Chapter 10 - Sorting

One of the most important concepts and common
applications in computing.

23|78(45]| 8 | 32|56

|

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

e Internal sort: all data are held in primary memory
during the sorting process.

o External sort: primary memory for data currently

being sorted and secondary storage for data that
do not fit in primary memory.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

Sort stability: data with equal keys maintain their
relative input order in the output.

/78| 8 |45]| 8 |32]56

|

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

e Sort efficiency: a measure of the relative efficiency
of a sort = number of comparisons + number of moves

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sorting

External

Sorts
Internal
. . Divice-and-
Insertion Selection Exchange Conquer
*Insertion *Selection *Bubble *Quick
*Shell *Heap *Quick *Merge

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

*Natural Merge
*Balanced Merge
*Polyphase Merge

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

e The list is divided into two parts: sorted and
unsorted.

e In each pass, the first element of the unsorted
sublist is inserted into the sorted sublist.

S
#

unsorted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

23Q0/8|45]| 8 | 32|56

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

CuubDuongThanCong.com

:

23|

/8

45

8

32

56

23

32

56

78|45

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

CuubDuongThanCong.com

45

8

32

56

23|78

!

23

45

8

32

56

78|

23

45

32

56

78|8

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

CuubDuongThanCong.com

45

8

32

56

23|78

23

8

32

56

78|45

!

23

45

8

32

56

78|

23

45

56

78|32

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

45

8

32|56

23|78

8

32|56

23|78 |45

23|45

32|56

78|8

}

45

32|56

78|

32

45

CuubDuongThanCong.com

/8 |56

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

CuubDuongThanCong.com

45

8

32

56

23|78

23

8

32

56

78|45

23

45

32

56

78|8

23

45

56

78|32

23

32

45

]
78 |56

23

32

45

56

| https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Insertion Sort

Algorithm InsertionSort ()
Sorts the contiguous list using straight insertion sort
Post sorted list.
1. if (count >1)
1. current=1

2. loop (current < count)
1. temp = data , ent
2. walker = current-1

3. loop (walker >=0) AND (temp.key < data,,.-key)
1L datawalker+1 datay . iker
2. walker = walker -1

4. data,,ersy = temp

5. current=current+1
E n d I n S e rt i @Hﬁ@ﬂng.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

e Named after its creator Donald L. Shell (1959).

e Given a list of N elements, the list is divided into
K segments (K is called the increment).

e Each segment contains N/K or more elements.

e Segments are dispersed throughout the list.

* Also is called diminishing-increment sort

CuuDuongThanCong .com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

(11 [2] (3] [4] [5] [e] [7] [8] [®] [10]

s @] BT BT [

[1+ K] [1 + 2*K] [1 + 3*%K]
Segmen I E E B
[2 + K] [2 + 2%K]
Segment 2
[3] [3 + K] [3 + 2%K]
Segment 3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

15

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

e For the value of K in each iteration, sort the K
segments.

o After each iteration, K is reduced until it is 1 in
the final iteration.

ccccccccccccccccc

16

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Example of Shell Sort

Unsorted Sublists incr. 5 5-Sorted Recombined
Tim Tim Jim Jim
Dot Dot Dot Dot
Eva Eva Amy Amy
Roy Roy Jan Jan
Tom Tom Ann Ann
Kim Kim Kim Kim
Guy Guy Guy 7V Guy
Amy Amy Eva Eva
Jon Jon Jon Jon
Ann Ann Tom Tom
Jim Jim Tim Tim
Kay Kay Kay Y Kay
Ron Ron Ron Ron
Jan Jan Roy Roy

CuuDuongThanCong.com https://fb.com/tailieudientucntt 17

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Sublists incr. 3

Jim
t Dot

Jan t
t Ann

Guy t
t Eva

]
$ Tim

Ron ¢
Roy

Example of Shell Sort

3-Sorted
Guy
l Ann
Amy l Amy
t Jan l
l Dot
Kim l Jon
t Jim l
l Eva
Jon l Kay
t Ron l
l Roy
Kay l Kim
Tom
Tim

CuuDuongThanCong.com

List incr. 1 Sorted
Guy Amy
Ann ™~ — Ann
Amy Dot
Jan - EBva
Dot Guy
Jon Jan
Jim = Jim
Eva S T~ Jon
Kay - Kay
Ron - Kim
Roy % Ron
Kim Roy
Tom ><: Tim
Tim Tom

https://fb.com/tailieudientucntt 18

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Choosing incremental values

* From more of the comparisons, it is better when we can

receive more new information.

