Chapter 9 - Graph

A Graph G consists of a set V, whose members are called the
vertices of G, together with a set E of pairs of distinct vertices
from V.

The pairs in E are called the edges of G.

If the pairs are unordered, G is called an undirected graph or a
graph. Otherwise, G is called a directed graph or a digraph.

Two vertices in an undirected graph are called adjacent if there
IS an edge from the first to the second.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Chapter 9 - Graph

A path is a sequence of distinct vertices, each adjacent to the
next.

A cycle is a path containing at least three vertices such that the
last vertex on the path is adjacent to the first.

A graph is called connected if there is a path from any vertex to
any other vertex.

Afree tree is defined as a connected undirected graph with no
cycles.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Chapter 9 - Graph

In a directed graph a path or a cycle means always moving in
the direction indicated by the arrows.

A directed graph is called strongly connected if there is a
directed path from any vertex to any other vertex.

If we suppress the direction of the edges and the resulting
undirected graph is connected, we call the directed graph
weakly connected

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Examples of Graph

Honaolulu

lII H
A |
5 H C H
| AUl
R ~c c
\ | |
\
N ##C f,[}‘x
Moumea 4 __=-® Tahiti - e
[
H
Sydnay 4
Auckland Benzene molecule

Selected South Pacific air routes

g Iﬁ‘_”___",‘“ D
(_j/v -q‘q‘-_-"“‘-*_
'e. F
E"%,_____ﬂ_
(5 .

C E

CuuDuongThanCong.com |'-. https://fb.com/tailieudientucntt

Messape transmission in a networ

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Examples of Graph

e g

Connected Path Dil=sconnected Tree
ial ikl il icdi iel
o
_—
-
F—
Directed cycle Strongly connected Weakly connected

“CpuyDuongThanCong.com " https://fb.com/tailieudientucntt .
=0 i) i)

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency table

0 - 1 vertex Set 012353
\ 0 {1,2} O|FTTF
1 {2,3} 1|1 FFTT
2 @ 2| FFFF
3 {0,1,2} S| TTTF
Y
3 C/ !-—O 2
Directed graph Adjacency set Adjacency table
Digraph
count <integer> // Number of vertices

edge <array of <array of <boolean>>> // Adjacency table
End Digraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Weighted-graph as an adjacency table

MmMmMm|O|lO|m| =

Weighted-graph

A B C D E F
A 0 623 | 345 | O 0 0
B | 623 0 200 |548 | O 0
C | 345 | 200 0 |360|467 | O
D 0 548 | 360 | 0 | 245 | 320
E 0 0 467 | 245 | 0 | 555
F 0 0 0 [320 555 0O

vertex vector

adjacency table

WeightedGraph

count <integer>

edge<array of<array of<WeightType>>>
End WeightedGraph

CuuDuongThanCong.com

// Number of vertices
// Adjacency table

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Weighted-graph as an adjacency list

A F-[B[623[F—[C[345

T8 [B-[A [623 B[C [200[F—[D 548 |}

\.' C |3 A[345[F—[B200[F—=[D [360[F—[E [467]}
fD >[B [548[F3—[c [360F—[E [245[F—[F 320}
¢E s c[467[4—[D 2453~ F 555

iF [D [320[F—[E 555
S BNy e

vector list

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list

0) o |1f2]|-|-|-]-]|-
1 2131 -1-|-1-1|-
2 B N I R R B
d) 3 |lof1]2f|-|-|-]|-
Directed graph s [(-1 -[-[-[-
6 B R R B R B
. | - - T - - T - J_ .
vertex 0 | 9 a\/edy edge (0.2) ~ contiguous structure
= (/! - T L - T - J_
vertex 1 | ¢ | edge (1, 2) edge (1,3) ~
- ﬂ\ 1| e >~ 2 -{ 3 1
vertex 2 | # JT_ _\ e = T“
L~ N 3| eH——|0] f — 2 1
/ 4 -
- - | - s] - | » [J__ 5
vertex3 | 9 edge (3,0) edge(3,1) edge(3.2) °
L

lirked=-stracture mxeckstracture

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (not using List ADT)

