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Sorting
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Divice-and-
Conquer

•Quick
•Merge

•Bubble
•Quick

•Selection
•Heap

•Insertion
•Shell

•Natural Merge
•Balanced Merge
•Polyphase Merge
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Straight Insertion Sort
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Straight Insertion Sort
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Straight Insertion Sort
Algorithm InsertionSort ()

Sorts the contiguous list using straight insertion sort

Post sorted list.

1. if (count > 1)

1. current = 1

2. loop (current < count )

1. temp = datacurrent

2. walker = current-1

3. loop (walker >=0) AND (temp.key < datawalker.key)

1. datawalker+1 = datawalker

2. walker = walker -1

4. datawalker+1 = temp

5. current = current + 1

End InsertionSort 13CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Shell Sort
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• Also is called diminishing-increment sort
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Shell Sort
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Shell Sort
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Example of Shell Sort
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Example of Shell Sort
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Choosing incremental values

• From more of the comparisons, it is better when we can 

receive  more new information.

• Incremental values should not be multiples of each other, 

other wise, the same keys compared on one pass would be 

compared again at the next.

• The final incremental value must be 1.
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Choosing incremental values

Incremental values may be: 

1, 4, 13, 40, 121, ...

kt = 1

ki-1 = 3 * ki + 1

t = |log3(n)| -1

or : 

1, 3, 7, 15, 31,...

kt = 1

ki-1 = 2 * ki + 1

t = |log2(n)| -1
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Shell Sort
Algorithm ShellSort ()

Sorts the contiguous list using Shell sort

Post sorted list.

1. k = first_incremental_value

2. loop (k >= 1)

1. segment = 1

2. loop (segment <= k )

1. SortSegment(segment)

2. segment = segment + 1

3. k = next_incremental_value

End ShellSort
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Shell Sort
Algorithm SortSegment(val segment <int>, val k <int>)

Sorts the segment beginning at segment using insertion sort, step 

between elements in the segment is k.

Post sorted segment.

1. current = segment + k

2. loop (current < count)

1. temp = data[current]

2. walker = current - k

3. loop (walker >=0) AND (temp.key < data[walker].key)

1. data[walker + k] = data[walker]

2. walker = walker – k

4. data[walker  + k] = temp

5. current = current + k
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Insertion Sort Efficiency
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Selection Sort
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Straight Selection Sort
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Straight Selection Sort
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Straight Selection Sort
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Straight Selection Sort
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Selection Sort
Algorithm SelectionSort ()

Sorts the contiguous list using straight selection sort

Post sorted list.

1. current = 0

2. loop (current < count - 1)

1. smallest = current

2. walker = current + 1

3. loop (walker < count)

1. if (data [walker].key < data [smallest].key)

1. smallest = walker

2. walker = walker+1

4. swap(current, smallest)

5. current = current + 1
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Heap Sort
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Build Heap (first stage)
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0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5
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0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5

0         1         2         3         4        5

56 78

56 78

0         1         2         3         4        5

56 78453223

0         1         2         3         4        5

56 784532

0         1         2         3         4        5

56 7845

0         1         2         3         4        5

56 7845

Heap Sort (second stage)
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Heap Sort
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Algorithm HeapSort ()

Sorts the contiguous list using heap sort.

Post sorted list.

Uses Recursive function ReheapDown.

1. position = count / 2 -1 // Build Heap

2. loop (position >=0)

1. ReheapDown(position, count-1)

2. position = position - 1

3. last = count – 1 // second stage of heapsort

4. loop (last > 0)

1. swap(0, last)

2. last = last - 1

3. ReheapDown(0, last - 1)

End HeapSortCuuDuongThanCong.com https://fb.com/tailieudientucntt
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Selection Sort Efficiency
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Exchange Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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23
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Bubble Sort
Algorithm BubbleSort ()

Sorts the contiguous list using straight bubble sort

Post sorted list.

1. current = 0

2. flag = FALSE

3. loop (current < count) AND (flag = FALSE)

1. walker = count - 1

2. flag = TRUE

3. loop (walker  > current)

1. if (data [walker].key < data [walker-1].key)

1. flag = FALSE

2. swap(walker, walker – 1)

2. walker = walker - 1

4. current = current + 1

End BubbleSort 42CuuDuongThanCong.com https://fb.com/tailieudientucntt
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Exchange Sort efficiency
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Divide-and-conquer sorting

Algorithm DivideAndConquer()

1. if (the list has length greater than 1)

1. partition the list into lowlist, highlist

2. lowlist. DivideAndConquer()

3. highlist. DivideAndConquer()

4. combine(lowlist, highlist)

End DivideAndConquer
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Divide-and-conquer sorting
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Partition Combine

Merge Sort easily hard

Quick Sort hard easily
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Quick Sort
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Algorithm QuickSort() 
Sorts the contiguous list using quick sort.

Post Sorted list.

Uses function recursiveQuickSort.

