Chapter 6: Multiway Trees

 Tree whose outdegree Is not restricted to 2
while retaining the general properties of
binary search trees.
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M-Way Search Trees

e Each node has m - 1 data entries and m subtree
pointers.

e The key values in a subtree such that:
— >= the key of the left data entry
— < the key of the right data entry.

AN

keys < K; Ki<=keys <K, K,<=Kkeys <K, Ko<= keys
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M-Way Search Trees
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M-Way Node Structure

key

data

num
entries
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entry
key <key type>
data <data type>
rightPtr <pointer>
end entry

node

firstPtr <pointer>

numEntries <integer>

entries <array[1l .. m-1] of entry>
end node
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B-Trees

e M-way trees are unbalanced.

e Bayer, R. & McCreight, E. (1970) created
B-Trees.
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B-Trees

e A B-tree Is an m-way tree with the following
additional properties (m >= 3):
— The root is either a leaf or has at least 2 subtrees.
— All other nodes have at least | m/2 ]| - 1 entries.

— All leaf nodes are at the same level.
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B-Trees
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B-Tree Insertion

e |Insert the new entry into a leaf node.

e |If the leaf node Is overflow, then split it
and insert its median entry into its parent.
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B-Tree Insertion
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B-Tree Insertion
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B-Tree Insertion

Algorithnm  BTreelnsert (val root <pointer>, val data <record>)
Inserts data into B-tree. Equal keys placed on right branch.

Pre root is a pointer to the B-tree. May be null.
Post data inserted.
Return pointer to B-tree root.

taller = insertNode(root, data, upEntry)
if (taller true)
Tree has grown. Create new root.
allocate (newPtr)
newPtr —> entries[1] = upEntry
newPtr —> firstPtr = root
newPtr — numEntries = 1
root = newPtr
return root

End BTreelnsert
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B-Tree Insertion

Algorithnm  insertNode (val root <pointer>, val data <record>,
ref upEntry <entry>)

Recursively searches tree to locate leaf for data. If node overflow, inserts median
key's data into parent.

Pre root is a pointer to tree or subtree. May be null.

Post data inserted.
upEntry is overflow entry to be inserted into parent.

Return tree taller <boolean>.

if (root null)
upEntry.data = data
upEntry.rightPtr = null
taller = true

else
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B-Tree Insertion

else
entryNdx = searchNode (root, data.key)
If (entryNdx > 0)
subTree = root —> entries[entryNdx].rightPtr
else
subTree = root —> firstPtr
taller = insertNode(subTree, data, upEntry)
If (taller)
if (node full)
splitNode (root, entryNdx, upEntry)
taller = true
else
insertentry (root, entryNdx, upEntry)
taller = false
root —> numEntries = root — numEntries + 1
return taller

End insertNode
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B-Tree Insertion

Algorithm  searchNode (val nodePtr <pointer>, val target <key>)
Search B-tree node for data entry containing key <= target.

Pre nodePtr is pointer to non-null node.
target is key to be located.

Return index to entry with key <= target.
0 if key < first entry in node

If (target < nodePtr —> entry[1].data.key)
walker = 0
else
walker = nodePtr — numEntries
loop (target < nodePtr —> entries[walker].data.key)
walker = walker - 1
return walker

End searchNode
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B-Tree Insertion

Algorithm  splitNode (val node <pointer>, val entryNdx <index>,
ref upEntry <entry>)

Node has overflowed. Split node. No duplicate keys allowed.

Pre node is pointer to node that overflowed.

entryNdx contains index location of parent.