* Incremental values should not be multiples of each other,
other wise, the same keys compared on one pass would be

compared again at the next.

* The final incremental value must be 1.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Choosing incremental values

Incremental values may be:

1,4,13,40,121, ...
k=1
k,=3%k +1
_t=[logs(n)] -1

or:
1,3,7,15,31,..

k. =1

k,=2%k +1

t= |log,(n)| -1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

Algorithm ShellSort ()

Sorts the contiguous list using Shell sort
Post sorted list.

1. k=first_incremental value
2. loop (k>=1)

1. segment=1

2. loop (segment <=k)

1. SortSegment(segment)
2. segment=segment+1

3. k=next_incremental _value
End ShellSort

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Shell Sort

Algorithm SortSegment(val segment <int>, val k <int>)
Sorts the segment beginning at segment using insertion sort, step
between elements in the segment is k.
Post sorted segment.
1. current = segment + k
2. loop (current < count)
1. temp = data[current]
2. walker =current - k
3. loop (walker >=0) AND (temp.key < data[walker].key)
1. data[walker + k] = data[walker]
2. walker = walker — k
4. data[walker +k] =temp
5. current =current + k
End SortSegrent ipsiibeomialieudenent

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Insertion Sort Efficiency

e Straight insertion sort:
f(n) = n(n + 1)/2 = O(n?)

e Shell sort:
O(ni-2°) Empirical study

ccccccccccccccccc

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort

e In each pass, the smallest/largest item is selected
and placed in a sorted list.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

e The list is divided into two parts: sorted and
unsorted.

e In each pass, in the unsorted sublist, the smallest
element is selected and exchanged with the first
element.

2 Sy
T P

unsorted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

25

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

23|78|45] 8 [32]56

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort
vV~

CuubDuongThanCong.com

45

8

32

56

|23 z

45

23

32

56

-

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

CuubDuongThanCong.com

23

/8

45

8

32

56

v

/8

45

23

32

56

8|

78

32

56

23 |45

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

23178|45| 8 | 32|56

8 |78 4523 |32|56

8

45178]32] 56

v N
23

8 |23 32|78 45| 56

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

CuubDuongThanCong.com

23

/8

45

8

32

56

45

23

32

56

3 |78

8

/8

32

56

23 |45

vy

23

/8

45

56

2|

23

32

56

45 |78

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Straight Selection Sort

CuubDuongThanCong.com

23

/8

45

8

32

56

45

23

32

56

8 |78

8

/78

32

56

23 |45

23

45

56

32 |78

VERY

23

32

/8

56

45|

23

32

45

/8

|

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort

Algorithm SelectionSort ()
Sorts the contiguous list using straight selection sort
Post sorted list.
1. current=0
2. loop (current < count -1)
1. smallest = current
2. walker = current + 1
3. loop (walker < count)

1. if (data [walker].key < data [smallest].key)
1. smallest = walker
2. walker = walker+1

4. swap(current, smallest)
5. current =current +1
E n d S e I e Ct i Suﬁlgaanftng.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Sort

e The unsorted sublist is organized into a heap.

e In each pass, in the unsorted sublist, the largest
element is selected and exchanged with the last
ement.

e
Then the heap is reheaped.

heap

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

0

1

2 Bt31ilo4l HSeap (first stage)

23

78145’ 8

32

56|

(92

23

7856 8

32

23

32

32

23

ccccccccccccccccc

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Sort (second stage)

78

32

56| 8

23

0

7

1

45>

32

56| 8

4

23|78

45

56

78

2
23|

56

32

457 8

23

—

0

1

2 3

)
=

5

23

32

78

23

45

56

/8

45

56

/8

45

32

78

23

45

56

78

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Heap Sort

Algorithm HeapSort ()
Sorts the contiguous list using heap sort.
Post sorted list.
Uses Recursive function ReheapDown.
1. position = count / 2 -1 // Build Heap
2.loop (position >=0)

1. ReheapDown(position, count-1)

2. position = position - 1
3.last = count — 1 // second stage of heapsort
4.loop (last > 0)

1.swap(0, last)

2. last=last -1

3.ReheapDown(0, last - 1)
End HeapSetsracoseon

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Selection Sort Efficiency

e Straight selection sort: O(n?)

e Heap sort: O(n log,n)

37

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Exchange Sort

e In each pass, elements that are out of order are
exchanged, until the entire list is sorted.

e Exchange is extensively used.

