Chapter 9: Hashing

e Basic concepts

e Hash functions

e Collision resolution
e Open addressing

e Linked list resolution

e Bucket hashing

Cao Hoang Tru |
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Sequential search: O(n) | Requiring several
> key comparisons

e Binary search: O(log,n) | before the target is found

Cao Hoang Tru 2
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Search complexity:

Size Binary Sequential Sequential
(Average) (Worst Case)
16 4 8 16
50 6 25 50
256 8 128 256
1,000 10 500 1,000
10,000 14 5,000 10,000
100,000 17 50,000 100,000
1,000,000 20 500,000 1,000,000
Cao Hoang Tru 3

CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Is there a search algorithm whose complexity is
0O(1)?

Cao Hoang Tru 4
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Is there a search algorithm whose complexity is
0O(1)?
YES.

Cao Hoang Tru 5
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

keys memory addresses
‘ xd
—
hashing | i
"

Each key has only one address

Cao Hoang Tru 6
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

001 | Harry Lee

Key Address >{ 002 | Sarah Trapp
> 005 | Vu Nguyen
005
Vu Nguyen 102002 —> 007 | Ray Black
ay Blac
John Adams 107095 ——> Has.h 0
Function | go2

Sarah Trapp 111060 —>

100 | John Adams

V

Cao Hoang Tru 7
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Home address: address produced by a hash
function.

e Prime area: memory that contains all the home
addresses.

Cao Hoang Tru 8
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Synonyms: a set of keys that hash to the same
location.

e Collision: the location of the data to be inserted is
already occupied by the synonym data.

Cao Hoang Tru 9
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

e Ideal hashing:
— No location collision
— Compact address space

Cao Hoang Tru 10
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

Insert A, B, C

hash(A) = 9
hash(B) = 9
hash(C) = 17
A
[1] [5] [9] [17]
Cao Hoang Tru 11

CSE Faculty - HCMUT 01 December 2008

Basic Concepts

Insert A, B, C
hash(A) = 9

hash(B) = 9 Band A
hash(C) = 17 collide at 9

A B

[1] [5] [9] S [17]

Collision Resolution

Cao Hoang Tru 12
CSE Faculty - HCMUT 01 December 2008

Basic Concepts

Insert A, B, C

hash(A) = 9
hash(B) = 9 Band A Cand B
hash(C) = 17 collide at 9 collide at 17
C A B
[1] [5] o s
Collision Resolution
Cao Hoang Tru 13

CSE Faculty - HCMUT 01 December 2008

Basic Concepts

Searh for B
hash(A) = 9
hash(B) = 9
hash(C) = 17
C A B
[1] [5] [9] [17]
Probing

Cao Hoang Tru 14
CSE Faculty - HCMUT 01 December 2008

Hash Functions
e Direct hashing

e Modulo division
e Digit extraction
e Mid-square

e Folding

e Rotation

e Pseudo-random

Cao Hoang Tru 15
CSE Faculty - HCMUT 01 December 2008

Direct Hashing

e The address is the key itself:

hash(Key) = Key

Cao Hoang Tru 16
CSE Faculty - HCMUT 01 December 2008

Direct Hashing

e Advantage: there is no collision.

e Disadvantage: the address space (storage size) is
as large as the key space

Cao Hoang Tru 17
CSE Faculty - HCMUT 01 December 2008

Modulo Division

Address = Key MOD listSize + 1

e Fewer collisions if listSize is a prime number

e Example:

Numbering system to handle 1,000,000 employees
Data space to store up to 300 employees

hash(121267) = 121267 MOD 307 + 1 =2+ 1 =3

Cao Hoang Tru 18
CSE Faculty - HCMUT 01 December 2008

Digit Extraction

Address = selected digits from Key

e Example:
379452 — 394
121267 — 112
378845 — 388
160252 — 102
045128 — 051
Cao Hoang Tru 19

CSE Faculty - HCMUT 01 December 2008

Mid-square

Address = middle digits of Key?

e Example:
9452 * 9452 = 89340304 — 3403

Cao Hoang Tru 20
CSE Faculty - HCMUT 01 December 2008

Mid-square
e Disadvantage: the size of the Key? is too large

e \ariations: use only a portion of the key

379452: 379 * 379 = 143641 — 364
121267: 121 * 121 = 014641 — 464
045128: 045 * 045 = 002025 — 202

