Chapter 6: Multiway Trees

 Tree whose outdegree Is not restricted to 2
while retaining the general properties of
binary search trees.

Cao Hoang Tru 1
CSE Faculty - HCMUT 17 November 2008

M-Way Search Trees

e Each node has m - 1 data entries and m subtree
pointers.

e The key values in a subtree such that:
— >= the key of the left data entry
— < the key of the right data entry.

AN

keys < K; Ki<=keys <K, K,<=Kkeys <K, Ko<= keys
Cao Hoang Tru 2
CSE Faculty - HCMUT 17 November 2008

M-Way Search Trees

50 100 l150

l 35 45 l 85 95 l .\125 135 l

l 60 70 m l 110 120 l

Cao Hoang Tru 3
CSE Faculty - HCMUT 17 November 2008

M-Way Node Structure

key

data

num
entries

Cao Hoang Tru
CSE Faculty - HCMUT

entry
key <key type>
data <data type>
rightPtr <pointer>
end entry

node

firstPtr <pointer>

numEntries <integer>

entries <array[1l .. m-1] of entry>
end node

4
17 November 2008

B-Trees

e M-way trees are unbalanced.

e Bayer, R. & McCreight, E. (1970) created
B-Trees.

Cao Hoang Tru 5
CSE Faculty - HCMUT 17 November 2008

B-Trees

e A B-tree Is an m-way tree with the following
additional properties (m >= 3):
— The root is either a leaf or has at least 2 subtrees.
— All other nodes have at least | m/2]| - 1 entries.

— All leaf nodes are at the same level.

Cao Hoang Tru 6
CSE Faculty - HCMUT 17 November 2008

B-Trees

M IR IR R I BB AR E I B REIBEBEI

Cao Hoang Tru 7
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

e |Insert the new entry into a leaf node.

e |If the leaf node Is overflow, then split it
and insert its median entry into its parent.

Cao Hoang Tru 8
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion
Insert 78, 21, 14, 11 > BNl sl

Insert 97
B M D -
overflow
Insert 85, 74, 63
—
G @ @ 63 Ed
overflow

Insert 45, 42, 57

‘ 21}]s57 78
BEEEEZEEE I42I{5I Bs:l -}
9

overflow
Cao Hoang Tru

CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

57|78 > /I16 215778
FMEIBDERENE RN E

Insert 20, 16, 19
21

MR

overflow

Insert 52, 30, 21

/I16 2157 N 78 ‘
Nl Hoolzol | Hesl7<

BEREBEEBR

overflow

Cao Hoang Tru 10
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

Algorithnm BTreelnsert (val root <pointer>, val data <record>)
Inserts data into B-tree. Equal keys placed on right branch.

Pre root is a pointer to the B-tree. May be null.
Post data inserted.
Return pointer to B-tree root.

taller = insertNode(root, data, upEntry)
if (taller true)
Tree has grown. Create new root.
allocate (newPtr)
newPtr —> entries[1] = upEntry
newPtr —> firstPtr = root
newPtr — numEntries = 1
root = newPtr
return root

End BTreelnsert

Cao Hoang Tru 11
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

Algorithnm insertNode (val root <pointer>, val data <record>,
ref upEntry <entry>)

Recursively searches tree to locate leaf for data. If node overflow, inserts median
key's data into parent.

Pre root is a pointer to tree or subtree. May be null.

Post data inserted.
upEntry is overflow entry to be inserted into parent.

Return tree taller <boolean>.

if (root null)
upEntry.data = data
upEntry.rightPtr = null
taller = true

else

12

Cao Hoang Tru
17 November 2008

CSE Faculty - HCMUT

B-Tree Insertion

else
entryNdx = searchNode (root, data.key)
If (entryNdx > 0)
subTree = root —> entries[entryNdx].rightPtr
else
subTree = root —> firstPtr
taller = insertNode(subTree, data, upEntry)
If (taller)
if (node full)
splitNode (root, entryNdx, upEntry)
taller = true
else
insertentry (root, entryNdx, upEntry)
taller = false
root —> numEntries = root — numEntries + 1
return taller

End insertNode

Cao Hoang Tru 13
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

Algorithm searchNode (val nodePtr <pointer>, val target <key>)
Search B-tree node for data entry containing key <= target.

Pre nodePtr is pointer to non-null node.
target is key to be located.

Return index to entry with key <= target.
0 if key < first entry in node

If (target < nodePtr —> entry[1].data.key)
walker = 0
else
walker = nodePtr — numEntries
loop (target < nodePtr —> entries[walker].data.key)
walker = walker - 1
return walker

End searchNode

Cao Hoang Tru 14
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

Algorithm splitNode (val node <pointer>, val entryNdx <index>,
ref upEntry <entry>)

Node has overflowed. Split node. No duplicate keys allowed.

Pre node is pointer to node that overflowed.

entryNdx contains index location of parent.