38

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort

e The list is divided into two parts: sorted and
unsorted.

e In each pass, the smallest element is bubbled
from the unsorted sublist and moved to the
sorted sublist.

VARER"E

& Y
Y rd

unsorted

39

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

CuubDuongThanCong.com

Bubble Sort
)

23|78

45

8

56

32

VAR

23|78

32

56

32

56

45

32

56

45

32

56

|23 /8

45

32

56

https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort
< N\
8 |23

/8145]32|56

VAR
7845|3256

I VAR

8

8 §23|78|32145|56

VAR
23(32]45|32(56

8

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Bubble Sort

Algorithm BubbleSort ()
Sorts the contiguous list using straight bubble sort
Post sorted list.
1. current=0
2. flag = FALSE
3. loop (current < count) AND (flag = FALSE)
1. walker =count -1
2. flag=TRUE
3. loop (walker > current)

1. if (data [walker].key < data [walker-1].key)
1. flag = FALSE

2. swap(walker, walker — 1)
2. walker = walker - 1

4. current =current+1

En d Bu b b | e SO fitgrhancong.com https://fb.comtailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Exchange Sort efficiency

e Bubble sort:
f(n) = n(n + 1)/2 = O(n?)

ccccccccccccccccc

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Divide-and-conquer sorting

Algorithm DivideAndConquer()

1. if (the list has length greater than 1)
1. partition the list into lowlist, highlist
2. lowlist. DivideAndConquer()
3. highlist. DivideAndConquery()
4. combine(lowlist, highlist)
End DivideAndConquer

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Divide-and-conquer sorting

| Partition | _Combine _

Merge Sort easily hard

Quick Sort hard easily

CuuDuongThanCong.com https://fb.com/tailieudientucntt

45

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort

Algorithm QuickSort()

Sorts the contiguous list using quick sort.

Post Sorted list.
Uses function recursiveQuickSort.

1. recursiveQuickSort(0, count -1)
End QuickSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort

Algorithm recursiveQuickSort(val low <int>, val high <int>)
Sorts the contiguous list using quick sort.

Pre low and high are valid positions in contiguous list.
Post Sorted list.

Uses functions recursiveQuickSort, Partition.

1. if (low < high) // Otherwise, no sorting is needed.
1. pivot_position = Partition(low, high)
2. recursiveQuickSort(low, pivot position -1)
3. recursiveQuickSort(pivot_position +1, high)
End recursiveQuickSort

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

* Given a pivot value, the partition rearranges the entries in the list as
below:

< pivot pivot > pivot

low pivot_bosition high

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

Algorithm:
* Temporarily leave the pivot value at the first position.

* use a for loop running on a variable i, last_small is the position all
entries at or before it have keys less than pivot.

* if the entry ati >=pivot, i can be increased.

* Otherwise, last _small is increased and two entries at position
last_small and i are swapped:

pivot < pivot > pivot ?

| | !

low last_small i

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition Algorithm

X T,

pivot < pivot = pivot < pivot

|

ast_small

pivot < pivot | = pivot
oW ast_small high

* At last, swap the pivot from position low to position last_small.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Partition in Quick Sort

<integer> Partition(val low <integer>, val high <integer>)

Partitions the entries between indices low and high to two sublists.

Pre low and high are valid positions in contiguous list, with low<=high.

Post The center entry in the range between indices low and high of the list
has been chosen as a pivot.
All entries of the list between indices low and high, inclusive, have
been rearranged so that those with keys less than the pivot come
before the pivot , and the remaining entries come after the pivot. The
final position of the pivot is returned.

