
Chapter 8 - Heaps
 Binary Heap. Min-heap. Max-heap.

 Efficient implementation of heap ADT: use of array

 Basic heap algorithms: ReheapUp, ReheapDown, Insert Heap,
Delete Heap, Built Heap

 d-heaps

 Heap Applications:

 Select Algorithm

 Priority Queues

 Heap sort

 Advanced implementations of heaps: use of pointers

 Leftist heap

 Skew heap

 Binomial queues 1CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Binary Heaps

DEFINITION: A max-heap is a binary tree

structure with the following properties:

• The tree is complete or nearly complete.

• The key value of each node is greater than

or equal to the key value

2

DEFINITION: A min-heap is a binary tree

structure with the following properties:

• The tree is complete or nearly complete.

• The key value of each node is less than or

equal to the key value in each of its

descendents.

all<=K all<=K

K

all>=K all>=K

K

max-heap

min-heapCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps

 Structure property of heaps

 Key value order of heaps

3CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps
Structure property of heaps:

• A complete or nearly complete binary tree.

• If the height is h, the number of nodes n is between

2h-1 and (2h -1)

• Complete tree: n = 2h -1 when last level is full.

• Nearly complete: All nodes in the last level are on the left.

• h = |log2 n| + 1

• Can be represented in an array and no pointers are necessary.
4CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Properties of Binary Heaps

Key value order of max-heap:

(max-heap is often called as heap)

5CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic heap algorithms

ReheapUp: repairs a "broken" heap by floating the last

element up the tree until it is in its correct location.

6CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic heap algorithms

ReheapDown: repairs a "broken" heap by pushing the root of

the subtree down until it is in its correct location.

7CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Contiguous Implementation of Heaps

0 1 2 3 4 5 6

A B C D E F G ...

8

Conceptual

Physical

Heap

data <Array of <DataType> >

count <int> //number of elements in heap

End Heap

2i+1 2i+2

i

|(i-1)/2|

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ReheapUp

Algorithm ReheapUp (val position <int>)

Reestablishes heap by moving data in position up to its correct location.

Pre All data in the heap above this position satisfy key value order of a heap,

except the data in position.

Post Data in position has been moved up to its correct location.

Uses Recursive function ReheapUp.

1. if (position <> 0) // the parent of position exists.

1. parent = (position-1)/2

2. if (data[position].key > data[parent].key)

1. swap(position, parent) // swap data at position with data at parent.

2. ReheapUp(parent)

2. return

End ReheapUp

9CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

ReheapDown
Algorithm ReheapDown (val position <int>, val lastPosition <int>)

Reestablishes heap by moving data in position down to its correct location.

Pre All data in the subtree of position satisfy key value order of a heap, except the

data in position.

Post Data in position has been moved down to its correct location.

Uses Recursive function ReheapDown.

1. leftChild = position *2 + 1

2. rightChild = position *2 + 2

3. if (leftChild <= lastPosition) // the left child of position exists.

1. if (rightChild <= lastPosition) AND (data[rightChild].key > data[leftChild].key)

1. child = rightChild

2. else

1. child = leftChild // choose larger child to compare with data in position

3. if (data[child].key > data[position].key)

1. swap(child, position) // swap data at position with data at child.

2. ReheapDown(child, lastPosition)

4. return

End ReheapDown
10CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert new element into min-heap

The new element is put to the last position, and ReheapUp is called for

that position. 11

Insert 14:

14

14

14

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> InsertHeap (val DataIn <DataType>) // Recursive version.

Inserts new data into the min-heap.

Post DataIn has been inserted into the heap and the heap order property

is maintained.

Return overflow or success

Uses recursive function ReheapUp.

1. if (heap is full)

1. return overflow

2. else

1. data[count] = DataIn

2. ReheapUp(count)

3. count = count + 1

4. return success

End InsertHeap

12CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> InsertHeap (val DataIn <DataType>) // Iterative version

Inserts new data into the min-heap.

Post DataIn has been inserted into the heap and the heap order property

is maintained.

Return overflow or success

1. if (heap is full)

1. return overflow

2. else

1. current_position = count - 1

2. loop (the parent of the element at the current_position is exists) AND

(parent.key > DataIn .key)

1. data[current_position] = parent

2. current_position = position of parent

3. data[current_position] = DataIn

4. count = count + 1

5. return success

End InsertHeap 13CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete minimum element from min-heap

14

The element in the last position is put to the position of the root, and

ReheapDown is called for that position.