3 !-—62

VertexNode

- first_edge <pointer to EdgeNode>

next_vertex<pointer to VertexNode>
End VertexNode

EdgeNode
vertex_to <pointer to VertexNode>
next_edge <pointer to EdgeNode>
End EdgeNode

DiGraph
first_vertex <pointer to VertexNode>
End DiGraph

L

Directed graph -~
first vertex goom—m—====""""" 4 cmmm===mTTTTTT
vertex0 | ¢ edge (0, 1) edge (0, 2)
L L J_
vertex 1 | # edge (1,3) ~
vertex2 | ~
= - - =
vertex 3 ? edge (3, 0} edge (3, 1) edge (3, 2)
L

cudpiykeekstructure

https://fb.com/tailieudientucntt 10

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

__Digraph as an adjacency list (using List ADT)

|Grathode

vertex <VertexType> // (key field)
™12 __}_ adjVertex<LinkedList of< VertexType >>

1] d‘ indegree <int> N are hidden
——
; e 2 ~3 }_ outdegree <int> — fromthe
-T2 ' < > ' /
| 2 [e d.l isMarked <boolean> _ image below
i - _}_ IEnd GraphNode
!,——\ i
| 3 ‘h\efd_‘_» 0O +—1 > 2 _{
! GraphNode
ADT List is linked list: 7
{ vertex adjVertex
DIGra_'ph _ _ \ 2 '\headl‘ > |
digraph <LinkedList<of<GraphNode>> | * N2 7
En d D| GraphngThanCOng.com https://fggdﬁﬁaﬂiiufe.ntic:tt ______ ,//11

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (using List ADT)

e GraphNode

L LGT i vertex <VertexType> // (key field)

U1 ; 1 B : adjVertex<LinkedList of< VertexType >>
. - . — " - * J_

= | indegree <int>

outdegree <int>

oy M e L R — D

isMarked <boolean>
End GraphNode

mixed list

ADT List is contiguous list:

DiGraph
digraph <ContiguousList<of<GraphNode>>
End DiGraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

12

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph as an adjacency list (using List ADT)

l21-1-1-1 1= GraphNode

213 -1-]-|-|- vertex <VertexType> // (key field)

indegree <int>

outdegree <int>
isMarked <boolean>
End GraphNode

D O B W N = O
o
—
M
|
|
|
|

|- -|-|-|-]- adjVertex<ContiguousList of< VertexType >>

contiguous list

ADT List is contiguous list:

DiGraph
digraph <ContiguousList<of<GraphNode>>
End DiGraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

13

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

GraphNode

<void> GraphNode() // constructor of GraphNode
1. indegree=0
2. outdegree=0
3. adjVertex.clear() // By default, constructor of adjVertex
made it empty.
End GraphNode

GraphNode

vertex adjVertex
" 3 ‘=

"head E\— !

\ —-l !

\\ . II’
\ 4

\\ ,/

S -
https./fb.com/talT] SO eRERIUCAL m e o o o == 14

4
]
I
I
1
1
\
\
\

CuuDuongThanCong.com

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Operations for Digraph

CuubDuongThanCong.com

> Insert Vertex
» Delete Vertex
» Insert edge
» Delete edge

> Traverse

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Digraph

Digraph
private:
digraph <List of <GraphNode> > // using of List ADT .

