
Chapter 10 - Sorting

1CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

2CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

3CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

4CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

5

Divice-and-
Conquer

•Quick
•Merge

•Bubble
•Quick

•Selection
•Heap

•Insertion
•Shell

•Natural Merge
•Balanced Merge
•Polyphase Merge

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

6CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

7CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

8CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

9CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

10CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

11CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

12CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort
Algorithm InsertionSort ()

Sorts the contiguous list using straight insertion sort

Post sorted list.

1. if (count > 1)

1. current = 1

2. loop (current < count)

1. temp = datacurrent

2. walker = current-1

3. loop (walker >=0) AND (temp.key < datawalker.key)

1. datawalker+1 = datawalker

2. walker = walker -1

4. datawalker+1 = temp

5. current = current + 1

End InsertionSort 13CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

14

• Also is called diminishing-increment sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

15CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

16CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of Shell Sort

17CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of Shell Sort

18CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Choosing incremental values

• From more of the comparisons, it is better when we can

receive more new information.

• Incremental values should not be multiples of each other,

other wise, the same keys compared on one pass would be

compared again at the next.

• The final incremental value must be 1.

19CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Choosing incremental values

Incremental values may be:

1, 4, 13, 40, 121, ...

kt = 1

ki-1 = 3 * ki + 1

t = |log3(n)| -1

or :

1, 3, 7, 15, 31,...

kt = 1

ki-1 = 2 * ki + 1

t = |log2(n)| -1

20CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort
Algorithm ShellSort ()

Sorts the contiguous list using Shell sort

Post sorted list.

1. k = first_incremental_value

2. loop (k >= 1)

1. segment = 1

2. loop (segment <= k)

1. SortSegment(segment)

2. segment = segment + 1

3. k = next_incremental_value

End ShellSort

21CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort
Algorithm SortSegment(val segment <int>, val k <int>)

Sorts the segment beginning at segment using insertion sort, step

between elements in the segment is k.

Post sorted segment.

1. current = segment + k

2. loop (current < count)

1. temp = data[current]

2. walker = current - k

3. loop (walker >=0) AND (temp.key < data[walker].key)

1. data[walker + k] = data[walker]

2. walker = walker – k

4. data[walker + k] = temp

5. current = current + k

End SortSegment 22CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insertion Sort Efficiency

23CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort

24CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

25CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

26CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

27

Straight Selection Sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

28

Straight Selection Sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

29

Straight Selection Sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

30

Straight Selection Sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

31

Straight Selection Sort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort
Algorithm SelectionSort ()

Sorts the contiguous list using straight selection sort

Post sorted list.

1. current = 0

2. loop (current < count - 1)

1. smallest = current

2. walker = current + 1

3. loop (walker < count)

1. if (data [walker].key < data [smallest].key)

1. smallest = walker

2. walker = walker+1

4. swap(current, smallest)

5. current = current + 1

End SelectionSort 32CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Sort

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Build Heap (first stage)

34

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

56 78

56 78

0 1 2 3 4 5

56 78453223

0 1 2 3 4 5

56 784532

0 1 2 3 4 5

56 7845

0 1 2 3 4 5

56 7845

Heap Sort (second stage)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Sort

36

Algorithm HeapSort ()

Sorts the contiguous list using heap sort.

Post sorted list.

Uses Recursive function ReheapDown.

1. position = count / 2 -1 // Build Heap

2. loop (position >=0)

1. ReheapDown(position, count-1)

2. position = position - 1

3. last = count – 1 // second stage of heapsort

4. loop (last > 0)

1. swap(0, last)

2. last = last - 1

3. ReheapDown(0, last - 1)

End HeapSortCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort Efficiency

37CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Exchange Sort

38CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort

39CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort

40CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort

41

23

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort
Algorithm BubbleSort ()

Sorts the contiguous list using straight bubble sort

Post sorted list.

1. current = 0

2. flag = FALSE

3. loop (current < count) AND (flag = FALSE)

1. walker = count - 1

2. flag = TRUE

3. loop (walker > current)

1. if (data [walker].key < data [walker-1].key)

1. flag = FALSE

2. swap(walker, walker – 1)

2. walker = walker - 1

4. current = current + 1

End BubbleSort 42CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Exchange Sort efficiency

43CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Divide-and-conquer sorting

Algorithm DivideAndConquer()

1. if (the list has length greater than 1)

1. partition the list into lowlist, highlist

2. lowlist. DivideAndConquer()

3. highlist. DivideAndConquer()

4. combine(lowlist, highlist)

End DivideAndConquer

44CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Divide-and-conquer sorting

45

Partition Combine

Merge Sort easily hard

Quick Sort hard easily

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort

46

Algorithm QuickSort()
Sorts the contiguous list using quick sort.

