
Chapter 9 - Graph

• A Graph G consists of a set V, whose members are called the

vertices of G, together with a set E of pairs of distinct vertices

from V.

• The pairs in E are called the edges of G.

• If the pairs are unordered, G is called an undirected graph or a

graph. Otherwise, G is called a directed graph or a digraph.

• Two vertices in an undirected graph are called adjacent if there

is an edge from the first to the second.

1CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Chapter 9 - Graph

• A path is a sequence of distinct vertices, each adjacent to the

next.

• A cycle is a path containing at least three vertices such that the

last vertex on the path is adjacent to the first.

• A graph is called connected if there is a path from any vertex to

any other vertex.

• A free tree is defined as a connected undirected graph with no

cycles.

2CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Chapter 9 - Graph

• In a directed graph a path or a cycle means always moving in

the direction indicated by the arrows.

• A directed graph is called strongly connected if there is a

directed path from any vertex to any other vertex.

• If we suppress the direction of the edges and the resulting

undirected graph is connected, we call the directed graph

weakly connected

3CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Examples of Graph

4CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Examples of Graph

5CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency table

6

Digraph
count <integer> // Number of vertices
edge <array of <array of <boolean> > > // Adjacency table

End Digraph

Directed graph Adjacency set Adjacency table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Weighted-graph as an adjacency table

7

WeightedGraph
count <integer> // Number of vertices
edge<array of<array of<WeightType>>> // Adjacency table

End WeightedGraph

Weighted-graph vertex vector adjacency table

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Weighted-graph as an adjacency list

8CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list

9

Directed graph

linked structure mixed structure

contiguous structure

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

VertexNode

first_edge <pointer to EdgeNode>

next_vertex<pointer to VertexNode>

End VertexNode

EdgeNode

vertex_to <pointer to VertexNode>

next_edge <pointer to EdgeNode>

End EdgeNode

DiGraph

first_vertex <pointer to VertexNode>

End DiGraph

Digraph as an adjacency list (not using List ADT)

10

Directed graph

linked structure

first_vertex

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (using List ADT)

11

0 1 2

1

2

3

2 3

0 1 2

head

head

head

head

head

digraph

ADT List is linked list:

DiGraph

digraph <LinkedList<of<GraphNode>>

End DiGraph

2

GraphNode

vertex adjVertex

head

GraphNode

vertex <VertexType> // (key field)

adjVertex<LinkedList of< VertexType >>

indegree <int> are hidden

outdegree <int> from the

isMarked <boolean> image below

End GraphNode

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (using List ADT)

12

ADT List is contiguous list:

DiGraph

digraph <ContiguousList<of<GraphNode>>

End DiGraph

GraphNode

vertex <VertexType> // (key field)

adjVertex<LinkedList of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNode
mixed list

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (using List ADT)

13

GraphNode

vertex <VertexType> // (key field)

adjVertex<ContiguousList of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNode
contiguous list

ADT List is contiguous list:

DiGraph

digraph <ContiguousList<of<GraphNode>>

End DiGraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

GraphNode

<void> GraphNode() // constructor of GraphNode

1. indegree = 0

2. outdegree = 0

3. adjVertex.clear() // By default, constructor of adjVertex

made it empty.

End GraphNode

14

GraphNode

vertex adjVertex

head

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Operations for Digraph

 Insert Vertex

Delete Vertex

 Insert edge

Delete edge

 Traverse

15CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph

16

Digraph
private:

digraph <List of <GraphNode> > // using of List ADT .

<void> Remove_EdgesToVertex(val VertexTo <VertexType>)

public:
<ErrorCode> InsertVertex (val newVertex <VertexType>)
<ErrorCode> DeleteVertex (val Vertex <VertexType>)
<ErrorCode> InsertEdge (val VertexFrom <VertexType>,

val VertexTo <VertexType>)
<ErrorCode> DeleteEdge (val VertexFrom <VertexType>,

val VertexTo <VertexType>)

// Other methods for Graph Traversal.
End Digraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods of List ADT

Methods of Digraph will use these methods of List ADT:

<ErrorCode> Insert (val DataIn <DataType>) // (success, overflow)

<ErrorCode> Search (ref DataOut <DataType>) // (found, notFound)

<ErrorCode> Remove (ref DataOut <DataType>) // (success , notFound)

<ErrorCode> Retrieve (ref DataOut <DataType>) // (success , notFound)

<ErrorCode> Retrieve (ref DataOut <DataType>, position <int>)

// (success , range_error)

<ErrorCode> Replace (val DataIn <DataType>, position <int>)

// (success, range_error)

<ErrorCode> Replace (val DataIn <DataType>, val DataOut <DataType>)

// (success, notFound)

<boolean> isFull()

<boolean> isEmpty()

<integer> Size() 17CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert New Vertex into Digraph

<ErrorCode> InsertVertex (val newVertex <VertexType>)

Inserts new vertex into digraph.