<void> Remove_ EdgesToVertex(val VertexTo <VertexType>)

public:
<ErrorCode> InsertVertex (val newVertex <VertexType>)
<ErrorCode> DeleteVertex (val Vertex <VertexType>)
<ErrorCode> InsertEdge (val VertexFrom <VertexType>,
val VertexTo <VertexType>)
<ErrorCode> DeleteEdge (val VertexFrom <VertexType>,
val VertexTo <VertexType>)

// Other methods for Graph Traversal.
End Digraph

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods of List ADT

Methods of Digraph will use these methods of List ADT:
<ErrorCode> Insert (val Dataln <DataType>) // (success, overflow)
<ErrorCode> Search (ref DataOut <DataType>) // (found, notFound)
<ErrorCode> Remove (ref DataOut <DataType>) // (success , notFound)
<ErrorCode> Retrieve (ref DataOut <DataType>) // (success , notFound)
<ErrorCode> Retrieve (ref DataOut <DataType>, position <int>)

// (success , range_error)
<ErrorCode> Replace (val Dataln <DataType>, position <int>)

// (success, range_error)
<ErrorCode> Replace (val Dataln <DataType>, val DataOut <DataType>)

// (success, notFound)
<boolean> isFull()
<boolean> isEmpty()
<integer> Size()

gThanCong.com https://fb.com/tailieudientucntt

17

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert New Vertex into Digraph

<ErrorCode> InsertVertex (val newVertex <VertexType>)
Inserts new vertex into digraph.

Pre newVertex is a vertex needs to be inserted.

Post if the vertex is not in digraph, it has been inserted and no edge

is involved with this vertex.

Return success, overflow, or duplicate error

CuuDuongThanCong.com https://fb.com/tailieudientucntt

18

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert New Vertex into Digraph

<ErrorCode> InsertVertex (val newVertex <VertexType>)
1. DataOut.vertex = new\Vertex
2. if(digraph.Search(DataOut) = success)
1. return duplicate error
3. else
1. return digraph.Insert(DataOut) // success or overflow
End InsertVertex

GraphNode
. Siiksragiiisral vertex <VertexType> // (key field)
¢ gl -3 L adjVertex<List of< VertexType >>
: L (T . indegree <int>

outdegree <int>

isMarked <boolean>
CuuDuongThanCong.com E n d G r aﬁhtNWd@ntucntt

[y} [y | = Ll P —_ Lo

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Vertex from Digraph

<ErrorCode> DeleteVertex (val Vertex <VertexType>)

Deletes an existing vertex.

Pre Vertex is the vertex needs to be removed .

Post if Vertex 's indegree <>0, the edges ending at this vertex have
been removed. Finally, this vertex has been removed.

Return success, or notFound

Uses Function Remove_EdgeToVertex.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

20

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Vertex from Digraph

<ErrorCode> DeleteVertex (val Vertex <VertexType>)
1. DataOut.vertex = Vertex
2. if (digraph.Retrieve(DataOut) = success)
1. if (DataOut.indegree>0)
1. digraph.Remove_EdgeToVertex(Vertex)
2. digraph.Remove(DataOut)
3. return success

3. else
1. return notFound GraphNode
End DeleteVertex) vertex <VertexType> // (key field)
HARES { 2| » 3 .
0| > LW L adjVertex<List of< VertexType >>
1 * - 2 » - 3 L J_ . 0
ar L indegree <int>
JT_ 0l e 11 # = 7| e

3[e - g 1 outdegree <int>
4
. isMarked <boolean>
g CuuDuongThanCong.com End Gramd@ntucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Auxiliary function Remove all Edges to a Vertex

<void> Remove EdgesToVertex(val VertexTo <VertexType>)
Removes all edges from any vertex to VertexTo if exist.
1. position=0
2. loop (digraph.Retrieve(DataFrom, position) = success)
1. if (DataFrom.outdegree>0)

1. if (DataFrom.adjVertex.Remove(VertexTo) = success)
1. DataFrom.outdegree = DataFrom.outdegree -1
2. digraph.Replace(DataFrom, position)
2. position = position + 1

GraphNode
— F vertex <VertexType> // (key field)
y = adjVertex<List of< VertexType >>

=12 e - 3|

4 . indegree <int>

= |0 1] # - 2| = .
s outdegree <int>

End Remove_EdgesToVertex

[
e

I

isMarked <boolean>
CuuDuongThanCong.com E n d G r aﬁHN@id@ntucntt

[) [y RS Ll] =i L)

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insert new Edge into Digraph

<ErrorCode> InsertEdge (val VertexFrom<VertexType>,
val VertexTo <VertexType>)

Inserts new edge into digraph.

