Chapter 8 - Heaps

» Binary Heap. Min-heap. Max-heap.
» Efficient implementation of heap ADT: use of array

» Basic heap algorithms: ReheapUp, ReheapDown, Insert Heap,
Delete Heap, Built Heap

» d-heaps

» Heap Applications:

= Select Algorithm
= Priority Queues
= Heap sort

» Advanced implementations of heaps: use of pointers

= |Leftist heap
= Skew heap
] B|nomljoqu https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Binary Heaps

DEFINITION: A max-heap is a binary tree
structure with the following properties:
* The tree is complete or nearly complete.
* The key value of each node is greater than
or equal to the key value

max-heap

DEFINITION: A min-heap is a binary tree
structure with the following properties:
e Thetreeis complete or nearly complete.
* The key value of each node is less than or
equal to the key value in each of its
descendents.

CuuDuongThanCong.com https://fb.com/tailieudientudif) | nN- h ea p

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps

» Structure property of heaps

» Key value order of heaps

CuuDuongThanCong .com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps

Structure property of heaps:

* A complete or nearly complete binary tree.

If the height is h, the number of nodes n is between
2" 1and (2" -1)

Complete tree: n = 2" -1 when last level is full.

* Nearly complete: All nodes in the last level are on the left.

(A2 () (A
(8 (O (8) OO ©
O > (& @ © &
* h=|log,n| +1

Can be represented in an array and no pointers are necessary.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps

Key value order of max-heap:

@ (24, (44
(2 (& (18) (2

(max-heap is often called as heap)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic heap algorithms

ReheapUp: repairs a "broken" heap by floating the last
element up the tree until it is in its correct location.

(42) (42)
(21) () —> (O (32)

1)) @& (D W)
(42) Z
Reheapup (25) (32)
(1) () @ G

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic heap algorithms

ReheapDown: repairs a "broken" heap by pushing the root of
the subtree down until it is in its correct location.

(10) (32)
(21) () => (1] (10)

DD D
Reheapd 2 4
eneapaown o @

(1) (@ @

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contiguous Implementation of Heaps

Heap

data <Array of <DataType> >

count <int> //number of elements in heap

End Heap

01

2 3456

A|B

c|p|E|F|G|~]| .-°

Physical v‘:

— —

CuuDuongThanCong.com ~

~
“—___—’

—
-—
- ‘\

N

\
\

,~~_Conceptual

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ReheapUp

Algorithm ReheapUp (val position <int>)

Reestablishes heap by moving data in position up to its correct location.

Pre Alldata in the heap above this position satisfy key value order of a heap,
except the data in position.

Post Data in position has been moved up to its correct location.

Uses Recursive function ReheapUp.

1. if (position <> 0) // the parent of position exists.
1. parent = (position-1)/2
2. if (data[position].key > data[parent].key)

1. swap(position, parent) // swap data at position with data at parent.
2. ReheapUp(parent)

2. return
End ReheapUp

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ReheanDown

Algorithm ReheapDown (val position <int>, val lastPosition <int>)
Reestablishes heap by moving data in position down to its correct location.
Pre Alldata in the subtree of position satisfy key value order of a heap, except the
data in position.
Post Data in position has been moved down to its correct location.
Uses Recursive function ReheapDown.
1. leftChild = position *2 + 1
2. rightChild = position *2 + 2
3. if (leftChild <= lastPosition) // the left child of position exists.
1. if (rightChild <=lastPosition) AND (data[rightChild].key > data[leftChild].key)
1. child = rightChild
2. else
1. child = leftChild // choose larger child to compare with data in position
3. if (data[child].key > data[position].key)

1. swap(child, position) // swap data at position with data at child.
2. ReheapDown(child, lastPosition)

4. return

CuuDuongThanCong.com https://fb.com/tailieudientucntt 10

EFnd ReheanDown

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert new element into min-heap

Insert 14: (13)

(24 oS “14 » @

@{%‘u GD

24 121 rﬂ_@ 63 Zx /:D
{5; UC @@5@

The new element is put to the last position, and ReheapUp is called for
that pOSFt;P@ ﬁlfnCOng.com https://fb.com/tailieudientucntt 11

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> InsertHeap (val Dataln <DataType>) // Recursive version.

Inserts new data into the min-heap.

Post Dataln has been inserted into the heap and the heap order property
is maintained.

Return overflow or success

Uses recursive function ReheapUp.