UpEntry contains entry being inserted into split node.
Post upEntry now contains entry to be inserted into parent.

minEntries = minimum number of entries
allocate (rightPtr)
Build right subtree node
if (entryNdx <= minEntries)
fromNdx = minEntries + 1
else
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B-Tree Insertion

else
fromNdx = minEntries + 2
toNdx = 1

rightPtr -> numEntries = node -> numEntries — fromNdx + 1
7 loop (fromNdx <= node -> numEntries)
rightPtr -> entries[toNdx] = node -> entries[fromNdx]
fromNdx = fromNdx + 1
toNdx = toNdx + 1
node -> numEntries = node -> numEntries — rightPtr -> numEntries
If (entryNdx <= minEntries)
InsertEntry (node, entryNdx, upEntry)
else
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B-Tree Insertion

else
insertentry (rightPtr, entryNdx — minEntries, upEntry)
node -> numEntries = node -> numeEntries — 1
rightPtr -> numEntries = rightPtr -> numEntries + 1
Build entry for parent
medianNdx = minEntries + 1
upEntry.data = node -> entries[medianNdx].data
upEntry.rightPtr = rightPtr
rightPtr -> firstPtr = node -> entriesfmedianNdx]. rightPtr
return

End splitNode
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B-Tree Insertion

Algorithm  insertEntry (val node <pointer>, val entryNdx <index>,
val newEntry <entry>)

Inserts one entry into a node by shifting nodes to make room.

Pre node is pointer to node to contain data.
newEntry contains data to be inserted.
entryNdx is index to location for new data.

Post data have been inserted in sequence.

shifter = node -> numEntries + 1

loop (shifter > entryNdx + 1)
node -> entries[shifter] = node -> entries[shifter - 1]
shifter = shifter - 1

node -> entries[shifter] = newEntry

node -> numEntries = node -> numEntries + 1

return

End insertEntry
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B-Tree Deletion

e |t must take place at a leaf node.

e |If the data to be deleted are not in a leaf
node, then replace that entry by the largest
entry on its left subtree.
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B-Tree Deletion
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B-Tree Deletion
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Reflow

e For each node to have sufficient number of
entries:

— Balance: shift data among nodes.

— Combine: join data from nodes.
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Borrow from right

Original node

Rotate parent
data down

Rotate data to
parent

Shift entries

left
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Borrow from left

Original node

Shift entries
right

Rotate parent
data down

Rotate data
up
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Combine

3. After moving right entries 4. After shifting root
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B-Tree Traversal
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B-Tree Traversal

Algorithm  BTreeTraversal (val root <pointer>)
Processes tree using inorder traversal

Pre root is a pointer to B-tree
Post Every entry has been processed in order

1 scanCount =0
2 ptr = root —> firstPtr
3 loop (scanCount <= root —> numEntries)
1 if (ptr not null)
1 BTreeTraversal (ptr)
2 scanCount = scanCount + 1
3 if (scanCount <= root —> numEntries)
1 process (root —> entries[scanCount].data)
2 ptr = root —> entries[scanCount].rightPtr
4 return
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B-Tree Search

Algorithm  BTreeSearch (val root <pointer>, val target <key>,
ref node <pointer>, ref entryNo <index>)

Recursively searches a B-tree for the target key

Pre root is a pointer to a tree or subtree
target is the data to be located

Post if found --
node is pointer to located node
entryNo is entry within node
if not found --
node is null and entryNo is zero

Return found <boolean>
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B-Tree Search

1 if (empty tree)
1 node = null
2 entryNo=0
3 found = false
2 else
1 if (target < first entry)
1 return BTreeSearch (root —> firstPtr, target, node, entryNo)
2 else
1 entryNo = root —> numEntries
2 loop (target < root —> entries[entryNo].data.key)
1 entryNo = entryNo - 1
3 if (target = root —> entries[entryNo].data.key)
1 found = true
2 node = root
4 else
1 return BTreeSearch (root —> entries[entryNo].rightPtr, target, node, entryNo)
4 return found

End BTreeTraversal
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B-Tree Variations

e B*Tree: the minimum number of (used)
entries Is two thirds.

e B+Tree:

— Each data entry must be represented at the leaf level.

— Each leaf node has one additional pointer to move to
the next leaf node.
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Reading

e Pseudo code of algorithms for B-Tree Insertion
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