueueRear(List_ItemType &dataOut);

void Clear();

int IsEmpty();

int GetSize();

Slide 11Faculty of Computer Science and Engineering – HCMUT

int GetSize();

Queue<List_ItemType>* Clone();

private:

Node<List_ItemType>* front, *rear;

int count;

};

Create Queue

Before After

queue 0queue ? ??

Slide 12Faculty of Computer Science and Engineering – HCMUT

(no queue) (empty queue)

count rearfront

queue
count rearfront

Create Queue

Algorithm createQueue (ref queue <metadata>

Initializes the metadata of a queue

Pre queue is a metadata structure of a queue

Post metadata have been initialized

1 queue.front = null

Slide 13Faculty of Computer Science and Engineering – HCMUT

1 queue.front = null

2 queue.rear = null

3 queue.count = 0

End createQueue

Create Queue

template <class List_ItemType>

Queue<List_ItemType>::Queue(){

this->front = this->rear = NULL;

this->count = 0;

}

Slide 14Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>

Queue<List_ItemType>::~Queue(){

this->Clear();

}

Enqueue

Before After

0
front rearcount

queue 1
front rearcount

queue

Slide 15Faculty of Computer Science and Engineering – HCMUT

plum

newPtr

plum

newPtr

Insert into null queue

Enqueue

Before After

1
front rearcount

queue 2
front rearcount

queue

Slide 16Faculty of Computer Science and Engineering – HCMUT

plum plum

Insert into queue with data

kiwi

newPtr

kiwi

newPtr

Enqueue

Algorithm enqueue (ref queue <metadata>,
val data <dataType>)

Inserts one item at the rear of the queue

Pre queue is a metadata structure of a valid queue
data contains data to be inserted into queue

Slide 17Faculty of Computer Science and Engineering – HCMUT

Post data have been inserted in queue

Returntrue if successful, false if memory overflow

Enqueue
1 if (queue full)

1 return false

2 allocate (newPtr)

3 newPtr -> data = data

4 newPtr -> next = null

5 if (queue.count = 0)

Insert into null queue

Before

1
front rearcount

queue

Slide 18Faculty of Computer Science and Engineering – HCMUT

1 queue.front = newPtr

6 else

Insert into queue with data

1 queue.rear -> next = newPtr

7 queue.rear = newPtr

8 queue.count = queue.count + 1

9 return true
End enqueue

plum

kiwi

newPtr

Enqueue
template <class List_ItemType>

void Queue<List_ItemType>::Enqueue

(List_ItemType value){

Node<List_ItemType>* newPtr = new

Node<List_ItemType>();

newPtr->data = value;

newPtr->next = NULL;

Slide 19Faculty of Computer Science and Engineering – HCMUT

newPtr->next = NULL;

if (this->count == 0)

this->front = newPtr;

else

this->rear->next = newPtr;

this->rear = newPtr;

this->count++;

}

Dequeue

Before After

1
front rearcount

queue 0
front rearcount

queue

Slide 20Faculty of Computer Science and Engineering – HCMUT

plum

dltPtr

recycled

dltPtr

Delete data in queue with only one item

Dequeue

Before After

2
front rearcount

queue 1
front rearcount

queue

Slide 21Faculty of Computer Science and Engineering – HCMUT

plum

dltPtr

kiwikiwi

dltPtr

Delete data in queue with more than one item

recycled

Dequeue

Algorithm dequeue (ref queue <head pointer>,
ref dataOut <dataType>)

Deletes one item at the front of the queue and returns its
data to caller

Pre queue is a metadata structure of a valid queue
dataOut is to receive dequeued data

Slide 22Faculty of Computer Science and Engineering – HCMUT

dataOut is to receive dequeued data

Post front data have been returned to caller

Return true if successful; false if underflow

Dequeue

1 if (queue empty)
1 return false

2 dataOut = queue.front -> data
3 dltPtr = queue.front
4 if (queue.count = 1)

Delete data in queue with
only one item

Before

2queue

Slide 23Faculty of Computer Science and Engineering – HCMUT

only one item
1 queue.rear = null

5 queue.front = queue.front -> next
6 queue.count = queue.count - 1
7 recycle (dltPtr)
8 return true
End dequeue

plum

2
front rearcount

queue

dltPtr

kiwi

Dequeue
template <class List_ItemType>

int Queue<List_ItemType>::Dequeue(List_ItemType

&dataOut){

if (count == 0)

return 0;

dataOut = front->data;

Node<List_ItemType>* dltPtr = this->front;

Slide 24Faculty of Computer Science and Engineering – HCMUT

Node<List_ItemType>* dltPtr = this->front;

if (count == 1)

this->rear = NULL;

this->front = this->front->next;

this->count--;

delete dltPtr;

return 1;

}

Queue Front & Queue Rear
template <class List_ItemType>

int Queue<List_ItemType>::GetQueueFront

(List_ItemType &dataOut){

if (count == 0)

return 0;

dataOut = this->front->data;

return 1;

Slide 25Faculty of Computer Science and Engineering – HCMUT

return 1;

}

template <class List_ItemType>

int Queue<List_ItemType>::GetQueueRear

(List_ItemType &dataOut){

if (count == 0)

return 0;

dataOut = this->rear->data;

return 1;

}

Destroy Queue

Algorithm destroyQueue (ref queue <metadata>)

Deletes all data from a queue

Pre queue is a metadata structure of a valid queue

Post queue empty and all nodes recycled

Return null pointer

1 if (queue not empty)

1 loop (queue.front not null)

Slide 26Faculty of Computer Science and Engineering – HCMUT

1 loop (queue.front not null)

1 temp = queue.front

2 queue.front = queue.front -> next

3 recycle (temp)

2 queue.front = null

3 queue.rear = null

4 queue.count = 0

5 return

End destroyQueue

Clear Queue
template <class List_ItemType>

void Queue<List_ItemType>::Clear() {

Node<List_ItemType>* temp;

while (this->front != NULL){

temp = this->front;

this->front= this->front->next;

delete temp;

Slide 27Faculty of Computer Science and Engineering – HCMUT

delete temp;

}

this->front = this->rear = NULL;

this->count = 0;

}

Queue Empty

template <class List_ItemType>

int Queue<List_ItemType>::IsEmpty() {

return (count == 0);

}

template <class List_ItemType>

Slide 28Faculty of Computer Science and Engineering – HCMUT

template <class List_ItemType>

int Queue<List_ItemType>::GetSize() {

return count;

}

Print Queue
template <class List_ItemType>

void Queue<List_ItemType>::Print2Console(){

Node<List_ItemType>* p;

p = this->front;

printf("Front: ");

while (p != NULL){

Slide 29Faculty of Computer Science and Engineering – HCMUT

printf("%d\t", p->data);

p = p->next;

}

printf("\n");

}

Using Queues

int main(int argc, char* argv[]){

Queue<int> *myQueue = new Queue<int>();

int val;

myQueue->Enqueue(7);

myQueue->Enqueue(9);

myQueue->Enqueue(10);

Slide 30Faculty of Computer Science and Engineering – HCMUT

myQueue->Enqueue(10);

myQueue->Enqueue(8);

myQueue->Dequeue(val);

delete myQueue;

return 1;

}

Exercises

template <class List_ItemType>

Queue<List_ItemType>*

Queue<List_ItemType>::Clone() {

// ...

}

Slide 31Faculty of Computer Science and Engineering – HCMUT