Cao Hoang Tru 21
CSE Faculty - HCMUT 01 December 2008

Folding

e The key is divided into parts whose size matches
the address size

Key = 123|456|789

fold shift

123 + 456 + 789 = 1368
— 368

Cao Hoang Tru 22
CSE Faculty - HCMUT 01 December 2008

Folding

e The key is divided into parts whose size matches
the address size

Key = 123|456|789

fold shift fold boundary
123 + 456 + 789 = 1368 321 + 456 + 987 = 1764
= 368 = /64

Cao Hoang Tru 23
CSE Faculty - HCMUT 01 December 2008

Rotation

e Hashing keys that are identical except for the last

character may create synonyms.

e The key is rotated before hashing.

original key

600101
600102
600103
600104
600105

Cao Hoang Tru
CSE Faculty - HCMUT

rotated key

160010
260010
360010
460010
560010

24
01 December 2008

Rotation

e Used in combination with fold shift

original key rotated key

600101 — 62 160010 — 26
600102 — 63 260010 — 36
600103 — 64 360010 — 46
600104 — 65 460010 — 56
600105 — 66 560010 — 66

Spreading the data more evenly across the address space

Cao Hoang Tru 25
CSE Faculty - HCMUT 01 December 2008

Pseudorandom

Key —» Pseudorandom |, Random _ Modulo | | address
Number Generator Number Division
y =axX + C

For maximum efficiency, a and c should be prime numbers

Cao Hoang Tru 26
CSE Faculty - HCMUT 01 December 2008

Pseudorandom
e Example:

Key = 121267 a=17 c=7 listSize = 307

Address = ((17*121267 + 7) MOD 307 + 1
= (2061539 + 7) MOD 307 + 1
= 2061546 MOD 307 + 1
=41 + 1
= 42

Cao Hoang Tru 27
CSE Faculty - HCMUT 01 December 2008

Collision Resolution

e Except for the direct hashing, none of the others
are one-to-one mapping

— Requiring collision resolution methods

e Each collision resolution method can be used
independently with each hash function

Cao Hoang Tru 28
CSE Faculty - HCMUT 01 December 2008

Collision Resolution

e A rule of thumb: a hashed list should not be allowed to
become more than 75% full.

Load factor:

o = (k/n) x 100
n = list size
k = number of filled elements

Cao Hoang Tru 29
CSE Faculty - HCMUT 01 December 2008

Collision Resolution

e As data are added and collisions are resolved,
hashing tends to cause data to group within the list

— Clustering: data are unevenly distributed across the list

e High degree of clustering increases the number of
probes to locate an element

— Minimize clustering

Cao Hoang Tru

30
CSE Faculty - HCMUT

01 December 2008

Collision Resolution

e Primary clustering: data become clustered around

a home address.

Insert A9I B9I C9I Dlll E12

A

B

C

D

E

[1]

Cao Hoang Tru
CSE Faculty - HCMUT

[9] [10] [11] [12][13]

31
01 December 2008

Collision Resolution

e Secondary clustering: data become grouped
along a collision path throughout a list.

Insert A,, By, Cy, Dy1, Ei5, Fs

A|IB|D|E C F
[1] [9] [10] [11][12] [13][14] [23]
Cao Hoang Tru 32

CSE Faculty - HCMUT 01 December 2008

Collision Resolution

e Open addressing
e Linked list resolution

e Bucket hashing

Cao Hoang Tru 33
CSE Faculty - HCMUT 01 December 2008

Open Addressing

e When a collision occurs, an unoccupied element is
searched for placing the new element in.

Cao Hoang Tru 34
CSE Faculty - HCMUT 01 December 2008

Open Addressing

e Hash function:

h:U— {0, .., m-1}
| |

set of keys addresses

Cao Hoang Tru 35
CSE Faculty - HCMUT 01 December 2008

Open Addressing

e Hash and probe function:

hp: Ux{0, .., m-1} - {0, ..., m-1}
| | |

set of keys probe numbers addresses

Cao Hoang Tru 36
CSE Faculty - HCMUT 01 December 2008

Open Addressing

Algorithm hashlnsert (ref T <array>, val k <key>)

Inserts key k into table T

1 i=0
2 loop (i <m)
1 j=hp(k, i)
2 if (T[j] = nil)
1 T[j]l=k
2 returnj
3 else
1 i=i+1

3 return error: “hash table overflow”

End hashInsert

Cao Hoang Tru
CSE Faculty - HCMUT

37
01 December 2008

Open Addressing

Algorithm hashSearch (val T <array>, val k <key>)

