
1

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Chapter 9: Hashing

• Basic concepts

• Hash functions

• Collision resolution

• Open addressing

• Linked list resolution

• Bucket hashing

2

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Sequential search: O(n) Requiring several

key comparisons

• Binary search: O(log2n) before the target is found

3

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

1,000,000500,000201,000,000

100,00050,00017100,000

10,0005,0001410,000

1,000500101,000

2561288256

5025650

168416

Sequential

(Worst Case)

Sequential

(Average)

BinarySize

• Search complexity:

4

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Is there a search algorithm whose complexity is

O(1)?

5

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Is there a search algorithm whose complexity is

O(1)?

YES.

6

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

memory addresseskeys

hashing

Each key has only one address

7

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

John Adams100

Ray Black007

Vu Nguyen005

Sarah Trapp002

Harry Lee001

Key Address

Vu Nguyen 102002

John Adams 107095

Sarah Trapp 111060

Hash
Function

005

100

002

8

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Home address: address produced by a hash
function.

• Prime area: memory that contains all the home
addresses.

9

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Synonyms: a set of keys that hash to the same
location.

• Collision: the location of the data to be inserted is
already occupied by the synonym data.

10

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

• Ideal hashing:

– No location collision

– Compact address space

11

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

[17][9][5][1]

A

Insert A, B, C

hash(A) = 9

hash(B) = 9

hash(C) = 17

12

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

[17][9][5][1]

BA

B and A
collide at 9

Collision Resolution

Insert A, B, C

hash(A) = 9

hash(B) = 9

hash(C) = 17

13

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

[17][9][5][1]

BAC

B and A
collide at 9

Collision Resolution

Insert A, B, C

hash(A) = 9

hash(B) = 9

hash(C) = 17

B and A
collide at 9

C and B
collide at 17

14

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Basic Concepts

[17][9][5][1]

BAC

Probing

Searh for B

hash(A) = 9

hash(B) = 9

hash(C) = 17

15

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Hash Functions

• Direct hashing

• Modulo division

• Digit extraction

• Mid-square

• Folding

• Rotation

• Pseudo-random

16

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Direct Hashing

• The address is the key itself:

hash(Key) = Key

17

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Direct Hashing

• Advantage: there is no collision.

• Disadvantage: the address space (storage size) is
as large as the key space

18

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Modulo Division

Address = Key MOD listSize + 1

• Fewer collisions if listSize is a prime number

• Example:

Numbering system to handle 1,000,000 employees

Data space to store up to 300 employees

hash(121267) = 121267 MOD 307 + 1 = 2 + 1 = 3

19

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Digit Extraction

Address = selected digits from Key

• Example:
379452 → 394

121267 → 112
378845 → 388
160252 → 102
045128 → 051

20

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Mid-square

Address = middle digits of Key2

• Example:
9452 * 9452 = 89340304 → 3403

21

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Mid-square

• Disadvantage: the size of the Key2 is too large

• Variations: use only a portion of the key

379452: 379 * 379 = 143641 → 364

121267: 121 * 121 = 014641 → 464
045128: 045 * 045 = 002025 → 202

22

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Folding

• The key is divided into parts whose size matches
the address size

Key = 123|456|789

fold shift

123 + 456 + 789 = 1368

⇒⇒⇒⇒ 368

23

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Folding

• The key is divided into parts whose size matches
the address size

Key = 123|456|789

fold shift fold boundary

123 + 456 + 789 = 1368 321 + 456 + 987 = 1764

⇒⇒⇒⇒ 368 ⇒⇒⇒⇒ 764

24

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Rotation

• Hashing keys that are identical except for the last
character may create synonyms.

• The key is rotated before hashing.

original key rotated key

600101 160010
600102 260010
600103 360010
600104 460010
600105 560010

25

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Rotation

• Used in combination with fold shift

original key rotated key

600101 → 62 160010 → 26
600102 → 63 260010 → 36
600103 → 64 360010 → 46
600104 → 65 460010 → 56
600105 → 66 560010 → 66

Spreading the data more evenly across the address space

26

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Pseudorandom

Pseudorandom
Number Generator

Key
Random
Number

Modulo
Division

Address

y = ax + c

For maximum efficiency, a and c should be prime numbers

27

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Pseudorandom

• Example:

Key = 121267 a = 17 c = 7 listSize = 307

Address = ((17*121267 + 7) MOD 307 + 1

= (2061539 + 7) MOD 307 + 1

= 2061546 MOD 307 + 1

= 41 + 1

= 42

28

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution

• Except for the direct hashing, none of the others
are one-to-one mapping

⇒ Requiring collision resolution methods

• Each collision resolution method can be used
independently with each hash function

29

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution

• A rule of thumb: a hashed list should not be allowed to
become more than 75% full.