Post if VertexFrom and VertexTo are in the digraph, and the edge
from VertexFrom to VertexTo is not in the digraph, it has been

inserted.
Return success, overflow, notFound VertexFrom , notFound VertexTo

or duplicate error

CuuDuongThanCong.com https://fb.com/tailieudientucntt

23

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1.
2.
3.

£,

if (digraph.Retrieve(DataFrom) = success)

DataFrom.vertex = VertexFrom

DataTo.vertex = VertexTo

h
T
|||—

I|=
y i

L] L] L] »
] ¥ 1
|]
L |
Ll

M ke L R — D

vertex <VertexType> // (key field)
adjVertex<List of< VertexType >>
indegree <int>

outdegree <int>

isMarked <boolean>

1. if (digraph.Retrieve(DataTo) = success)
1. newData = DataFrom 6
2. if (newData.adjVertex.Search(VertexTo) = found)
1. return duplicate error
3. if (newData.adjVertex.Insert(VertexTo) = success)
1. newData.outdegree = newData.outdegree +1
2. digraph.Replace(newData, DataFrom)
3. return success GraphNode
4. else
1. return overflow
2. else
1. return notFound VertexTo
else
1. return notFound VertexFrom

CuuDuongThanCong.com

Fnd InsertEdeoce

End GraphNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Delete Edge from Digraph

<ErrorCode> DeleteEdge (val VertexFrom <VertexType>,

val VertexTo <VertexType>)
Deletes an existing edge in the digraph.

Post if VertexFrom and VertexTo are in the digraph, and the edge
from VertexFrom to VertexTo is in the digraph, it has been
removed

Return success, notFound VertexFrom , notFound VertexTo or
notFound Edge

CuuDuongThanCong.com https://fb.com/tailieudientucntt

25

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. DataFrom.vertex = VertexFrom
2. DataTo.vertex = VertexTo

3. if (digraph.Retrieve(DataFrom) = success)
1. if (digraph.Retrieve(DataTo) = success)

1. newData = DataFrom

h
T
|||—

I|=
y i

L] L] L] »
] ¥ 1
|]
L |
Ll

oM e L R — D

2. if (newData.adjVertex.Remove(VertexTo) = success)
1. newData.outdegree = newData.outdegree -1
2. digraph.Replace(newData, DataFrom)

3. return success
3. else
1. return notFound Edge

2. else
1. return notFound_VertexTo

4. else
1. return notFound VertexFrom
End DeleteEdge

CuuDuongThanCong.com

GraphNode
vertex <VertexType> // (key field)
adjVertex<List of< VertexType >>
indegree <int>
outdegree <int>
isMarked <boolean>
End GraphNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph Traversal

» Depth-first traversal: analogous to preorder traversal of an

oredered tree.

» Breadth-first traversal: analogous to level-by-level traversal

of an ordered tree.

St 0 1 2 Start O 1 4
e T Ef e O O
(e ddu duchg e) Jﬁﬁ
F—o—0 F—o0—0

5= 3
I l.thlll first trave 5] hltp'/}fb“n!/tll'eu(!e'J"*' fraversal 57

UUUUU

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

//@‘“ AXHPEYMIG
.l rd
X) v

\&) >
P 'l
- E E M M]
A ¥ G G G G G G
stack

CuuDuongThanCong.com https://fb.com/tailieudientucntt

28

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Breadth-first traversal

AXG

HPEMY]

HP

PE

Y]

CuuDuongThanCong.com

quele

https://fb.com/tailieudientucntt

29

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> DepthFirst

(ref <void> Operation (ref Data <DataType>))

Traverses the digraph in depth-first order.

