Chapter 12

» Lexicographic Search Trees: Tries
» Multiway Trees

» B-Tree, B*-Tree, B*-Tree

» Red-Black Trees (BST and B-Tree)

» 2-d Tree, k-d Tree

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic Concepts

Definitions:

m A (free) tree iz any set of points (called vertices) and any
set of pairs of distinct vertices (called edges or branches)
such that (1) there is a sequence of edges (a path) from
any vertex to any other, and (2) there are no circuits, that
18, no paths starting from a vertex and returning to the

same vertex.

m A rooted tree 1s a tree in which one vertex, called the
root, is distinguished.

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Basic Concepts

B An ordered tree is a rooted tree in which the children of
each vertex are assigned an order.

m A forest is a set of trees. We usually assume that all trees
in a forest are rooted.

m Anorchard (also called an ordered forest) is an ordered
set of ordered trees.

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trees

Free trees with four or fewer vertices
(Arrangement of vertices is irrelevant.)

O O g
Q Q
O O

Footed trees with four or fewer vertices
[Root is at the top of tree.)

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Recursive Definitions

DEerFINITION A rooted tree consists of a single vertex v, called
the root of the tree, together with a forest F, whose trees
are called the subtrees of the root.

A forest F is a (possibly empty) set of rooted trees.

DEerFINITION An ordered tree 1T consists of a single vertex
v, called the root of the tree, together with an orchard O,
whose trees are called the subtrees of the root v. We may
denote the ordered tree with the ordered pair 7 = {v, O}.

An orchard O is either the empty set ¥, or consists of
an ordered tree T, called the first tree of the orchard, to-
gether with another orchard O’ (which contains the remain-
ing trees of the orchard). We may denote the orchard with
the ordered pair O = (T, O').

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Trees and Orchard

First tree

.'l 1

i

| ' .
| | \
| |
| ; |
| | |
i 1
| -
: : : i Orchard of
o 11 remaining
Orchard P I trees
of subtrees T ! I
1 | [
| | [
| | 11
1 \ 11
P |
Adjoin
Delere
00 _ m

Oréeelearptigpcong.com -
Orchard https//fb.comitailieudientfont ] ered] tree



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Lexicographic Search Trees: Tries

DEerFINITION A #rie of order m 1s either empty or consists of
an ordered sequence of exactly m tries of order m.

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Lexicographic Search Tree

EEInjrrEnj orxin)
EljiEag T:[@‘
G 6D o) G ) G Tl Gl D G
S i
bl G = bl
W



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Multiway Trees

e Tree whose outdegree is not restricted to 2
while retaining the general properties of
binary search trees.

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

M-Way Search Trees

e Each node has m - 1 data entries and m subtree
pointers.

e The key values in a subtree such that:

— >= the key of the left data entry
— < the key of the right data entry.

KA AN

keys < Ky Ki<=keys < K; K;<=keys < Kj Ky<= keys

CuuDuongThanCong.com https://fb.com/tailieudientucntt

10


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

M-Way Search Trees

100 llSD

95 l l125 135 l

l s0 I 70 l 110 [ 120 l

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

11


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

M-Way Search Tree

blc ﬁjka r wlx |y
AN

a flag i m| n G-ﬁ q s | t|lu
L ] [ | ¥ [ | L ] » L ] T [ ] [ | L ] T L ] L ] L ]

CuuDuongThanCong.com https://fb.com/tailieudientucntt

12


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

M-Way Node Structure

key

data

num
entries

CuuDuongThanCong.com

entry
key <key type>
data <data type>
rightPtr <pointer>
end entry

node

firstPtr <pointer>

numeEntries <integer>

entries <array[1 .. m-1] of entry>
end node

https://fb.com/tailieudientucntt

13


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Trees

e M-way trees are unbalanced.

e Bayer, R. & McCreight, E. (1970) created
B-Trees.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

14


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Trees
e A B-tree is an m-way tree with the following
additional properties (m >= 3):
— The root is either a leaf or has at least 2 subtrees.

— All other nodes have at least [ m/2] - 1 entries.