Post Sorted list.

Uses function recursiveQuickSort.

1. recursiveQuickSort(0, count -1)

End QuickSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort

47

Algorithm recursiveQuickSort(val low <int>, val high <int>)
Sorts the contiguous list using quick sort.

Pre low and high are valid positions in contiguous list.

Post Sorted list.

Uses functions recursiveQuickSort, Partition.

1. if (low < high) // Otherwise, no sorting is needed.

1. pivot_position = Partition(low, high)

2. recursiveQuickSort(low, pivot_position -1)

3. recursiveQuickSort(pivot_position +1, high)

End recursiveQuickSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

• Given a pivot value, the partition rearranges the entries in the list as

below:

48CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

Algorithm:

• Temporarily leave the pivot value at the first position.

• use a for loop running on a variable i, last_small is the position all

entries at or before it have keys less than pivot.

• if the entry at i >= pivot, i can be increased.

• Otherwise, last_small is increased and two entries at position

last_small and i are swapped:

49CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

• When the loop terminates:

• At last, swap the pivot from position low to position last_small.
50CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition in Quick Sort

51

<integer> Partition(val low <integer>, val high <integer>)
Partitions the entries between indices low and high to two sublists.

Pre low and high are valid positions in contiguous list, with low<=high.

Post The center entry in the range between indices low and high of the list

has been chosen as a pivot.

All entries of the list between indices low and high, inclusive, have

been rearranged so that those with keys less than the pivot come

before the pivot , and the remaining entries come after the pivot. The

final position of the pivot is returned.

Uses Function swap(val i <integer>, val j <integer>) interchanges entries in

positions i and j.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

52

<integer> Partition(val low <integer>, val high <integer>)
// i is used to scan through the list.

// last_small is the position of the last key less than pivot

1. swap (low, (low+high)/2) // First entry is now pivot.

2. pivot = entrylow

3. last_small = low

4. i = low + 1

5. loop (i <= high)

//entryj.key < pivot, when low < j <= last_small

// entryj.key >= pivot, when last_small < j < i

1. if (datai < pivot)

1. last_small = last_small + 1

2. swap(last_small, i) // Move large entry to right and small to left.

6. swap(low, last_small) // Put the pivot into its proper position.

7. return last_small

End Partition
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort Efficiency

53CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

54CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm MergeSort() // for linked list

Sorts the linked list using merge sort

Post sorted list.

Uses recursiveMergeSort.

1. recursiveMergeSort(head)

End MergeSort

55CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm recursiveMergeSort(ref sublist <pointer>)

Sorts the linked list using recursive merge sort.

Post The nodes referenced by sublist have been reaaranged so that their keys

are sorted into nondecreasing order.

The pointer parameter sublist is reset to point at the node containing

the smallest key.

Uses functions recursiveMergeSort, Divide, Merge.

1. if (sublist is not NULL) AND (sublist->link is not NULL)

1. Divide(sublist, second_list)

2. recursiveMergeSort(sublist)

3. recursiveMergeSort(secondlist)

4. Merge(sublist, secondlist)

End recursiveMergeSort 56CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm Divide(val sublist <pointer>, ref secondlist <pointer>)

Divides the list into two halves.

Pre sublist is not NULL.

Post The list of nodes referenced by sublist has been reduced to its first half, and

secondlist points to the second half of the sublist. If the sublist has an odd

number of entries, then its first half will be one entry larger than its second.

1. midpoint = sublist

2. position = sublist->link // Traverse the entire list

3. loop (position is not NULL) // Move position twice for midpoint's one move.

1. position = position->link

2. if (position is not NULL)

1. midpoint = midpoint->link

2. position = position->link

4. secondlist = midpoint->link

5. midpoint->link = NULL

End Divide
57CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge two sublists

58CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge two sublists

59

Algorithm Merge (ref first <pointer>, ref second <pointer>)

Merges two sorted lists to a sorted list.

Pre first and second point to ordered lists of nodes.

Post first points to an ordered list containing all nodes that were referenced by first

and second. Second became NULL.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

60

Algorithm Merge (ref first <pointer>, ref second <pointer>)

// lastSorted is a pointer points to the last node of sorted list.

// combined is a dummy first node, points to merged list.

1. lastSorted = address of combined

2. loop (first is not NULL) AND (second is not NULL) // Attach node with smaller key

1. if (first->data.key <= second->data.key)

1. lastSorted->link = first

2. lastSorted = first

3. first = first->link // Advance to the next unmerged node

2. else

1. lastSorted->link = second

2. lastSorted = second

3. second = second->link

3. if (first is NULL)

1. lastSorted->link = second

2. second = NULL

4. else

1. lastSorted->link = first

5. first = combined.link

End Merge
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