Pre newVertex is a vertex needs to be inserted.

Post if the vertex is not in digraph, it has been inserted and no edge

is involved with this vertex.

Return success, overflow, or duplicate_error

18CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert New Vertex into Digraph

<ErrorCode> InsertVertex (val newVertex <VertexType>)

1. DataOut.vertex = newVertex

2. if (digraph.Search(DataOut) = success)

1. return duplicate_error

3. else

1. return digraph.Insert(DataOut) // success or overflow

End InsertVertex

19

GraphNode

vertex <VertexType> // (key field)

adjVertex<List of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Vertex from Digraph

<ErrorCode> DeleteVertex (val Vertex <VertexType>)

Deletes an existing vertex.

Pre Vertex is the vertex needs to be removed .

Post if Vertex 's indegree <>0, the edges ending at this vertex have

been removed. Finally, this vertex has been removed.

Return success, or notFound

Uses Function Remove_EdgeToVertex.

20CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Vertex from Digraph
<ErrorCode> DeleteVertex (val Vertex <VertexType>)

1. DataOut.vertex = Vertex

2. if (digraph.Retrieve(DataOut) = success)

1. if (DataOut.indegree>0)

1. digraph.Remove_EdgeToVertex(Vertex)

2. digraph.Remove(DataOut)

3. return success

3. else

1. return notFound

End DeleteVertex

21

GraphNode

vertex <VertexType> // (key field)

adjVertex<List of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Auxiliary function Remove all Edges to a Vertex
<void> Remove_EdgesToVertex(val VertexTo <VertexType>)

Removes all edges from any vertex to VertexTo if exist.

1. position = 0

2. loop (digraph.Retrieve(DataFrom, position) = success)

1. if (DataFrom.outdegree>0)

1. if (DataFrom.adjVertex.Remove(VertexTo) = success)

1. DataFrom.outdegree = DataFrom.outdegree - 1

2. digraph.Replace(DataFrom, position)

2. position = position + 1

End Remove_EdgesToVertex

22

GraphNode

vertex <VertexType> // (key field)

adjVertex<List of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert new Edge into Digraph

<ErrorCode> InsertEdge (val VertexFrom<VertexType>,

val VertexTo <VertexType>)

Inserts new edge into digraph.

Post if VertexFrom and VertexTo are in the digraph, and the edge

from VertexFrom to VertexTo is not in the digraph, it has been

inserted.

Return success, overflow, notFound_VertexFrom , notFound_VertexTo

or duplicate_error

23CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. DataFrom.vertex = VertexFrom

2. DataTo.vertex = VertexTo

3. if (digraph.Retrieve(DataFrom) = success)

1. if (digraph.Retrieve(DataTo) = success)

1. newData = DataFrom

2. if (newData.adjVertex.Search(VertexTo) = found)

1. return duplicate_error

3. if (newData.adjVertex.Insert(VertexTo) = success)

1. newData.outdegree = newData.outdegree +1

2. digraph.Replace(newData, DataFrom)

3. return success

4. else

1. return overflow

2. else

1. return notFound_VertexTo

4. else

1. return notFound_VertexFrom

End InsertEdge
24

GraphNode

vertex <VertexType> // (key field)

adjVertex<List of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Edge from Digraph

<ErrorCode> DeleteEdge (val VertexFrom <VertexType>,

val VertexTo <VertexType>)

Deletes an existing edge in the digraph.