Searches for key k in table T

1 i=0
2 loop (i <m)
1 j=hp(k, i)
2 if (T[j] = k)
1 returnj
3 elseif (T[j] = nil)
1 return nil
4 else
1 i=i+1
3 return nil

End hashSearch

Cao Hoang Tru 38
CSE Faculty - HCMUT 01 December 2008

Open Addressing

e There are different methods:
— Linear probing
— Quadratic probing
— Double hashing
— Key offset

Cao Hoang Tru 39
CSE Faculty - HCMUT 01 December 2008

Linear Probing

e When a home address is occupied, go to the next
address (the current address + 1):

ho(k, i) = (h(k) + i) MOD m

Cao Hoang Tru 40
CSE Faculty - HCMUT 01 December 2008

Harry Eagle 166702 ——>

Cao Hoang Tru
CSE Faculty - HCMUT

Linear Probing

Hash
Function

002

\ 4

001 | Mary Dodd (379452)
002 | Sarah Trapp (070918)
003 | Bryan Devaux (121267)
008 | John Carver (378845)
306 | Tuan Ngo (160252)
307 | Shouli Feldman (045128)

41
01 December 2008

Harry Eagle 166702 ——>

Cao Hoang Tru
CSE Faculty - HCMUT

Linear Probing

Hash
Function

002

\ 4

A

A

001 | Mary Dodd (379452)
002 | Sarah Trapp (070918)
003 | Bryan Devaux (121267)
004 | Harry Eagle (166702)
008 | John Carver (378845)
306 | Tuan Ngo (160252)
307 | Shouli Feldman (045128)

42
01 December 2008

Linear Probing

e Advantages:
— uite simple to implement
— data tend to remain near their home address
(significant for disk addresses)

e Disadvantages:
— produces primary clustering

Cao Hoang Tru 43
CSE Faculty - HCMUT 01 December 2008

Quadratic Probing

e The address increment is the collision probe number
squared:

ho(k, i) = (h(k) + i2) MOD m

Cao Hoang Tru 44
CSE Faculty - HCMUT 01 December 2008

Quadratic Probing

e Advantages:
— works much better than linear probing

e Disadvantages:
— time required to square numbers
— produces secondary clustering

h(k;) = h(k;) = hp(k,, i) = hp(k,, i)

Cao Hoang Tru 45
CSE Faculty - HCMUT 01 December 2008

Double Hashing

e Using two hash functions:

hp(k, i) = (h(k) + ih,(k)) MOD m

Cao Hoang Tru 46
CSE Faculty - HCMUT 01 December 2008

Key Offset

e The new address is a function of the collision
address and the key.

offset = [key [/ listSize]
newAddress = (collisionAddress + offset) MOD listSize

Cao Hoang Tru 47
CSE Faculty - HCMUT 01 December 2008

Key Offset

e The new address is a function of the collision
address and the key.

offset = [key [/ listSize]
newAddress = (collisionAddress + offset) MOD listSize

ho(k, i) = (hp(k, i-1) + [k/m]) MOD m

Cao Hoang Tru 48
CSE Faculty - HCMUT 01 December 2008

Open Addressing

e Hash and probe function:

hp: Ux{0, .., m-1} - {0, ..., m-1}
| | |

set of keys probe numbers addresses

(hp(k,0), hp(k,1), ..., hp(k,m-1)) is a permutation of {0, 1, ..., m-1)

Cao Hoang Tru 49
CSE Faculty - HCMUT 01 December 2008

Linked List Resolution

e Major disadvantage of Open Addressing: each
collision resolution increases the probability for

future collisions.
— use linked lists to store synonyms

50

Cao Hoang Tru
CSE Faculty - HCMUT 01 December 2008

Linked List Resolution

001 | Mary Dodd (379452)
002 | Sarah Trapp (070918) > Harry Eagle (166702)

003 | Bryan Devaux (121267) 7
Chris Walljasper (572556)

U

overflow area

008 | John Carver (378845)

(= prime area
306 | Tuan Ngo (160252)
307 | Shouli Feldman (045128)
Cao Hoang Tru 51

CSE Faculty - HCMUT 01 December 2008

Bucket Hashing

e Hashing data to buckets that can hold multiple
pieces of data.

e Each bucket has an address and collisions are
postponed until the bucket is full.

Cao Hoang Tru 52
CSE Faculty - HCMUT 01 December 2008

002

Cao Hoang Tru
CSE Faculty - HCMUT

Bucket Hashing

Sarah Trapp (070918)
Harry Eagle (166702)
Ann Georgis (367173)

linear probing

53
01 December 2008

Indexing = Hashing