1. if (heapis full)

1. return overflow

2. else
1. data[count] = Dataln
2. ReheapUp(count)
3. count=count+1
4. return success

End InsertHeap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

12

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> InsertHeap (val Dataln <DataType>) // Iterative version
Inserts new data into the min-heap.
Post Dataln has been inserted into the heap and the heap order property
is maintained.
Return overflow or success
1. if (heap is full)
1. return overflow
2. else
1. current_position = count-1
2. loop (the parent of the element at the current_position is exists) AND

(parent.key > Dataln .key)
1. data[current_position] = parent
2. current_position = position of parent

3. data[current_position] = Dataln
4. count=count+1
5. return success

E n d I n S e rt H élﬁ)ﬁjngThanCong.com https://fb.com/tailieudientucntt 1 3

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete minimum element from min-heap

Gy @ O

Z15! a_; Z_)
: 2
@%@ clelo

The element in the last position is put to the position of the root, and

Rehea P Dewirriscalled for that POS ition. https://fb. com/tailieudientucntt 14

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete minimum element from min-heap

- ,.-"_'x_l__.-'
(1ot Ly 16

X f}h_-{x k

— Y . ! \
~ Y- FT ' "-,I P

r . [Q f AR

|]__::- 'FF:"_L I}iﬁ; }'_1/ H S L
~ %3) (31) (33)
I@?} 131#; l'xf;_,-" \63) ‘xﬂi Ifxi"*’-;'

The element in the last position is put to the position of the root, and
ReheapDBoewnds-¢alled for that position. g comaodenuent 15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> DeleteHeap (ref MinData <DataType>) // Recursive version
Removes the minimum element from the min-heap.
Post MinData receives the minimum data in the heap and this data
has been removed. The heap has been rearranged.
Return underflow or success
Uses recursive function ReheapDown.
1. if (heap is empty)
1. return underflow

2. else
1. MinData = Data[0]
2. Data[0] = Data[count -1]
3. count=count-1
4. ReheapDown(0, count -1)
5. return success

End DeleteHeap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> DeleteHeap (ref MinData <DataType>) // Iterative version
Removes the minimum element from the min-heap.

Post MinData receives the minimum data in the heap and this data
has been removed. The heap has been rearranged.
Return underflow or success
1. if (heap is empty)
1. return underflow
2. else
1. MinData = Data[0]
2. lastElement = Data[count — 1] // The number of elements in the
// heap is decreased so the last
// element must be moved
// somewhere in the heap.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

17

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

// DeleteHeap(cont.) // Iterative version
3. current_position =0
4. continue = TRUE
5. loop (the element at the current_position has children) AND

(continue = TRUE)
1. Letchild is the smaller of two children
2. if (lastElement.key > child.key)
1. Data[current_position] = child
2. current_position = current_position of child
3. else
1. continue = FALSE
6. Data[current_position] = l[astElement
/. count=count-1
8. return success

End DeleteHeap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

18

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Build heap

<ErrorCode> BuildHeap (val listOfData <List>)
Builds a heap from data from listOfData.

Pre listOfData contains data need to be inserted into an empty heap.

Post Heap has been built.
Return overflow or success
Uses Recursive function ReheapUp.
1. count=0
2. loop (heap is not full) AND (more data in listOfData)
1. listOfData.Retrieve(count, newData)
2. data[count] = newData
3. ReheapUp(count)
4. count=count+1
3. if (count < listOfData.Size())
1. return overflow
4. else
1. return success
End BuildHeaf§=™>" T

19

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Build heap

Algorithm BuildHeap2 ()

Builds a heap from an array of random data.
Pre Arrayof count random data.
Post Array of data becames a heap.
Uses Recursive function ReheapDown.
1. position=count /2 -1
2. loop (position >=0)
1. ReheapDown(position, count-1)
2. position = position -1
3. return
End BuildHeap2

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Complexity of Binary Heap Operations

e ReheapUp: O(log,n)

e ReheapDown: O(log,n)
e BuildHeap: O(nlog,n)
e InsertHeap: O(log,n)

e DeleteHeap: O(log,n)

21

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

d-heaps
d-heap is a simple generalization of a binary heap.
In d-heap, all nodes have d children.
d-heap improve the running time of InsertElement to O(logyn).

For large d, DeleteMin operation is more expensive: the minimum of
d children must be found, which takes d-1 comparisons.

The multiplications and divisions to find children and parents are
now by d, which increases the running time. (If d=2, use of the bit
shift is faster).

d-heap is suitable for the applications where the number of Insertion
is greater than the number of DeleteMin.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 22

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Applications

»Select Algorithms.

>
>

Priority Queues.

Heap sort (we will see in the Sorting Chapter).

CuuDuongThanCong .com https://fb.com/tailieudientucntt

23

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the k" largest element in an unsorted list

Algorithm 1a:

* Read the elements into an array, sort them.

* Return the appropriate element.

The running time of a simple sorting algorithm is O(n?)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

24

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the k" largest element in an unsorted list

Algorithm 1b:

 Read k elements into an array, sort them.
* The smallest of these is in the k¥ position.
* Process the remaining elements one by one.

* Compare the coming element with the kt" element in
the array.

* If the coming element is large, the k" element is
removed, the new element is placed in the correct
place.

The running time is O(n?)

CuubDuongThanCong.co https://fb.com/tailieudientucntt

25

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the k" largest element in an unsorted list

Algorithm 2a:

* Build a max-heap.
* Detele k-1 elements from the heap.

* The desired element will be at the top.

The running time is O(nlog,n)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

26

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the k" largest element in an unsorted list

Algorithm 2b:

e Build a min-heap of k elements.

* Process the remaining elements one by one.

 Compare the coming element with the minimum
element in the heap (the element on the root of heap).