Post if VertexFrom and VertexTo are in the digraph, and the edge

from VertexFrom to VertexTo is in the digraph, it has been

removed

Return success, notFound_VertexFrom , notFound_VertexTo or

notFound_Edge

25CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. DataFrom.vertex = VertexFrom

2. DataTo.vertex = VertexTo

3. if (digraph.Retrieve(DataFrom) = success)

1. if (digraph.Retrieve(DataTo) = success)

1. newData = DataFrom

2. if (newData.adjVertex.Remove(VertexTo) = success)

1. newData.outdegree = newData.outdegree -1

2. digraph.Replace(newData, DataFrom)

3. return success

3. else

1. return notFound_Edge

2. else

1. return notFound_VertexTo

4. else

1. return notFound_VertexFrom

End DeleteEdge

26

GraphNode

vertex <VertexType> // (key field)

adjVertex<List of< VertexType >>

indegree <int>

outdegree <int>

isMarked <boolean>

End GraphNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph Traversal

Depth-first traversal: analogous to preorder traversal of an

oredered tree.

 Breadth-first traversal: analogous to level-by-level traversal

of an ordered tree.

27CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

28CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Breadth-first traversal

29CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> DepthFirst

(ref <void> Operation (ref Data <DataType>))

Traverses the digraph in depth-first order.

Post The function Operation has been performed at each vertex of

the digraph in depth-first order.

Uses Auxiliary function recursiveTraverse to produce the recursive

depth-first order.

30CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> DepthFirst

(ref <void> Operation (ref Data <DataType>))

1. loop (more vertex v in Digraph)

1. unmark (v)

2. loop (more vertex v in Digraph)

1. if (v is unmarked)

1. recursiveTraverse (v, Operation)

End DepthFirst

31CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> recursiveTraverse (ref v <VertexType>,

ref <void> Operation (ref Data <DataType>))

Traverses the digraph in depth-first order.

Pre v is a vertex of the digraph.

Post The depth-first traversal, using function Operation, has been

completed for v and for all vertices that can be reached from v.

Uses function recursiveTraverse recursively.

32CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> recursiveTraverse(ref v <VertexType>,

ref <void> Operation (ref Data <DataType>))

1. mark(v)

2. Operation(v)

3. loop (more vertex w adjacent to v)

1. if (vertex w is unmarked)

1. recursiveTraverse (w, Operation)

End Traverse

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Breadth-first traversal

<void> BreadthFirst

(ref <void> Operation (ref Data <DataType>))

Traverses the digraph in breadth-first order.

Post The function Operation has been performed at each vertex of

the digraph in breadth-first order.

Uses Queue ADT.

34CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

// BreadthFirst

1. queueObj <Queue>

2. loop (more vertex v in digraph)

1. unmark(v)

3. loop (more vertex v in Digraph)

1. if (vertex v is unmarked)

1. queueObj.EnQueue(v)

2. loop (NOT queueObj .isEmpty())

1. queueObj.QueueFront(w)

2. queueObj.DeQueue()

3. if (vertex w is unmarked)

1. mark(w)

2. Operation(w)

3. loop (more vertex x adjacent to w)

End BreadthFirst 35

1. queueObj.EnQueue(x)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

A topological order for G, a directed graph with no cycles, is a

sequential listing of all the vertices in G such that, for all

vertices v, w G, if there is an edge from v to w, then v

precedes w in the sequential listing.

36CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

37CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

38CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological order is used for:

 Courses available at a university,

• Vertices: course.

• Edges: (v,w), v is a prerequisite for w.

• A topological order is a listing of all the courses such that all

perequisites for a course appear before it does.

 A glossary of technical terms: no term is used in a definition before it

is itself defined.

 The topics in the textbook.

Applications of Topological Order

39CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order
<void> DepthTopoSort (ref TopologicalOrder <List>)

Traverses the digraph in depth-first order and made a list of topological order

of digraph's vertices.

Pre Acyclic digraph.

Post The vertices of the digraph are arranged into the list

TopologicalOrder with a depth-first traversal of those vertices that

do not belong to a cycle.

Uses List ADT and function recursiveDepthTopoSort to perform depth-first

traversal.

Idea:

• Starts by finding a vertex that has no successors and place it last in the list.

• Repeatedly add vertices to the beginning of the list.

• By recursion, places all the successors of a vertex into the topological order.

• Then, place the vertex itself in a position before any of its successors. 40CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

41CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> DepthTopoSort (ref TopologicalOrder <List>)

1. loop (more vertex v in digraph)

1. unmark(v)

2. TopologicalOrder.clear()

3. loop (more vertex v in Digraph)

1. if (vertex v is unmarked)

1. recursiveDepthTopoSort(v, TopologicalOrder)

End DepthTopoSort

42CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> recursiveDepthTopoSort (val v <VertexType>,

ref TopologicalOrder <List>)

Pre Vertex v in digraph does not belong to the partially completed list

TopologicalOrder.