UpEntry contains entry being inserted into split node.
Post upEntry now contains entry to be inserted into parent.

minEntries = minimum number of entries
allocate (rightPtr)
Build right subtree node
if (entryNdx <= minEntries)
fromNdx = minEntries + 1
else

Cao Hoang Tru 15
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

else
fromNdx = minEntries + 2
toNdx = 1

rightPtr -> numEntries = node -> numEntries — fromNdx + 1
7 loop (fromNdx <= node -> numEntries)
rightPtr -> entries[toNdx] = node -> entries[fromNdx]
fromNdx = fromNdx + 1
toNdx = toNdx + 1
node -> numEntries = node -> numEntries — rightPtr -> numEntries
If (entryNdx <= minEntries)
InsertEntry (node, entryNdx, upEntry)
else

Cao Hoang Tru 16
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

else
insertentry (rightPtr, entryNdx — minEntries, upEntry)
node -> numEntries = node -> numeEntries — 1
rightPtr -> numEntries = rightPtr -> numEntries + 1
Build entry for parent
medianNdx = minEntries + 1
upEntry.data = node -> entries[medianNdx].data
upEntry.rightPtr = rightPtr
rightPtr -> firstPtr = node -> entriesfmedianNdx]. rightPtr
return

End splitNode

Cao Hoang Tru 17
CSE Faculty - HCMUT 17 November 2008

B-Tree Insertion

Algorithm insertEntry (val node <pointer>, val entryNdx <index>,
val newEntry <entry>)

Inserts one entry into a node by shifting nodes to make room.

Pre node is pointer to node to contain data.
newEntry contains data to be inserted.
entryNdx is index to location for new data.

Post data have been inserted in sequence.

shifter = node -> numEntries + 1

loop (shifter > entryNdx + 1)
node -> entries[shifter] = node -> entries[shifter - 1]
shifter = shifter - 1

node -> entries[shifter] = newEntry

node -> numEntries = node -> numEntries + 1

return

End insertEntry

Cao Hoang Tru 18
CSE Faculty - HCMUT 17 November 2008

B-Tree Deletion

e |t must take place at a leaf node.

e |If the data to be deleted are not in a leaf
node, then replace that entry by the largest
entry on its left subtree.

19

Cao Hoang Tru
17 November 2008

CSE Faculty - HCMUT

B-Tree Deletion

Delete 78
‘
HMEE R EE ' M B
Delete 63
—
LRl s OB G
Cao Hoang Tru 20

CSE Faculty - HCMUT 17 November 2008

B-Tree Deletion

Delete 85

underflow
(node has fewer than the
min num of entries)

Delete 21

- le
il

Cao Hoang Tru 21
CSE Faculty - HCMUT 17 November 2008

Reflow

e For each node to have sufficient number of
entries:

— Balance: shift data among nodes.

— Combine: join data from nodes.

Cao Hoang Tru 22
CSE Faculty - HCMUT 17 November 2008

Borrow from right

Original node

Rotate parent
data down

Rotate data to
parent

Shift entries

left

Cao Hoang Tru
CSE Faculty - HCMUT

Balance

21

/ [N
B EE

42

/ [N
B EE

. 3
M2l

23
17 November 2008

Borrow from left

Original node

Shift entries
right

Rotate parent
data down

Rotate data
up

Cao Hoang Tru
CSE Faculty - HCMUT

Balance

78

"o

EHE R B

7N

24
17 November 2008

Combine

3. After moving right entries 4. After shifting root

Cao Hoang Tru 25
CSE Faculty - HCMUT 17 November 2008

B-Tree Traversal

= = l\
E

s NN B
-0

l11l14 19.20.

B

Cao Hoang Tru 26
CSE Faculty - HCMUT 17 November 2008

B-Tree Traversal

Algorithm BTreeTraversal (val root <pointer>)
Processes tree using inorder traversal

Pre root is a pointer to B-tree
Post Every entry has been processed in order

1 scanCount =0
2 ptr = root —> firstPtr
3 loop (scanCount <= root —> numEntries)
1 if (ptr not null)
1 BTreeTraversal (ptr)
2 scanCount = scanCount + 1
3 if (scanCount <= root —> numEntries)
1 process (root —> entries[scanCount].data)
2 ptr = root —> entries[scanCount].rightPtr
4 return

Eaadoang BYreeTraversal 21
CSE Faculty - HCMUT 17 November 2008

B-Tree Search

Algorithm BTreeSearch (val root <pointer>, val target <key>,
ref node <pointer>, ref entryNo <index>)

Recursively searches a B-tree for the target key

Pre root is a pointer to a tree or subtree
target is the data to be located

Post if found --
node is pointer to located node
entryNo is entry within node
if not found --
node is null and entryNo is zero

Return found <boolean>

Cao Hoang Tru 28
CSE Faculty - HCMUT 17 November 2008

B-Tree Search

1 if (empty tree)
1 node = null
2 entryNo=0
3 found = false
2 else
1 if (target < first entry)
1 return BTreeSearch (root —> firstPtr, target, node, entryNo)
2 else
1 entryNo = root —> numEntries
2 loop (target < root —> entries[entryNo].data.key)
1 entryNo = entryNo - 1
3 if (target = root —> entries[entryNo].data.key)
1 found = true
2 node = root
4 else
1 return BTreeSearch (root —> entries[entryNo].rightPtr, target, node, entryNo)
4 return found

End BTreeTraversal
Cao Hoang Tru 29

CSE Faculty - HCMUT 17 November 2008

B-Tree Variations

e B*Tree: the minimum number of (used)
entries Is two thirds.

e B+Tree:

— Each data entry must be represented at the leaf level.

— Each leaf node has one additional pointer to move to
the next leaf node.

Cao Hoang Tru 30
CSE Faculty - HCMUT 17 November 2008

Reading

e Pseudo code of algorithms for B-Tree Insertion

Cao Hoang Tru 31
CSE Faculty - HCMUT 17 November 2008

