
1
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Chapter 6: Multiway Trees
• Tree whose outdegree is not restricted to 2

while retaining the general properties of
binary search trees.

2
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

M-Way Search Trees
• Each node has m - 1 data entries and m subtree

pointers.

• The key values in a subtree such that:
– >= the key of the left data entry
– < the key of the right data entry.

K1 K2 K3

keys < K1 K1<= keys < K2 K2<= keys < K3 K3<= keys

3
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

M-Way Search Trees

50 100 150

35 45 85 95 125 135 175

60 70 90 110 120

75

4
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

M-Way Node Structure

key data

num
entries ...

entry
key <key type>
data <data type>
rightPtr <pointer>

end entry

node
firstPtr <pointer>
numEntries <integer>
entries <array[1 .. m-1] of entry>

end node

5
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Trees
• M-way trees are unbalanced.

• Bayer, R. & McCreight, E. (1970) created
B-Trees.

6
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Trees
• A B-tree is an m-way tree with the following

additional properties (m >= 3):
– The root is either a leaf or has at least 2 subtrees.

– All other nodes have at least ⎡m/2⎤ - 1 entries.

– All leaf nodes are at the same level.

7
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Trees

42

16 21 58 76 81 93

11 14 17 19 20 2421 22 23 45 52 63 65 74 78 79 85 87 94 97

m = 5

8
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
• Insert the new entry into a leaf node.

• If the leaf node is overflow, then split it
and insert its median entry into its parent.

9
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion

21

11 14 21 78

11 14 78 97

Insert 78, 21, 14, 11

Insert 97

11 14 21 78 97

overflow

Insert 85, 74, 63

21

11 14 63 74 78 85 97

21

11 14 85 97

78

63 74

overflow

Insert 45, 42, 57

overflow

42 45 57 63 74

21

11 14 85 97

78

42 45

78

63 74

21

11 14 85 97

57

10
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion

Insert 20, 16, 19

42 45

78

63 74

21

11 14 85 97

57

16 19 20

overflow 42 45

78

63 74

21

11 14 85 97

57

19 20

16

Insert 52, 30, 21

19 20

78

45 52

21

11 14 85 97

57

21 30

1678

63 74

21

11 14 85 97

57

19 20

16

21 30 42 45 52

overflow

63 74

42

11
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
Algorithm BTreeInsert (val root <pointer>, val data <record>)

Inserts data into B-tree. Equal keys placed on right branch.

Pre root is a pointer to the B-tree. May be null.
Post data inserted.
Return pointer to B-tree root.

1 taller = insertNode(root, data, upEntry)
2 if (taller true)

Tree has grown. Create new root.
1 allocate (newPtr)
2 newPtr −> entries[1] = upEntry
3 newPtr −> firstPtr = root
4 newPtr −> numEntries = 1
5 root = newPtr

3 return root

End BTreeInsert

12
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion

Algorithm insertNode (val root <pointer>, val data <record>,
ref upEntry <entry>)

Recursively searches tree to locate leaf for data. If node overflow, inserts median
key's data into parent.

Pre root is a pointer to tree or subtree. May be null.
Post data inserted.

upEntry is overflow entry to be inserted into parent.
Return tree taller <boolean>.

1 if (root null)
1 upEntry.data = data
2 upEntry.rightPtr = null
3 taller = true

2 else

13
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
2 else

1 entryNdx = searchNode (root, data.key)
2 if (entryNdx > 0)

1 subTree = root −> entries[entryNdx].rightPtr
3 else

1 subTree = root −> firstPtr
4 taller = insertNode(subTree, data, upEntry)
5 if (taller)

1 if (node full)
1 splitNode (root, entryNdx, upEntry)
2 taller = true

2 else
1 insertEntry (root, entryNdx, upEntry)
2 taller = false
3 root −> numEntries = root −> numEntries + 1

3 return taller

End insertNode

14
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
Algorithm searchNode (val nodePtr <pointer>, val target <key>)

Search B-tree node for data entry containing key <= target.

Pre nodePtr is pointer to non-null node.
target is key to be located.

Return index to entry with key <= target.
0 if key < first entry in node

1 if (target < nodePtr −> entry[1].data.key)
1 walker = 0

2 else
1 walker = nodePtr −> numEntries
2 loop (target < nodePtr −> entries[walker].data.key)

1 walker = walker - 1
3 return walker

End searchNode

15
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion

Algorithm splitNode (val node <pointer>, val entryNdx <index>,
ref upEntry <entry>)

Node has overflowed. Split node. No duplicate keys allowed.

Pre node is pointer to node that overflowed.
entryNdx contains index location of parent.
upEntry contains entry being inserted into split node.

Post upEntry now contains entry to be inserted into parent.