Post All the successors of v and finally v itself are added to

TopologicalOrder with a depth-first order traversal.

Uses List ADT and the function recursiveDepthTopoSort.

Idea:

• Performs the recursion, based on the outline for the general function

traverse.

• First, places all the successors of v into their positions in the topological

order.

• Then, places v into the order. 43CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> recursiveDepthTopoSort (val v <VertexType>,

ref TopologicalOrder <List>)

1. mark(v)

2. loop (more vertex w adjacent to v)

1. if (vertex w is unmarked)

1. recursiveDepthTopoSort(w, TopologicalOrder)

3. TopologicalOrder.Insert(0, v)

End recursiveDepthTopoSort

44CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order
<void> BreadthTopoSort (ref TopologicalOrder <List>)

Traverses the digraph in depth-first order and made a list of topological order

of digraph's vertices.

Post The vertices of the digraph are arranged into the list TopologicalOrder

with a breadth-first traversal of those vertices that do not belong to a

cycle.

Uses List and Queue ADT.

Idea:

• Starts by finding the vertices that are not successors of any other vertex.

• Places these vertices into a queue of vertices to be visited.

• As each vertex is visited, it is removed from the queue and placed in the next

available position in the topological order (starting at the beginning).

• Reduces the indegree of its successors by 1.

• The vertex having the zero value indegree is ready to processed and is places

into the queue.
45CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

46CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<void> BreadthTopoSort (ref TopologicalOrder <List>)

1. TopologicalOrder.clear()

2. queueObj <Queue>

3. loop (more vertex v in digraph)

1. if (indegree of v = 0)

1. queueObj.EnQueue(v)

4. loop (NOT queueObj.isEmpty())

1. queueObj.QueueFront(v)

2. queueObj.DeQueue()

3. TopologicalOrder.Insert(TopologicalOrder.size(), v)

4. loop (more vertex w adjacent to v)

1. decrease the indegree of w by 1

2. if (indegree of w = 0)

1. queueObj.EnQueue(w)

End BreadthTopoSort
47CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shortest Paths

• Given a directed graph in which each edge has a

nonnegative weight.

• Find a path of least total weight from a given vertex,

called the source, to every other vertex in the graph.

• A greedy algorithm of Shortest Paths:

Dijkstra's algorithm (1959).

48CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

Let tree is the subgraph contains the shotest paths from the

source vertex to all other vertices.

At first, add the source vertex to the tree.

Loop until all vertices are in the tree:

• Consider the adjacent vertices of the

vertices already in the tree.

• Examine all the paths from those adjacent

vertices to the source vertex.

• Select the shortest path and insert the

corresponding adjacent vertex into the tree.

49CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm in detail
• S: Set of vertices whose closest distances to the source are known.

• Add one vertex to S at each stage.

• For each vertex v, maintain the distance from the source to v, along a

path all of whose vertices are in S, except possibly the last one.

• To determine what vertex to add to S at each

step, apply the greedy criterion of choosing

the vertex v with the smallest distance.

• Add v to S.

• Update distance from the source for all w

not in S, if the path through v and then

directly to w is shorter than the previously

recorded distance to w. 50CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

51CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

52CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

53CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

54CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

55CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

56CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

57

<void> ShortestPath (val source <VertexType>,

ref listOfShortestPath <List of <DistanceNode>>)

Finds the shortest paths from source to all other vertices in digraph.

Post Each node in listOfShortestPath gives the minimal path weight

from vertex source to vertex destination in distance field.

DistanceNode

destination <VertexType>

distance <int>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

58

// ShortestPath

1. listOfShortestPath.clear()

2. Add source to set S

3. loop (more vertex v in digraph) // Initiate all distances from source to v

1. distanceNode.destination = v

2. distanceNode.distance = weight of edge(source, v) // = infinity if

// edge(source,v) isn't in digraph.

3. listOfShortestPath.Insert(distanceNode)

4. loop (more vertex not in S) // Add one vertex v to S on each step.

1. minWeight = infinity // Choose vertex v with smallest distance.