Post The function Operation has been performed at each vertex of

the digraph in depth-first order.

Uses Auxiliary function recursiveTraverse to produce the recursive

depth-first order.

CuuDuongThanCong.com

https:/fb.com/tailieudientucntt 30

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> DepthFirst
(ref <void> Operation (ref Data <DataType>))

1. loop (more vertex v in Digraph)
1. unmark(v)
2. loop (more vertex v in Digraph)

1. if (vis unmarked)
1. recursiveTraverse (v, Operation)
End DepthFirst

CuuDuongThanCong.com https://fb.com/tailieudientucntt 31

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> recursiveTraverse (ref v <VertexType>,

ref <void> Operation (ref Data <DataType>))
Traverses the digraph in depth-first order.

Pre v is a vertex of the digraph.

Post The depth-first traversal, using function Operation, has been
completed for v and for all vertices that can be reached from v.

Uses function recursiveTraverse recursively.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 32

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Depth-first traversal

<void> recursiveTraverse(ref v <VertexType>,

ref <void> Operation (ref Data <DataType>))
1. mark(v)
2. Operation(v)
3. loop (more vertex w adjacent to v)

1. if (vertex wis unmarked)
1. recursiveTraverse (w, Operation)
End Traverse

CuuDuongThanCong.com https://fb.com/tailieudientucntt 33

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Breadth-first traversal

<void> BreadthFirst

(ref <void> Operation (ref Data <DataType>))

Traverses the digraph in breadth-first order.
Post The function Operation has been performed at each vertex of

the digraph in breadth-first order.
Uses Queue ADT.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. queueObj<Queue>

2. loop (more vertex v in digraph)
1. unmark(v)

3. loop (more vertex v in Digraph)

1. if (vertex vis unmarked)
1. queueObj.EnQueue(v)
2. loop (NOT queueObj .isEmpty())
1. queueObj.QueueFront(w)
2. queueObj.DeQueue()
3. if (vertex wis unmarked)
1. mark(w)
2. Operation(w)
3. loop (more vertex x adjacent to w)
1. queueObj.EnQueue(x)

E n d B re a d t tlJEJj£1$;;:ong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

A topological order for G, a directed graph with no cycles, is a
sequential listing of all the vertices in G such that, for all
verticesv, w € G, if there is an edge from v to w, then v
precedes w in the sequential listing.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 36

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& 3

CuuDuongThanCong.com

Topological Order

https://fb.com/tailieudientucntt

Depth-first ordering

37

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Topological Order

: - : . https://fb.com/tailieudientucntt
Breadth-first ordering P comalieudentue

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Applications of Topological Order

Topological order is used for:

» Courses available at a university,
* Vertices: course.
* Edges: (v,w), vis a prerequisite for w.
* Atopological order is a listing of all the courses such that all
perequisites for a course appear before it does.

» A glossary of technical terms: no term is used in a definition before it
is itself defined.

» The topics in the textbook.

CuuDuongThanCong.com https://fb.com/tailieudientucntt 39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> DepthTopoSort (ref TopologicalOrder <List>)

Traverses the digraph in depth-first order and made a list of topological order

of digraph's vertices.

Pre Acyclic digraph.

Post The vertices of the digraph are arranged into the list
TopologicalOrder with a depth-first traversal of those vertices that
do not belong to a cycle.

Uses List ADT and function recursiveDepthTopoSort to perform depth-first
traversal.

Idea:

e Starts by finding a vertex that has no successors and place it last in the list.
* Repeatedly add vertices to the beginning of the list.

* By recursion, places all the successors of a vertex into the topological order.
* Then, place‘thevertex itself in a position before any-ofits-successors.

