’. Ho Chi Minh City University of Technology
@ Faculty of Computer Science and Engineering

Data Structures and Algorithms —
C++ Implementation

Huynh Tan Dat
Email: htdat@cse.hcmut.edu.vn
Home Page: http://www.cse.hcmut.edu.vn/~htdat/

&

¢

o

Queues

1 Basic queue operations
 Linked-list implementation
- Queue applications

J Array implementation

Faculty of Computer Science and Engineering — HCMUT Slide 2

Queues

J Data can only be inserted at one end called the rear, and
deleted from the other end called the front.

 First-In-First-Out (FIFO) data structure.

front rear

Faculty of Computer Science and Engineering — HCMUT Slide 3

Basic Queue Operations

Data

grape

plum Kiwi
front rear
Queue

Enqueue

)

plum

Kiwi

grape

front

rear

Faculty of Computer Science and Engineering — HCMUT

Queue

Slide 4

Basic Queue Operations

Data
plum
Dequeue
plum Kiwi grape
front rear
Queue

)

Faculty of Computer Science and Engineering — HCMUT

Kiwi grape
front rear
Queue

Slide 5

Basic Queue Operations

Data

plum

Queue Front

plum Kiwi grape ‘ plum Kiwi grape
front rear front rear

Queue Queue

Faculty of Computer Science and Engineering — HCMUT Slide 6

Basic Queue Operations

Data

grape

plum

Kiwi

grape

front

rear

Queue

Queue Rear

plum

Kiwi

grape

)

front

rear

Faculty of Computer Science and Engineering — HCMUT

Queue

Slide 7

Basic Queue Operations

Faculty of Computer Science and Engineering — HCMUT

Conceptual
plum Kiwi grape fig
front rear
4
front count rear
plum > Kiwi > grape > fig
Physical

Slide 8

Linked-List Implementation

Queue
structure

Queue node
structure

front count rear

data next

queue
front <node pointer>
count <integer>
rear <node pointer>
end queue

node
data <dataType>
next <node pointer>
end node

Faculty of Computer Science and Engineering — HCMUT Slide 9

Linked-List Implementation

template <class ItemType>
struct Node {
TtemType data;
Node<ItemType> *next;

b s

template <class List_ItemType>
class Queue({
public:

Queue () ;

~Queue () ;

Faculty of Computer Science and Engineering — HCMUT Slide 10

Linked-List Implementation

volid Enqueue (List_ItemType dataln);

int Dequeue (List_ItemType &datalOut);

int GetQueueFront (List_ItemType &datalOut);
1int GetQueueRear (List_TItemType &datalOut);
volid Clear () ;

int IsEmpty () ;

int GetSize();

Queue<List_TItemType>* Clone();

private:
Node<List_TItemType>* front, *rear;

int count;

by

Faculty of Computer Science and Engineering — HCMUT Slide 11

Before

Create Queue

queue | | ?

?

?

front

count

rear

(no queue)

Faculty of Computer Science and Engineering — HCMUT

queue

After

0

front

count

rear

(empty queue)

Slide 12

Create Queue

Algorithm createQueue (ref queue <metadata>
Initializes the metadata of a queue
Pre queue is a metadata structure of a queue
Post metadata have been initialized
1 queue.front = null
2 queue.rear = null
3 queue.count =0

End createQueue

Faculty of Computer Science and Engineering — HCMUT Slide 13

Create Queue

template <class List_ItemType>

Queue<List_ItemType>::Queue () {
this->front = this->rear = NULL;
this—->count = 0;

template <class List_ItemType>
Queue<List_ItemType>::~Queue () {
this—>Clear () ;

Faculty of Computer Science and Engineering — HCMUT

Slide 14

Enqueue

Before After
queue 0 queue 1 %
front count rear frgnt count“rear
vV /
> plum > plum
newPtr newPtr

Insert into null queue

Faculty of Computer Science and Engineering — HCMUT Slide 15

Enqueue

Before After
ueue 1 v ueue 2
. frgnt count _-fear . frgnt count rear
V / V V
plum plum > Kiwi
> Kiwi]
newPir newPir

Insert into queue with data

Faculty of Computer Science and Engineering — HCMUT Slide 16

Enqueue

Algorithm enqueue (ref queue <metadata>,
val data <datalype>)

Inserts one item at the rear of the queue

Pre queue is a metadata structure of a valid queue
data contains data to be inserted into queue

Postdata have been inserted in queue

Returntrue if successful, false it memory overflow

Faculty of Computer Science and Engineering — HCMUT Slide 17

Enqueue

1 if (queue full)
1 return false

2 allocate (newPtr)
3 newPtr -> data = data Before
4 newPtr -> next = null
5 if (queue.count = 0) queue 1 v
Insert into null queue frqnt _count ~fear
1 queue.front = newPtr /
6 else 4
plum

Insert into queue with data
1 queue.rear -> next = newPtr
/ queue.rear = newPtr
8 queue.count = queue.count + 1