Load factor:
α = (k/n) x 100

n = list size
k = number of filled elements

30

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution

• As data are added and collisions are resolved,
hashing tends to cause data to group within the list

⇒ Clustering: data are unevenly distributed across the list

• High degree of clustering increases the number of
probes to locate an element

⇒ Minimize clustering

31

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution

• Primary clustering: data become clustered around
a home address.

Insert A9, B9, C9, D11, E12

[9] [10] [11] [12] [13][1]

EDCBA

32

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution
• Secondary clustering: data become grouped

along a collision path throughout a list.

Insert A9, B9, C9, D11, E12, F9

[9] [10] [11] [12] [13] [14] [23][1]

FCEDBA

33

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Collision Resolution

• Open addressing

• Linked list resolution

• Bucket hashing

34

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing

• When a collision occurs, an unoccupied element is
searched for placing the new element in.

35

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing

• Hash function:

h: U →→→→ {0, …, m −−−− 1}

set of keys addresses

36

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing

• Hash and probe function:

hp: U ×××× {0, …, m −−−− 1} →→→→ {0, …, m − 1}

set of keys addressesprobe numbers

37

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing
Algorithm hashInsert (ref T <array>, val k <key>)

Inserts key k into table T

1 i = 0

2 loop (i < m)

1 j = hp(k, i)

2 if (T[j] = nil)

1 T[j] = k

2 return j

3 else

1 i = i + 1

3 return error: “hash table overflow”

End hashInsert

38

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing
Algorithm hashSearch (val T <array>, val k <key>)

Searches for key k in table T

1 i = 0

2 loop (i < m)

1 j = hp(k, i)

2 if (T[j] = k)

1 return j

3 else if (T[j] = nil)

1 return nil

4 else

1 i = i + 1

3 return nil

End hashSearch

39

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing

• There are different methods:

– Linear probing

– Quadratic probing

– Double hashing

– Key offset

40

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linear Probing

• When a home address is occupied, go to the next
address (the current address + 1):

hp(k, i) = (h(k) + i) MOD m

41

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linear Probing

Shouli Feldman (045128)307

Tuan Ngo (160252)306

John Carver (378845)008

Bryan Devaux (121267)003

Sarah Trapp (070918)002

Mary Dodd (379452)001

Harry Eagle 166702 Hash
Function

002

42

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linear Probing

Shouli Feldman (045128)307

Tuan Ngo (160252)306

John Carver (378845)008

Harry Eagle (166702)004

Bryan Devaux (121267)003

Sarah Trapp (070918)002

Mary Dodd (379452)001

Harry Eagle 166702 Hash
Function

002

43

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linear Probing

• Advantages:

– quite simple to implement

– data tend to remain near their home address

(significant for disk addresses)

• Disadvantages:

– produces primary clustering

44

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Quadratic Probing

• The address increment is the collision probe number
squared:

hp(k, i) = (h(k) + i2) MOD m

45

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Quadratic Probing

• Advantages:

– works much better than linear probing

• Disadvantages:

– time required to square numbers

– produces secondary clustering

h(k1) = h(k2) ⇒⇒⇒⇒ hp(k1, i) = hp(k2, i)

46

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Double Hashing

• Using two hash functions:

hp(k, i) = (h1(k) + ih2(k)) MOD m

47

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Key Offset

• The new address is a function of the collision
address and the key.

offset = [key / listSize]

newAddress = (collisionAddress + offset) MOD listSize

48

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Key Offset

• The new address is a function of the collision
address and the key.

offset = [key / listSize]

newAddress = (collisionAddress + offset) MOD listSize

hp(k, i) = (hp(k, i-1) + [k/m]) MOD m

49

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Open Addressing

• Hash and probe function:

hp: U ×××× {0, …, m −−−− 1} →→→→ {0, …, m − 1}

set of keys addressesprobe numbers

〈〈〈〈hp(k,0), hp(k,1), …, hp(k,m-1)〉〉〉〉 is a permutation of 〈〈〈〈0, 1, …, m-1〉〉〉〉

50

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linked List Resolution

• Major disadvantage of Open Addressing: each
collision resolution increases the probability for
future collisions.

⇒ use linked lists to store synonyms

51

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Linked List Resolution

Shouli Feldman (045128)307

Tuan Ngo (160252)306

John Carver (378845)008

Bryan Devaux (121267)003

Sarah Trapp (070918)002

Mary Dodd (379452)001

Harry Eagle (166702)

Chris Walljasper (572556)

overflow area

prime area

52

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Bucket Hashing

• Hashing data to buckets that can hold multiple
pieces of data.

• Each bucket has an address and collisions are
postponed until the bucket is full.

53

01 December 2008

Cao Hoang Tru

CSE Faculty - HCMUT

Bucket Hashing

Shouli Feldman (045128)

307

Chris Walljasper(572556)

Bryan Devaux (121267)

003

Ann Georgis (367173)

Harry Eagle (166702)

Sarah Trapp (070918)

002

Mary Dodd (379452)

001

linear probing

Indexing = Hashing