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

& 3

CuuDuongThanCong.com

Topological Order

https://fb.com/tailieudientucntt

Depth-first ordering

41

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> DepthTopoSort (ref TopologicalOrder <List>)

1. loop (more vertex v in digraph)
1. unmark(v)
2. TopologicalOrder.clear()
3. loop (more vertex v in Digraph)
1. if (vertex vis unmarked)
1. recursiveDepthTopoSort(v, TopologicalOrder)
End DepthTopoSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

42

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> recursiveDepthTopoSort (val v <VertexType>,
ref TopologicalOrder <List>)

Pre Vertex v in digraph does not belong to the partially completed list
TopologicalOrder.

Post All the successors of v and finally v itself are added to
TopologicalOrder with a depth-first order traversal.

Uses List ADT and the function recursiveDepthTopoSort.

Idea:

* Performs the recursion, based on the outline for the general function
traverse.

* First, places all the successors of v into their positions in the topological
order.

* Then, placeswinto-the order. s comfaleudientucn

43

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> recursiveDepthTopoSort (val v <VertexType>,

ref TopologicalOrder <List>)

1. mark(v)
2. loop (more vertex w adjacent to v)
1. if (vertex wis unmarked)
1. recursiveDepthTopoSort(w, TopologicalOrder)
3. TopologicalOrder.Insert(0, v)
End recursiveDepthTopoSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

44

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Topological Order

<void> BreadthTopoSort (ref TopologicalOrder <List>)

Traverses the digraph in depth-first order and made a list of topological order

of digraph's vertices.

Post The vertices of the digraph are arranged into the list TopologicalOrder
with a breadth-first traversal of those vertices that do not belong to a
cycle.

Uses Listand Queue ADT.

Idea:

e Starts by finding the vertices that are not successors of any other vertex.

* Places these vertices into a queue of vertices to be visited.

* As each vertex is visited, it is removed from the queue and placed in the next

available position in the topological order (starting at the beginning).

* Reduces the indegree of its successors by 1.

* The vertex having the zero value indegree is ready to processed and is places

into the queue

CuuDuong!I'hanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Topological Order

: - : . https://fb.com/tailieudientucntt
Breadth-first ordering P comalieudentue

46

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<void> BreadthTopoSort (ref TopologicalOrder <List>)
1. TopologicalOrder.clear()
2. queueObj<Queue>
3. loop (more vertex v in digraph)

1. if (indegree of v=0)

1. queueObj.EnQueue(v)

4. loop (NOT queueObj.isEmpty())
queueObj.QueueFront(v)
queueObj.DeQueue()
TopologicalOrder.Insert(TopologicalOrder.size(), v)

el

loop (more vertex w adjacent to v)
1. decrease the indegree of w by 1
2. if (indegree of w =0)

1. queueObj.EnQueue(w)
End BreadthTopoSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

47

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shortest Paths

* Given a directed graph in which each edge has a
nonnegative weight.

* Find a path of least total weight from a given vertex,

called the source, to every other vertex in the graph.

* A greedy algorithm of Shortest Paths:
Dijkstra's algorithm (1959).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

48

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm
" et tree is the subgraph contains the shotest paths from the
source vertex to all other vertices.

= At first, add the source vertex to the tree.

" Loop until all vertices are in the tree:

Hypothetical
shortest path

Colored

* Consider the adjacent vertices of the path

vertices already in the tree.

* Examine all the paths from those adjacent

vertices to the source vertex.

» Select the shortest path and insert the

corresponding adjacent vertex into the tree.

CuuDuongThanCong.com https://fb.com/tai]ieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm in detail

e S: Set of vertices whose closest distances to the source are known.
* Add one vertex to S at each stage.

* For each vertex v, maintain the distance from the source to v, along a
path all of whose vertices are in S, except possibly the last one.

* To determine what vertex to add to S at each

step, apply the greedy criterion of choosing Hypothetical

shortest path

Colored
the vertex v with the smallest distance. path

e Addv toS.