9 return true
End enqueue

A4

Kiwi

newPtr

Faculty of Computer Science and Engineering — HCMUT Slide 18

Enqueue

template <class List_ItemType>
vold Queue<List_ItemType>::Enqueue
(List_ItemType value) {
Node<List_TItemType>* newPtr = new
Node<List_TItemType> () ;
newPtr—->data = value;
newPtr—->next = NULL,
if (this->count == 0)
this->front = newPtr;
else
this—->rear->next = newPtr;
this->rear = newPtr;
this—->count++;

Faculty of Computer Science and Engineering — HCMUT Slide 19

Dequeue

Before After
queue 1| ¥ queue 0
frant countrear front count rear
V / e s
> _plum > recycled ;24
ditPtr ditPtr

Delete data in queue with only one item

Faculty of Computer Science and Engineering — HCMUT Slide 20

Dequeue

Before After
ueue 2 ueue | IN | 1
G frdnt count redr X front\.count refar
vV v __\ v
> plum > kiwi —T—> recycldd=— Kiwi
dItPtr dItPtr

Delete data in queue with more than one item

Faculty of Computer Science and Engineering — HCMUT Slide 21

Dequeue

Algorithm dequeue (ref queue <head pointers,
ref dataOut <dataType>)

Deletes one item at the front of the queue and returns its
data to caller

Pre queue is a metadata structure of a valid queue
dataOut is to receive dequeued data

Post front data have been returned to caller

Return true if successful: false if underflow

Faculty of Computer Science and Engineering — HCMUT Slide 22

Dequeue

1 1f (Qqueue empty)
1 return false
dataOut = queue.front -> data
dItPtr = queue.front
If (Qqueue.count =1)
Delete data in queue with
only one item
1 queue.rear = null
queue.front = queue.front -> next

~ 0N

queue

Before

2

frgnt

count

reqr

\ 4

5

6 queue.count = queue.count - 1

7 recycle (dltPtr) ditPtr
8

E

return true
nd dequeue

Faculty of Computer Science and Engineering — HCMUT

~
v

plum

\4

Kiwi

Slide 23

Dequeue

template <class List_ItemType>
int Queue<List_TItemType>::Dequeue(List_TItemType
&datalOut) {
1f (count == 0)
return 0O;
dataOut = front—->data;
Node<List_TItemType>* dltPtr = this->front;
1f (count == 1)
this->rear = NULL;
this->front = this->front->next;
this—->count——;
delete dltPtr;
return 1;

O

Faculty of Computer Science and Engineering — HCMUT Slide 24

Queue Front & Queue Rear

template <class List_ItemType>
1int Queue<lList_ItemType>::GetQueueFront
(List_ItemType &dataOut) {
1f (count == 0)
return 0O;
dataOut = this->front->data;
return 1;
}
template <class List_ItemType>
1int Queue<lList_ItemType>::GetQueueRear
(List_ItemType &dataOut) {
1f (count == 0)
return 0O;
dataOut = this->rear->data;
return 1;
Fakulty of Computer Science and Engineering — HCMUT

Slide 25

Destroy Queue

Algorithm destroyQueue (ref queue <metadata>)
Deletes all data from a queue
Pre queue is a metadata structure of a valid queue
Post queue empty and all nodes recycled
Return null pointer
1 if (queue not empty)
1 loop (queue.front not null)
1 temp = queue.front
2 queue.front = queue.front -> next
3 recycle (temp)
2 queue.front = null
3 queue.rear = null
4 queue.count=0
S return

End destroyQueue
Faculty of Computer Science and Engineering — HCMUT

Slide 26

Clear Queue

template <class List_ItemType>
vold Queue<List_ItemType>::Clear () {
Node<List_TItemType>* temp;
while (this->front != NULL) {
temp = this->front;
this—->front= this->front->next;
delete temp;
}
this->front = this->rear = NULL;
this—->count = 0;

Faculty of Computer Science and Engineering — HCMUT Slide 27

Queue Empty

template <class List_ItemType>
int Queue<List_ItemType>::IsEmpty () {
return (count == 0);

template <class List_ItemType>
int Queue<List_ItemType>::GetSize () {
return count,;

Faculty of Computer Science and Engineering — HCMUT Slide 28

Print Queue

template <class List_ItemType>
vold Queue<List_ItemType>::Print2Console () {

Node<List_TItemType>* p;

p = this->front;

printf ("Front: ");

while (p != NULL) {
printf ("%d\t", p->data);
p = p—->next;

}

printf ("\n");

Faculty of Computer Science and Engineering — HCMUT

Slide 29

Using Queues

int main(int argc, char* argv|[]) {
Queue<int> *myQueue = new Queue<int>();
int val;

myQueue—->Enqueue

4

myQueue—->Enqueue

(7);
(9) 7
myQueue—->Enqueue (10) ;
myQueue—->Enqueue (8) ;
(va

myQueue—>Dequeue 1)
delete myQueue;

return 1;

Faculty of Computer Science and Engineering — HCMUT Slide 30

Exercises

template <class List_ItemType>
Queue<List_ItemType>*
Queue<List_ItemType>::Clone () {

//

Faculty of Computer Science and Engineering — HCMUT Slide 31

