
Chapter 12

 Lexicographic Search Trees: Tries

Multiway Trees

 B-Tree, B*-Tree, B+-Tree

 Red-Black Trees (BST and B-Tree)

 2-d Tree, k-d Tree

1CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic Concepts

2CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic Concepts

3CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trees

4CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

5CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trees and Orchard

6CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

7CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Lexicographic Search Tree

8CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Multiway Trees

9CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

10CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

11CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

M-Way Search Tree

12CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

13CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

14CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

15CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

16CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

17CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

18CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

19CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

B_Node

count <integer>

data <array of <DataType>>

branch <array of <pointer>>

End B_Node

B_Tree

root <pointer>

End B_Tree

20CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods and Functions

SearchTree recursiveSearchTree
(calls)

SearchNode

Insert recursiveInsert

splitNode

push_inCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

22

<ErrorCode> SearchTree (ref target <DataType>)

1. return recursiveSearchTree(root, target)

End SearchTree

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

23

<ErrorCode> recursiveSearchTree (val subroot <pointer>,

ref target <DataType>)

1. result = not_present

2. if (subroot is not NULL)

1. result = SearhNode (subroot, target, position)

2. if (result = not_present)

1. result = recursiveSearchTree (subroot->branchposition, target)

3. else

1. target = subroot->dataposition

3. return result

End recursiveSearchTree

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

24

<ErrorCode> SearchNode (val subroot <pointer>,

val target <DataType>,

ref position <integer>)

1. position = 0

2. loop (position < subroot->count) AND (target>subroot->dataposition)

1. position = position + 1 // Sequential Search

3. if (position < subroot->count) AND (target = subroot->dataposition)

1. return success

4. else

1. return not_present

End SearchNode
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods and Functions

SearchTree recursiveSearchTree
(calls)

SearchNode

Insert recursiveInsert

splitNode

push_inCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

26

<ErrorCode> Insert (val newData <DataType>)

(local variable: median <DataType>, rightBranch <pointer>,

newroot <pointer>, result <ErrorCode>)

Return duplicate_error, success

1. result = recursiveInsert (root, newData, median, rightBranch)

2. if (result = overflow)

1. Allocate newroot

2. newroot->count = 1

3. newroot->data0 = median

4. newroot->branch0 = root

5. newroot->branch1 = rightBranch

6. root = newroot

7. result = success

3. return result

End Insert
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Split Node

27CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

28

<ErrorCode> recursiveInsert (val subroot <pointer>,

val newData <DataType>,

ref median <DataType>,

ref rightBranch <pointer>)

Return overflow, duplicate_error, success

1. if (subroot = NULL)

1. median = newData

2. rightbranch = NULL

3. result = overflow

2. else
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

29

<ErrorCode> recursiveInsert (val subroot <pointer>,

val newData <DataType>,

ref median <DataType>,

ref rightBranch <pointer>) (cont.)

2. // else, local variables: extraEntry, extraBranch

1. if (SearchNode (subroot, newData, position) = success)

1. result = duplicate_error

2. else

1. result = recursiveInsert (subroot->branchposition, newData,

extraEntry, extraBranch)

2. if (result = overflow)

1. if (subroot->count < order-1)

1. result = success

2. push_in (subroot, extraEntry, extraBranch, position)

2. else

1. splitNode (subroot, extraEntry, extraBranch, position,

rightBrach, median)

3. return result

End recursiveInsertCuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Push In

30CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

31

<void> push_in (val subroot <pointer>,

val entry <DataType>,

val rightBranch <pointer>,

val position <integer>)
1. i = subroot->count

2. loop (i > position)

1. subroot->datai = subroot->datai - 1

2. subroot->branchi + 1 = subroot->branchi

3. i = i + 1

3. subroot->data position= entry

4. subroot->branch position + 1= rightBranch

5. subroot->count = -subroot->count + 1

End push_in
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

32

<void> splitNode (val subroot <pointer>,

val extraEntry <DataType>,

val extraBranch <pointer>,

val position <integer>,

ref rightHalf <pointer>,

ref median <DataType>)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

33CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

34CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

35CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Deletion

36CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Deletion

37CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Deletion

38CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

39CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

40CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

41CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

42CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

43CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

k-d Trees

 2-d Tree

 k-d Tree

44CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com
https://fb.com/tailieudientucntt