2. loop (more vertex w not in S)

1. Find the distance x from source to w in listOfShortestPath

2. if (x < minWeight)

1. v = w

2. minWeight = x

3. Add v to S.

DistanceNode

destination <VertexType>

distance <int>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

59

// ShortestPath (continue)

4. loop (more vertex w not in S) // Update distances from source

// to all w not in S

1. Find the distance x from source to w in listOfShortestPath

2. if ((minWeight + weight of edge from v to w) < x)

1. Update distance from source to w in listOfShortestPath

to (minWeight + weight of edge from v to w)

End ShortestPath

DistanceNode

destination <VertexType>

distance <int>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Another example of Shortest Paths

60
Select the adjacent vertex having minimum path to the source vertex

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Minimum spanning tree

DEFINITION:

Spanning tree: tree that contains all of the vertices in a

connected graph.

Minimum spanning tree: spanning tree such that the sum of

the weights of its edges is minimal.

61CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Spanning Trees

Two spanning trees in a network
62CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A greedy Algorithm: Minimum Spanning Tree

 Shortest path algorithm in a connected graph found an its

spanning tree.

What is the algorithm finding the minimum spanning tree?

A small change to shortest path algorithm can find the

minimum spanning tree, that is Prim's algorithm since

1957.

63CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm

Let tree is the minimum spanning tree.

At first, add one vertex to the tree.

Loop until all vertices are in the tree:

• Consider the adjacent vertices of the vertices already in the tree.

• Examine all the edges from each vertices already in the tree to those

adjacent vertices.

• Select the smallest edge and insert the corresponding adjacent vertex

into the tree.

64CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm in detail

• Let S is the set of vertices already in the minimum spanning tree.

• At first, add one vertex to S.

• For each vertex v not in S, maintain the distance from a vertex x to v,

where x is a vertex in S and the edge(x,v) is the smallest in all edges

from another vertices in S to v (this edge(x,v) is called the distance

from S to v). As usual, all edges not being in graph have infinity value.

• To determine what vertex to add to S at each step, apply the greedy

criterion of choosing the vertex v with the smallest distance from S.

• Add v to S.

• Update distances from S to all vertices v not in S if they are smaller

than the previously recorded distances. 65CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm

66

Select the adjacent vertex having minimum edge to the vertices

already in the tree.CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm

67

<void> MinimumSpanningTree (val source <VertexType>,

ref tree <Graph>)

Finds the minimum spanning tree of a connected component of the

original graph that contains vertex source.

Post tree is the minimum spanning tree of a connected component

of the original graph that contains vertex source.

Uses local variables:

• Set S

• listOfDistanceNode

• continue <boolean>

DistanceNode

vertexFrom <VertexType>

vertexTo <VertexType>

distance <WeightType>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

68

1. tree.clear()

2. tree.InsertVertex(source)

3. Add source to set S

4. listOfDistanceNode.clear()

5. distanceNode.vertexFrom = source

6. loop (more vertex v in graph)//Initiate all distances from source to v

1. distanceNode.vertexTo = v

2. distanceNode.distance = weight of edge(source, v) // = infinity if

// edge(source,v) isn't in graph.

3. listOfDistanceNode.Insert(distanceNode)

DistanceNode

vertexFrom <VertexType>

vertexTo <VertexType>

distance <WeightType>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

69

7. continue = TRUE

8. loop (more vertex not in S) and (continue) //Add one vertex to S on

// each step

1. minWeight = infinity //Choose vertex v with smallest distance toS

2. loop (more vertex w not in S)

1. Find the node in listOfDistanceNode with vertexTo is w

2. if (node.distance < minWeight)

1. v = w

2. minWeight = node.distance

DistanceNode

vertexFrom <VertexType>

vertexTo <VertexType>

distance <WeightType>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

70

3. if (minWeight < infinity)

1. Add v to S.

2. tree.InsertVertex(v)

3. tree.InsertEdge(v,w)

4. loop (more vertex w not in S) // Update distances from v to

// all w not in S if they are smaller than the

// previously recorded distances in listOfDistanceNode

1. Find the node in listOfDistanceNode with vertexTo is w

2. if (node.distance > weight of edge(v,w))

1. node.vertexFrom = v

2. node.distance = weight of edge(v,w))

3. Replace this node with its old node in listOfDistance

4. else

1. continue = FALSE

End MinimumSpanningTree

DistanceNode

vertexFrom <VertexType>

vertexTo <VertexType>

distance <WeightType>

End DistanceNodeCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

71CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

72CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

73CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

74CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

75CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

76CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

77CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

78CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

79CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

80CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

81CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

82CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

83CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

84CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

85CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