— All leaf nodes are at the same level.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

15


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

PLpLTiy

i

TLITiTLY

T

T

T

I O

T

T

T

fLTLTLY

16

https://fb.com/tailieudientucntt

CuuDuongThanCong.com


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

e Insert the new entry into a leaf node.
o If the |leaf node is overflow, then split it

and insert its median entry into its parent.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

17


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

?
a g, f, b: k:
a b f f
Fil
a b g k
, 4

a, , m:

a b d g h k m a b d g h |k m

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

18


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

" i e
EQh;|Rmr5 a b de g h | k mi]|s

ol omt

ab de gh; Imn s t U X

e
| j
c f m r
a b d elllg h k I{lln p s t u x

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

19


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

B _Node
count <integer>
data <array of <DataType>>

branch <array of <pointer>>
End B_Node

B_Tree
root <pointer>
End B_Tree

CuubDuongThanCong.com

https://fb.com/tailieudientucntt

20


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods and Functions

SearchTree ——» recurs'@chTree)

(calls)
SearchNode
Insert — recursvensert;

splitNode

CuuDuongThanCong.com p u S h i n

https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

<ErrorCode> SearchTree (ref target <DataType>)

1. return recursiveSearchTree(root, target)
End SearchTree

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

<ErrorCode> recursiveSearchTree (val subroot <pointer>,
ref target <DataType>)

1. result =not present
2. if (subroot is not NULL)
1. result = SearhNode (subroot, target, position)

2. if (result = not present)

1. result = recursiveSearchTree ( subroot->branch target)

position’
3. else
1. target = subroot->data  gion

3. return result
End recursiveSearchTree

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree SeachTree

<ErrorCode> SearchNode (val subroot <pointer>,

1.

3.

position =0

loop (position < subroot->count) AND (target>subroot->data
1.

if (position < subroot->count) AND (target = subroot->data

val target <DataType>,
ref position <integer>)

poﬂﬂon)

position = position + 1 // Sequential Search

1. return success
else
1. return not present

End SearchNode

CuuDuongThanCong.com

poﬂﬁon)

https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Methods and Functions

SearchTree ——» recurs'@chTree)

(calls)
SearchNode
Insert — recursvensert;

splitNode

CuuDuongThanCong.com p u S h i n

https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

<ErrorCode> Insert (val newData <DataType>)

(local variable: median <DataType>, rightBranch <pointer>,
newroot <pointer>, result <ErrorCode> )

Return

1. result = recursivelnsert (root, newData, median, rightBranch)

2. if (result = )

Allocate newroot

newroot->count =1

newroot->data, = median

newroot->branchy = root

newroot->branch, = rightBranch

root = newroot

result =

3. return result

CuuDuongThanCong.com https://fb.com/tailieudientucntt

R

Fnd Insert



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Split Node

CED

*current

CuuDuongThanCong.com

currant

*current
fﬁl:ujnn

right_branch

https://fb.com/tailieudientucntt 27


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

<ErrorCode> recursivelnsert (val subroot <pointer>,

Return overflow,

1. if (subroot = NULL)
1. median = newData
2. rightbranch = NULL
3. result = overflow

2. else

CuuDuongThanCong.com

val newData <DataType>,
ref median <DataType>,
ref rightBranch <pointer>)

https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

<ErrorCode> recursivelnsert (val subroot <pointer>,
val newData <DataType>,

ref median <DataType>,

~

ref rightBranch <pointer>) Seao (cont.)
0 ~\
2. //else, local variables: extraEntry, extraBranch \\
1. if (SearchNode (subroot, newData, position) = success)
1. result =duplicate error "'""-5512::131,' ........... \
Mo T \
2. else « 0 e .