» Update distance from the source for all w
notin S, if the path through v and then
directly to w is shorter than the previously
recorded distantce to w. psbenG

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

Source

CuuDuongThanCong.com https://fb.com/tailieudientucntt

51

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

ooooooooooooooooo

52

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

CuuDuongThanCong.com https://fb.com/tailieudientucntt

53

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

S5S={0,4, 2}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

54

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

S={0,4,2 1}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

55

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

S={0,4,2,1,3}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

56

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Dijkstra's algorithm

<void> ShortestPath (val source <VertexType>,
ref listOfShortestPath <List of <DistanceNode>>)

Finds the shortest paths from source to all other vertices in digraph.

Post Each node in listOfShortestPath gives the minimal path weight

from vertex source to vertex destination in distance field.

CuuDuongThanCong.com

DistanceNode
destination <VertexType>
distance <int>

End DistaneeNede

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

listOfShortestPath.clear()

Add source to set S

loop (more vertex v in digraph) // Initiate all distances from source to v
1. distanceNode.destination =v
2. distanceNode.distance = weight of edge(source, v) // = infinity if

// edge(source,v) isn't in digraph.

3. listOfShortestPath.Insert(distanceNode)

loop (more vertex not in S) // Add one vertex v to S on each step.

1. minWeight = infinity // Choose vertex v with smallest distance.

2. loop (more vertex w notin S)
1. Find the distance x from source to w in listOfShortestPath

2. if (x <minWeight) DistanceNode
1. v=w destination <VertexType>
2. minWeight = x distance <int>
3. AddVEESe End DistanceNede

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

4. loop (more vertex w not in S) // Update distances from source

//toallwnotin$S
1. Find the distance x from source to w in listOfShortestPath
2. if ((minWeight + weight of edge fromvtow) < x)
1. Update distance from source to w in listOfShortestPath
to (minWeight + weight of edge from v to w)

End ShortestPath

DistanceNode
destination <VertexType>
distance <int>

CuuDuongThanCong.com End DistaneeNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Another example of Shortest Paths

Select the adjacent vertex having minimum path to the source vertex
uuuuuuuuuuuuuu //fb.comytailieudientucntt 60

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Minimum spanning tree

DEFINITION:

Spanning tree: tree that contains all of the vertices in a

connected graph.

Minimum spanning tree: spanning tree such that the sum of

the weights of its edges is minimal.

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

61

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Spanning Trees

Weight sum of tree = 15 Weight sum of tree = 12
(a) (b)

Two spanning trees in a network

CuuDuongThanCong.com https://fb.com/tailieudientucntt

62

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

A greedy Algorithm: Minimum Spanning Tree

» Shortest path algorithm in a connected graph found an its
spanning tree.

» What is the algorithm finding the minimum spanning tree?

» A small change to shortest path algorithm can find the
minimum spanning tree, that is Prim's algorithm since
1957.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm
" et tree is the minimum spanning tree.

= At first, add one vertex to the tree.

" Loop until all vertices are in the tree:

* Consider the adjacent vertices of the vertices already in the tree.

* Examine all the edges from each vertices already in the tree to those
adjacent vertices.

* Select the smallest edge and insert the corresponding adjacent vertex

into the tree.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

64

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm in detail

* Let S is the set of vertices already in the minimum spanning tree.
At first, add one vertex to S.

* For each vertex v not in S, maintain the distance from a vertex x to v,
where x is a vertex in S and the edge(x,v) is the smallest in all edges
from another vertices in S to v (this edge(x,v) is called the distance
from S to v). As usual, all edges not being in graph have infinity value.

* To determine what vertex to add to S at each step, apply the greedy
criterion of choosing the vertex v with the smallest distance from S.

e Addv to S.

* Update distances from S to all vertices v not in S if they are smaller
than the previously recorded distances. st comtaliadnnt 65

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm

Select the adjacent vertex having minimum edge to the vertices
al ready |ﬁ““th€e6”{0|f@@e https://fb.com/tailieudientucntt 66

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Prim's algorithm

<void> MinimumSpanningTree (val source <VertexType>,
ref tree <Graph>)

Finds the minimum spanning tree of a connected component of the
original graph that contains vertex source.