31

31

31

31

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete minimum element from min-heap

15

The element in the last position is put to the position of the root, and

ReheapDown is called for that position.

31

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> DeleteHeap (ref MinData <DataType>) // Recursive version

Removes the minimum element from the min-heap.

Post MinData receives the minimum data in the heap and this data

has been removed. The heap has been rearranged.

Return underflow or success

Uses recursive function ReheapDown.

1. if (heap is empty)

1. return underflow

2. else

1. MinData = Data[0]

2. Data[0] = Data[count -1]

3. count = count - 1

4. ReheapDown(0, count -1)

5. return success

End DeleteHeap
16CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> DeleteHeap (ref MinData <DataType>) // Iterative version

Removes the minimum element from the min-heap.

Post MinData receives the minimum data in the heap and this data

has been removed. The heap has been rearranged.

Return underflow or success

1. if (heap is empty)

1. return underflow

2. else

1. MinData = Data[0]

2. lastElement = Data[count – 1] // The number of elements in the

// heap is decreased so the last

// element must be moved

// somewhere in the heap.

17CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

// DeleteHeap(cont.) // Iterative version

3. current_position = 0

4. continue = TRUE

5. loop (the element at the current_position has children) AND

(continue = TRUE)

1. Let child is the smaller of two children

2. if (lastElement.key > child.key)

1. Data[current_position] = child

2. current_position = current_position of child

3. else

1. continue = FALSE

6. Data[current_position] = lastElement

7. count = count - 1

8. return success

End DeleteHeap

18CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Build heap
<ErrorCode> BuildHeap (val listOfData <List>)

Builds a heap from data from listOfData.

Pre listOfData contains data need to be inserted into an empty heap.

Post Heap has been built.

Return overflow or success

Uses Recursive function ReheapUp.

1. count = 0

2. loop (heap is not full) AND (more data in listOfData)

1. listOfData.Retrieve(count, newData)

2. data[count] = newData

3. ReheapUp(count)

4. count = count + 1

3. if (count < listOfData.Size())

1. return overflow

4. else

1. return success

End BuildHeap 19CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Build heap
Algorithm BuildHeap2 ()

Builds a heap from an array of random data.

Pre Array of count random data.

Post Array of data becames a heap.

Uses Recursive function ReheapDown.

1. position = count / 2 -1

2. loop (position >=0)

1. ReheapDown(position, count-1)

2. position = position - 1

3. return

End BuildHeap2

20CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Complexity of Binary Heap Operations

21CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

d-heaps

 d-heap is a simple generalization of a binary heap.

 In d-heap, all nodes have d children.

 d-heap improve the running time of InsertElement to O(logdn).

 For large d, DeleteMin operation is more expensive: the minimum of

d children must be found, which takes d-1 comparisons.

 The multiplications and divisions to find children and parents are

now by d, which increases the running time. (If d=2, use of the bit

shift is faster).

 d-heap is suitable for the applications where the number of Insertion

is greater than the number of DeleteMin.
22CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Applications

Select Algorithms.

Priority Queues.

Heap sort (we will see in the Sorting Chapter).

23CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the kth largest element in an unsorted list

Algorithm 1a:

• Read the elements into an array, sort them.

• Return the appropriate element.

The running time of a simple sorting algorithm is O(n2)

24CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the kth largest element in an unsorted list

Algorithm 1b:

• Read k elements into an array, sort them.

• The smallest of these is in the kth position.

• Process the remaining elements one by one.

• Compare the coming element with the kth element in
the array.

• If the coming element is large, the kth element is
removed, the new element is placed in the correct
place.

The running time is O(n2)
25CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the kth largest element in an unsorted list

Algorithm 2a:

• Build a max-heap.

• Detele k-1 elements from the heap.

• The desired element will be at the top.

The running time is O(nlog2n)

26CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Select Algorithms

Determine the kth largest element in an unsorted list

Algorithm 2b:

• Build a min-heap of k elements.

• Process the remaining elements one by one.

• Compare the coming element with the minimum
element in the heap (the element on the root of heap).

• If the coming element is large, the minimum element is
removed, the new element is placed in the correct place
(reheapdown).

The running time is O(nlog2n)
27CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

• Jobs are generally placed on a queue to wait for the services.

• In the multiuser environment, the operating system scheduler must

decide which of several processes to run.

• Short jobs finish as fast as possible, so they should have precedence

over other jobs.

• Otherwise, some jobs are still very important and should also have

precedence.

These applications require a special kind of queue: a priority queue.

28CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

DEFINITION of Priority Queue ADT:

Elements are enqueued accordingly to their priorities.

Minimum element is dequeued first.

Basic Operations:

• Create

• InsertElement: Inserts new data to the position accordingly to its

priority order in queue.

• DeleteMin: Removes the data with highest priority order.

• RetrieveMin: Retrieves the data with highest priority order.
29

• Each element has a priority to be dequeued.

• Minimum value of key has highest priority order.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Priority Queue ADT

Extended Operations:

• Clear

• isEmpty

• isFull

• RetrieveMax: Retrieves the data with lowest priority

order.

• IncreasePriority Changes the priority of some data

• DecreasePriority which has been inserted in queue.

• DeleteElement: Removes some data out of the queue.

30CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Specifications for Priority Queue ADT

<ErrorCode> InsertElement (val DataIn <DataType>)

<ErrorCode> DeleteMin (ref MinData <DataType>)

<ErrorCode> RetrieveMin (ref MinData <DataType>)

<ErrorCode> RetrieveMax (ref MaxData <DataType>)

<ErrorCode> IncreasePriority (val position <int>,

val PriorityDelta <KeyType>)

<ErrorCode> DecreasePriority (val position <int>,

val PriorityDelta <KeyType>)

<ErrorCode> DeleteElement (val position <int>,

ref DataOut <DataType>)

<bool> isEmpty()

<bool> isFull()

<void> clear() 31CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue
Use linked list:

 Simple linked list:

• Insertion performs at the front, requires O(1).

• DeleteMin requires O(n) for searching of the minimum data.

 Sorted linked list:

• Insertion requires O(n) for searching of the appropriate

position.

• DeleteMin requires O(1).

32CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue
Use BST:

• Insertion requires O(log2 n).

• DeleteMin requires O(log2 n).

• But DeleteMin , repeatedly removing node in the left subtree,

seem to hurt balance of the tree.

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Implementations of Priority Queue
Use min-heap:

• Insertion requires O(log2 n).

• DeleteMin requires O(log2 n).

34CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert and Remove element into/from
priority queue

<ErrorCode> InsertElement (val DataIn <DataType>):

InsertHeap Algorithm

<ErrorCode> DeleteMin (ref MinData <DataType>):

DeleteHeap Algorithm

35CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Retrieve minimum element in priority queue

<ErrorCode> RetrieveMin (ref MinData <DataType>)

Retrieves the minimum element in the heap.

Post MinData receives the minimum data in the heap and the heap

remains unchanged.

Return underflow or success

1. if (heap is empty)

1. return underflow

2. else

1. MinData = Data[0]

2. return success

End RetrieveMin 36CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Retrieve maximum element in priority queue

<ErrorCode> RetrieveMax (ref MaxData <DataType>)

Retrieves the maximum element in the heap.

Post MaxData receives the maximum data in the heap and the heap

remains unchanged.

Return underflow or success

1. if (heap is empty)

1. return underflow

2. else

1. Sequential search the maximum data in the right half elements

of the heap (the leaves of the heap). The first leaf is at the

position count/2.

2. return success

End RetrieveMax 37CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Change the priority of an element in

priority queue

<ErrorCode> IncreasePriority (val position <int>,

val PriorityDelta <KeyType>)

Increases priority of an element in the heap.

Post Element at position has its priority increased by PriorityDelta

and has been moved to correct position.

Return rangeError or success

Uses ReheapDown.

38CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Change the priority of an element in

priority queue

<ErrorCode> DecreasePriority (val position <int>,

val PriorityDelta <KeyType>)

Decreases priority of an element in the heap.

Post Element at position has its priority decreased by PriorityDelta

and has been moved to correct position.

Return rangeError or success

Uses ReheapUp.

39CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Remove an element out of priority queue

<ErrorCode> DeleteElement (val position <int>,

ref DataOut <DataType>)

Removes an element out of the min-heap.

Post DataOut contains data in the element at position, this element

has been removed. The heap has been rearranged.

Return rangeError or success

1. if (position>=count) OR (position <0)

1. return rangeError

2. else

1. DataOut = Data[position]

2. DecreasePriority(position, VERY_LARGE_VALUE),

3. DeleteMin(MinData)

4. return success

End DeleteElement 40CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Advanced implementations of heaps

 Advanced implementations of heaps: use of pointers

 Leftist heap

 Skew heap

 Binomial queues

Use of pointers allows the merge operations (combine two heaps
into one) to perform easily.

41CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