Uses Function swap(val i <integer>, val j <integer>) interchanges entries in

positions i and j.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<integer> Partition(val low <integer>, val high <integer>)
// i is used to scan through the list.
// last_small is the position of the last key less than pivot

1. swap (low, (low+high)/2) // First entry is now pivot.
2. pivot = entry,,,,

3. last_small = low

4. i=low+1

5. loop (i <= high)

//entry.key < pivot, when low < j <= last_small
// entry,.key >= pivot, when last_small <j <
1. if (data, < pivot)
1. last_small =last_small +1
2. swap(last_small, i) // Move large entry to right and small to left.
6. swap(low, last_small) // Put the pivot into its proper position.
7. return last_small
End Partition

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Quick Sort Efficiency

e Quick sort:
O(n log,n)

ccccccccccccccccc

53

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Start Finish
26 33 35 29 19 12}22 12 19 22 26 29 33 35

.-\"'-\.\,_ "'\-\.

T T

N P

26 33 35 29 26 29/03% 35 19 12 22 12 19 22

. / \
. .--—-._Kx .---__.-'_'-\.\‘ _\\
/ ™
/ 4 N N / g A ™

4 - » .
26 33 26 33 35 29 29 35 19 12 12 19 22

CuuDuongThanCong.com https://fb.com/tailieudientucntt 54

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm MergeSort() // for linked list
Sorts the linked list using merge sort
Post sorted list.

Uses recursiveMergeSort.

1. recursiveMergeSort(head)
End MergeSort

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

55

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm recursiveMergeSort(ref sublist <pointer>)

Sorts the linked list using recursive merge sort.

Post The nodes referenced by sublist have been reaaranged so that their keys
are sorted into nondecreasing order.
The pointer parameter sublist is reset to point at the node containing
the smallest key.

Uses functions recursiveMergeSort, Divide, Merge.

1. if (sublistis not NULL) AND (sublist->link is not NULL)
1. Divide(sublist, second_list)
2. recursiveMergeSort(sublist)
3. recursiveMergeSort(secondlist)
4. Merge(sublist, secondlist)

End recursiveMergeSort

uong https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge Sort

Algorithm Divide(val sublist <pointer>, ref secondlist <pointer>)

Divides the list into two halves.

Pre

sublist is not NULL.

Post The list of nodes referenced by sublist has been reduced to its first half, and

1.
2.
3.

4.
5.

secondlist points to the second half of the sublist. If the sublist has an odd
number of entries, then its first half will be one entry larger than its second.

midpoint = sublist
position = sublist->link // Traverse the entire list
loop (position is not NULL) // Move position twice for midpoint's one move.
1. position = position->link
2. if (positionis not NULL)
1. midpoint = midpoint->link
2. position = position->link
secondlist = midpoint->link
midpoint->link = NULL

End Divide

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge two sublists

[nitial situation

3] e | 4 | @ = 3 | ® = 9

After merging

. -1 4 | =

e G
7 e 1 1| e >(5 . 71| e)

combined

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Merge two sublists

Algorithm Merge (ref first <pointer>, ref second <pointer>)
Merges two sorted lists to a sorted list.

Pre first and second point to ordered lists of nodes.

Post first points to an ordered list containing all nodes that were referenced by first
and second. Second became NULL.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Algorithnm ivierge (ret Tirst <pointer>, ref secona <pointer>)
// lastSorted is a pointer points to the last node of sorted list.
// combined is a dummy first node, points to merged list.
1. lastSorted = address of combined
2. loop (first is not NULL) AND (second is not NULL) // Attach node with smaller key

1. if (first->data.key <= second->data.key)
1. lastSorted->link = first
2. lastSorted = first
3. first = first->link // Advance to the next unmerged node

2. else
1. lastSorted->link = second Initlal situation
2. lastSorted = second (st} 3| et—{ 4 | =8 | —{ 9| s
3. second =second->link
3. if (first is NULL) (second)—»-1 ¢ > 5| 7| 1
1. lastSorted->link = second N
2. second=NULL After merging
4. else Dumimy (3 -4)(8 ¢
1. lastSorted->link = first node
5. first = combined.link 7| e — 1] e)(5 ¢ ~7 e)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

End Merge combined

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