1. result=recursivelnsert (subroot->branch ., newData,

extraEntry, extraBranch
\ J

2. if (result = overflow)
1. if (subroot->count < order-1)
1. result =success
2. push_in (subroot, extraEntry, e|}(traBranch, position)
2. else & ’
1. splitNode (subroot, extraEntry, extraBranch, position,
r|ightBrach, media|'1)

1
1
1
1
1

-

3. returnresult g .
~~~~ —”’
End recursiveltsertconsen ==~ = sl Al T



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Push In

Before 0 1 2 3 4 5

current h blafhiy L

After 0 1 2 8 4 5
.
current @’\ b drflh /
RN

O 213'4 5] 6

A C E G | K

CuuDuongThanCong.com

entry

right_branch

position ==

https://fb.com/tailieudientucntt

—s—————

30


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

<void> push_in (val subroot <pointer>,
val entry <DataType>,
val rightBranch <pointer>,
val position <integer>)
1. i=subroot->count
2. loop (i> position)
1. subroot->data, = subroot->data; _,
2. subroot->branch,, , = subroot->branch.
3. 1=1+1
3. subroot->data ;0= €Ntry

4. subroot->branch ogiion + 1= rightBranch

5. subroot->count = -subroot->count + 1
End push_in

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree

<void> splitNode (val subroot <pointer>,
val extraEntry <DataType>,
val extraBranch <pointer>,
val position <integer>,
ref rightHalf <pointer>,
ref median <DataType>)

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

In contrast to binary search trees, B-trees are not allowed to grow
at their leaves; instead, they are forced to grow at the root. Gen-
eral insertion method:

1. Search the tree for the new key. This search (if'the key 1s truly
new) will terminate in failure at a leaf.

2. Insert the new key into to the leaf node. If the node was not
previously full, then the insertion is finished.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

33


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Insertion

3. When a key 1s added to a full node, then the node splits into

o

two nodes, side by side on the same level, except that the
median key 18 not put into either of the two new nodes.

. When a node splits, move up one level, insert the median key

into this parent node, and repeat the splitting process if nec-
essary.

. When a key 1s added to a full root, then the root splits in two

and the median key sent upward becomes a new root. This is
the only time when the B-tree grows in height.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

34


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Deletion

o It must take place at a leaf node.

e If the data to be deleted are not in a leaf
node, then replace that entry by the largest
entry on its left subtree.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

35


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

1. Delete h, r:

B-Tree Deletion

Promote s

c f m »|Js and delete from leaf

& - - -
a b d e g—H—i k| nop PP
AEE, t u X
2. Delete p: ]
Pull s down;
c ! m s(Jt pulltup
AN
- d e g ! k| n g4 u ox
5

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

36


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

3. Delete d:

B-Tree Deletion

Combine: L c ., f m
.-"-..-. H"\.
.-_.-"
l-":- i o i =
'la b ad e i k n s u o X
Lombine:
. .
| f m .
i hy
a b ¢ e ] ko n s u X
f m
o .l"/ \'\.\"'-..
a b c e ] ko n s u X
CuuDuongThanCong.corT fitps.//focomrtatiendientucntt

37


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Deletion

%
&,
F il
I u W

4 | | | |

a b c d

t v~z
I“’ J/ K-.
| u W i
¥ #
a b ¢ d

CuubDuongThanCong.com

move_right

—_——

combine

_—

S
t vV W
Y Y { y
a b ¢ d
t z
Vv W

T

Cy
Q

https://fb.com/tailieudientucntt

38


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Reflow

¢ For each node to have sufficient number of
entries:

— Balance: shift data among nodes.

— Combine: join data from nodes.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

39


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Borrow from right

Original node

Rotate parent
data down

Rotate data to
parent

Shift entries
left

CuuDuongThanCong.com

Balance
~ 21l

B

42

https://fb.com/tailieudientucntt

40


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

Borrow from left

Original node

Shift entries
right

Rotate parent
data down

Rotate data
up

CuuDuongThanCong.com

Balance

BERlREE

/4

https://fb.com/tailieudientucntt

41


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Traversal

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

42


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

B-Tree Variations

B*Tree: the minimum number of (used)
entries is two thirds.

B+Tree:

— Each data entry must be represented at the leaf level.

— Each leaf node has one additional pointer to move to
the next leaf node.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

43


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

k-d Trees

> 2-d Tree

> k-d Tree

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com
https://fb.com/tailieudientucntt