1 minEntries = minimum number of entries
2 allocate (rightPtr)

Build right subtree node
3 if (entryNdx <= minEntries)

1 fromNdx = minEntries + 1
4 else

16
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
4 else

1 fromNdx = minEntries + 2
5 toNdx = 1
6 rightPtr -> numEntries = node -> numEntries – fromNdx + 1
7 loop (fromNdx <= node -> numEntries)

1 rightPtr -> entries[toNdx] = node -> entries[fromNdx]
2 fromNdx = fromNdx + 1
3 toNdx = toNdx + 1

8 node -> numEntries = node -> numEntries − rightPtr -> numEntries
9 if (entryNdx <= minEntries)

1 insertEntry (node, entryNdx, upEntry)
10 else

17
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion

11 else
1 insertEntry (rightPtr, entryNdx − minEntries, upEntry)
2 node -> numEntries = node -> numEntries − 1
3 rightPtr -> numEntries = rightPtr -> numEntries + 1
Build entry for parent

12 medianNdx = minEntries + 1
13 upEntry.data = node -> entries[medianNdx].data
14 upEntry.rightPtr = rightPtr
15 rightPtr -> firstPtr = node -> entries[medianNdx]. rightPtr
16 return

End splitNode

18
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Insertion
Algorithm insertEntry (val node <pointer>, val entryNdx <index>,

val newEntry <entry>)

Inserts one entry into a node by shifting nodes to make room.

Pre node is pointer to node to contain data.
newEntry contains data to be inserted.
entryNdx is index to location for new data.

Post data have been inserted in sequence.

1 shifter = node -> numEntries + 1
2 loop (shifter > entryNdx + 1)

1 node -> entries[shifter] = node -> entries[shifter - 1]
2 shifter = shifter - 1

3 node -> entries[shifter] = newEntry
4 node -> numEntries = node -> numEntries + 1
5 return
End insertEntry

19
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Deletion
• It must take place at a leaf node.

• If the data to be deleted are not in a leaf
node, then replace that entry by the largest
entry on its left subtree.

20
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Deletion

Delete 78

63

11 14 7421 78 85

63

11 14 7421 85

Delete 63

63

11 14 7421 85

21

11 7414 85

21
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Deletion
Delete 85

Delete 21

14

11 74 85

21

11 7414 85

21

11 7414

21

11 7414 85

underflow
(node has fewer than the

min num of entries)

22
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Reflow
• For each node to have sufficient number of

entries:
– Balance: shift data among nodes.

– Combine: join data from nodes.

23
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Balance
21

14 42 45Original node 63

......

21

14 21 42 45

Rotate parent
data down 63

Rotate data to
parent

42

14 21 45 63

Shift entries
left

42

14 21 42 45 63

Borrow from right

24
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Balance
78

45 63 74 85Original node

......

Shift entries
right

Rotate parent
data down

Rotate data
up

Borrow from left

78

45 63 74 85

......

78

45 63 74 78 85

......

74

45 63 78 85

......

25
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Combine

42 45

1. After underflow

63

59 61 65 71

21 57 78

42 45 63

59 61 65 71

21 57 78

57

42 45 63

59 61 65 71

21 57 78

57

2. After moving root to subtree

3. After moving right entries

42 45 63

59 61 65 71

21 78

57

4. After shifting root

26
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Traversal

21 58

11 14 19 20 42 45 8763 74

27
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Traversal
Algorithm BTreeTraversal (val root <pointer>)

Processes tree using inorder traversal

Pre root is a pointer to B-tree
Post Every entry has been processed in order

1 scanCount = 0
2 ptr = root −> firstPtr
3 loop (scanCount <= root −> numEntries)

1 if (ptr not null)
1 BTreeTraversal (ptr)

2 scanCount = scanCount + 1
3 if (scanCount <= root −> numEntries)

1 process (root −> entries[scanCount].data)
2 ptr = root −> entries[scanCount].rightPtr

4 return

End BTreeTraversal

28
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Search

Algorithm BTreeSearch (val root <pointer>, val target <key>,
ref node <pointer>, ref entryNo <index>)

Recursively searches a B-tree for the target key

Pre root is a pointer to a tree or subtree
target is the data to be located

Post if found --
node is pointer to located node
entryNo is entry within node

if not found --
node is null and entryNo is zero

Return found <boolean>

29
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Search
1 if (empty tree)

1 node = null
2 entryNo = 0
3 found = false

2 else
1 if (target < first entry)

1 return BTreeSearch (root −> firstPtr, target, node, entryNo)
2 else

1 entryNo = root −> numEntries
2 loop (target < root −> entries[entryNo].data.key)

1 entryNo = entryNo - 1
3 if (target = root −> entries[entryNo].data.key)

1 found = true
2 node = root

4 else
1 return BTreeSearch (root −> entries[entryNo].rightPtr, target, node, entryNo)

4 return found

End BTreeTraversal

30
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

B-Tree Variations
• B*Tree: the minimum number of (used)

entries is two thirds.

• B+Tree:
– Each data entry must be represented at the leaf level.

– Each leaf node has one additional pointer to move to
the next leaf node.

31
17 November 2008

Cao Hoang Tru
CSE Faculty - HCMUT

Reading
• Pseudo code of algorithms for B-Tree Insertion