1. recursiveQuickSort(0, count -1)

End QuickSort
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Quick Sort
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Algorithm recursiveQuickSort(val low <int>, val high <int>) 
Sorts the contiguous list using quick sort.

Pre low and high are valid positions in contiguous list.

Post Sorted list.

Uses functions recursiveQuickSort, Partition.

1. if (low < high) // Otherwise, no sorting is needed.

1. pivot_position = Partition(low, high)

2. recursiveQuickSort(low,  pivot_position -1)

3. recursiveQuickSort(pivot_position +1, high)

End recursiveQuickSort
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Partition Algorithm

• Given a pivot value, the partition rearranges the entries in the list as 

below:
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Partition Algorithm

Algorithm: 

• Temporarily leave the pivot value at the first position.

• use a for loop running on a variable i, last_small is the position all 

entries at or before it have keys less than pivot.

• if  the entry at i >= pivot, i can be increased.

• Otherwise, last_small is increased and two entries at position 

last_small and i are swapped:

49CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Partition Algorithm

• When the loop terminates:

• At last, swap the pivot from position low to position last_small.
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Partition in Quick Sort
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<integer> Partition(val low <integer>, val high <integer>) 
Partitions the entries between indices low and high to two sublists.

Pre low and high are valid positions in contiguous list, with low<=high.

Post The center entry in the range between indices low and high of the list 

has been chosen as a pivot.

All entries of the list between indices low and high, inclusive, have 

been rearranged so that those with keys less than the pivot come 

before the pivot , and the remaining entries come after the pivot. The 

final position of the pivot is returned.

Uses Function swap(val i <integer>, val j <integer>) interchanges entries in 

positions i and j.
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<integer> Partition(val low <integer>, val high <integer>) 
// i is used to scan through the list.

// last_small is the position of the last key less than pivot

1. swap (low, (low+high)/2) // First entry is now pivot.

2. pivot = entrylow

3. last_small = low

4. i = low + 1

5. loop (i <= high)

//entryj.key < pivot, when low < j <= last_small

// entryj.key >= pivot, when last_small < j < i

1. if (datai < pivot)

1. last_small = last_small + 1

2. swap(last_small, i)  // Move large entry to right and small to left.

6. swap(low, last_small)  // Put the pivot into its proper position.

7. return last_small

End Partition
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Quick Sort Efficiency
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Merge Sort

54CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt


Merge Sort

Algorithm MergeSort() // for linked list

Sorts the linked list using merge sort

Post sorted list.

Uses recursiveMergeSort.

1. recursiveMergeSort(head)

End MergeSort
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Merge Sort

Algorithm recursiveMergeSort(ref sublist <pointer>) 

Sorts the linked list using recursive merge sort.

Post The nodes referenced by sublist have been reaaranged so that their keys 

are sorted into nondecreasing order.

The pointer parameter sublist is reset to point at the node containing 

the smallest key. 

Uses functions recursiveMergeSort, Divide, Merge.

1. if (sublist is not NULL)  AND (sublist->link is not NULL)

1. Divide(sublist, second_list)

2. recursiveMergeSort(sublist)

3. recursiveMergeSort(secondlist)

4. Merge(sublist, secondlist)

End recursiveMergeSort 56CuuDuongThanCong.com https://fb.com/tailieudientucntt
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Merge Sort

Algorithm Divide(val sublist <pointer>, ref secondlist <pointer>)

Divides the list into two halves.

Pre sublist is not NULL.

Post The list of nodes referenced by sublist has been reduced to its first half, and 

secondlist points to the second half of the sublist. If the sublist has an odd 

number of entries, then its first half will be one entry larger than its second.

1. midpoint = sublist

2. position = sublist->link    // Traverse the entire list

3. loop (position is not NULL)  // Move position twice for midpoint's one move.

1. position = position->link

2. if (position is not NULL)

1. midpoint = midpoint->link

2. position = position->link

4. secondlist = midpoint->link

5. midpoint->link = NULL

End Divide
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Merge two sublists
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Merge two sublists
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Algorithm Merge (ref first <pointer>, ref second <pointer>)

Merges two sorted lists to a sorted list.

Pre first and second point to ordered lists of nodes.

Post first points to an ordered list containing all nodes that were referenced by first

and second. Second became NULL.
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Algorithm Merge (ref first <pointer>, ref second <pointer>)

// lastSorted is a pointer points to the last node of sorted list.

// combined is a dummy first node, points to merged list.

1. lastSorted = address of combined

2. loop (first is not NULL) AND (second is not NULL) // Attach node with smaller key

1. if (first->data.key <= second->data.key)

1. lastSorted->link = first

2. lastSorted = first

3. first = first->link // Advance to the next unmerged node

2. else

1. lastSorted->link = second

2. lastSorted = second

3. second = second->link

3. if (first is NULL) 

1. lastSorted->link = second

2. second = NULL

4. else

1. lastSorted->link = first

5. first = combined.link

End Merge
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