Post treeis the minimum spanning tree of a connected component
of the original graph that contains vertex source.

Uses local variables: ——
DistanceNode

* SetsS vertexFrom <VertexType>

* listOfDistanceNode vertexTo <VertexType>

e continue <boolean> distance <WeightType>
CuDuengThanCongcom End DistaneeNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

S R

tree.clear()
tree.lnsertVertex(source)

Add source to set S
listOfDistanceNode.clear()
distanceNode.vertexFrom = source

loop (more vertex v in graph)//Initiate all distances from source to v

1. distanceNode.vertexTo =V

2. distanceNode.distance = weight of edge(source, v) // = infinity if

// edge(source,v) isn't in graph.

3. listOfDistanceNode.Insert(distanceNode)

CuuDuongThanCong.com

' DistanceNode
vertexFrom <VertexType>
vertexTo <VertexType>
distance <WeightType>
End DistaneeNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

/. continue = TRUE
8. loop (more vertex not in S) and (continue) //Add one vertex to S on
// each step
1. minWeight = infinity //Choose vertex v with smallest distance toS

2. loop (more vertex w not in S)
1. Find the node in listOfDistanceNode with vertexTo is w
2. if (node.distance < minWeight)
1. v=w
2. minWeight = node.distance

' DistanceNode
vertexFrom <VertexType>
vertexTo <VertexType>
distance <WeightType>
CuDuongTanCorg com End DistaneeNode

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3. if (minWeight < infinity)
Add v to S.
tree.InsertVertex(v)
tree.lnsertEdge(v,w)
loop (more vertex w not in S) // Update distances from v to

// all w not in S if they are smaller than the

// previously recorded distances in listOfDistanceNode

1. Find the node in listOfDistanceNode with vertexTo is w
2. if (node.distance > weight of edge(v,w))

1. node.vertexFrom=v

2. node.distance = weight of edge(v,w))

3. Replace this node with its old node in listOfDistance

Y e [

4. else ' DistanceNode

1. continue = FALSE vertexFrom <VertexType>
vertexTo <VertexType>
distance <WeightType>
CusbuongThanCong.com End DistaneeNode

End MinimumSpanningTree

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

e A network of water pipelines from one source to
one destination.

e Water is pumped thru many pipes with many
stations in between.

e The amount of water that can be pumped may
differ from one pipeline to another.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

71

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

e The flow thru a pipeline cannot be greater than
its capacity.

e The total flow coming to a station is the same as
the total flow coming from it.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

72

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

e The flow thru a pipeline cannot be greater than
its capacity.

e The total flow coming to a station is the same as
the total flow coming from it.

The problem is to maximize the total flow coming
to the destination.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

73

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

74

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Maximum flows

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

75

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

e Applicants: D q r S t

e Suitable jobs: abc bd ae e cde

e No applicant is accepted for two jobs, and no job
is assigned to two applicants.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

76

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

e Applicants: D qd r S t

e Suitable jobs: abc bd ae e cde

e No applicant is accepted for two jobs, and no job
is assigned to two applicants.

The problem is to find a worker for each job.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

77

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

o Applicants: D d
e Suitable jobs: abc bd

ooooooooooooooooo

https://fb.com/tailieudientucntt

78

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

e Applicants: o) q
e Suitable jobs: abc bd

ooooooooooooooooo

https://fb.com/tailieudientucntt

79

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Matching

e Maximum matching: as many pairs of worker-job
as possible.

e Perfect matching (marriage problem): no worker
or job left unmatched.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

80

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

e Given a map of adjacent regions.

e Find the minimum number of colors to fill the
regions so that no adjacent regions have the
same color.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

81

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Graph coloring

https://fb.com/tailieudientucntt

82

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Graph coloring

https://fb.com/tailieudientucntt

83

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

The problem is to find
the minimum number
of sets of non-adjacent
vertices.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

84

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Graph coloring

The problem is to find
the minimum number
of sets of non-adjacent
vertices.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

85

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