* If the coming element is large, the minimum element is
removed, the new element is placed in the correct place
(reheapdown).

The running time is O(nlog,n)

CuuDuongThanCong.com https://fb.com/tailieudientucntt 27

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

* Jobs are generally placed on a queue to wait for the services.

* |Inthe multiuser environment, the operating system scheduler must
decide which of several processes to run.

e Short jobs finish as fast as possible, so they should have precedence
over other jobs.

* Otherwise, some jobs are still very important and should also have

precedence.

These applications require a special kind of queue: a priority queue.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

* Each element has a priority to be dequeued.
* Minimum value of key has highest priority order.

DEFINITION of Priority Queue ADT:

Elements are enqueued accordingly to their priorities.
Minimum element is dequeued first.

Basic Operations:

* Creaqte

* InsertElement: Inserts new data to the position accordingly to its
priority order in queue.

* DeleteMin: Removes the data with highest priority order.

* RetrieveMin: Retrieves the data with highest priority order.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

Extended Operations:

Clear
ISEmpty
isFull

RetrieveMax:

IncreasePriority

] »

DecreasePriority

DeleteElement:

CuuDuongThanCong.com

Retrieves the data with lowest priority

order.

Changes the priority of some data
which has been inserted in queue.

Removes some data out of the queue.

https://fb.com/tailieudientucntt 30

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Specifications for Priority Queue ADT

<ErrorCode> InsertElement (val Dataln <DataType>)
<ErrorCode> DeleteMin (ref MinData <DataType>)
<ErrorCode> RetrieveMin (ref MinData <DataType>)
<ErrorCode> RetrieveMax (ref MaxData <DataType>)
<ErrorCode> IncreasePriority (val position <int>,

val PriorityDelta <KeyType>)
<ErrorCode> DecreasePriority (val position <int>,

val PriorityDelta <KeyType>)
<ErrorCode> DeleteElement (val position <int>,

ref DataOut <DataType>)

<bool> isEmpty()
<bool> isFull()

<VO I d > C I e aJ:L(D)ongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue

» Use linked list:

= Simple linked list:
* Insertion performs at the front, requires O(1).
e DeleteMin requires O(n) for searching of the minimum data.
= Sorted linked list:

* Insertion requires O(n) for searching of the appropriate
position.

e DeleteMin requires O(1).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue

» Use BST:

* Insertion requires O(log, n).

* DeleteMin requires O(log, n).

e But DeleteMin, repeatedly removing node in the left subtree,

seem to hurt balance of the tree.

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue

» Use min-heap:

* Insertion requires O(log, n).

* DeleteMin requires O(log, n).

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert and Remove element into/from
priority queue

<ErrorCode> InsertElement (val Dataln <DataType>):
InsertHeap Algorithm

<ErrorCode> DeleteMin (ref MinData <DataType>):
DeleteHeap Algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

35

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Retrieve minimum element in priority queue

<ErrorCode> RetrieveMin (ref MinData <DataType>)
Retrieves the minimum element in the heap.

Post MinData receives the minimum data in the heap and the heap
remains unchanged.
Return underflow or success

1. if (heap is empty)

1. return underflow
2. else

1. MinData = Data[0]

2. return success
End RetrieveMin......

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Retrieve maximum element in priority queue

<ErrorCode> RetrieveMax (ref MaxData <DataType>)
Retrieves the maximum element in the heap.
Post MaxData receives the maximum data in the heap and the heap
remains unchanged.
Return underflow or success
1. if (heap is empty)
1. return underflow
2. else
1. Sequential search the maximum data in the right half elements
of the heap (the leaves of the heap). The first leaf is at the
position count/2.
2. return success
End RetrievelMax......

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Change the priority of an element in
priority queue

<ErrorCode> IncreasePriority (val position <int>,
val PriorityDelta <KeyType>)
Increases priority of an element in the heap.
Post Element at position has its priority increased by PriorityDelta
and has been moved to correct position.
Return rangeError or success
Uses ReheapDown.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Change the priority of an element in
priority queue

<ErrorCode> DecreasePriority (val position <int>,
val PriorityDelta <KeyType>)
Decreases priority of an element in the heap.
Post Element at position has its priority decreased by PriorityDelta
and has been moved to correct position.
Return rangeError or success
Uses ReheapUp.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Remove an element out of priority queue

<ErrorCode> DeleteElement (val position <int>,
ref DataOut <DataType>)
Removes an element out of the min-heap.
Post DataOut contains data in the element at position, this element
has been removed. The heap has been rearranged.
Return rangeError or success
1. if (position>=count) OR (position <0)
1. return rangeError

2. else
1. DataOut = Data[position]
2. DecreasePriority(position, VERY LARGE_VALUE),
3. DeleteMin(MinData)
4. return success

E n d D e | ete Ei@maécritm https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Advanced implementations of heaps

» Advanced implementations of heaps: use of pointers

= |eftist heap
= Skew heap
® Binomial queues

Use of pointers allows the merge operations (combine two heaps
into one) to perform easily.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

41

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

