
Data Structures – CSC212Data Structures – CSC212 1

AVL TreesAVL TreesAVL TreesAVL Trees
• A binary tree is a heightheight--balancedbalanced--pp--treetree if for

each node in the tree, the difference in height of its
two subtrees is at the most p.

2

•• AVL tree AVL tree is a BST that is height-balanced-1-tree.

2

41

3

41

5

Dr Muhammad Hussain Lecture - AVL Tree

3 5

Data Structures – CSC212Data Structures – CSC212 2

AVL TreesAVL TreesAVL TreesAVL Trees
A binary tree is an AVL tree if

• Each node satisfies BST property – key of
h d i h h k f h d ithe node is grater than the key of each node in

its left subtree and is smaller than the key of
each node in its right subtreeeach node in its right subtree

• Each node satisfies height-balanced-1-tree
property – the difference between the heightsproperty the difference between the heights
of the left subtree and right subtree of the node
does not exceed one.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212Data Structures – CSC212 3

70

60

20

60

70

30

20

110

70

903010

20

110

90

30 110 903010 110

80

An Imbalanced Tree A Balanced Tree

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 4

Insert 1, 2, 3, 4 and 5 in the given order

1

2 2

3 41

4
3 5

5

BST after insertions AVL Tree after insertions

Dr Muhammad Hussain Lecture - AVL Tree

BST after insertions AVL Tree after insertions

Data Structures – CSC212Data Structures – CSC212 5

Why AVL Trees ?Why AVL Trees ?
• When data elements are inserted in a BST in sorted

order: 1, 2, 3, … 1

yy

order: 1, 2, 3, …
BST becomes a degenerate tree.
Search operation FindKey takes O(n)

1

2Search operation FindKey takes O(n),
which is as inefficient as in a list.

• It is possible that after a number of insert and delete
3

• It is possible that after a number of insert and delete
operations a binary tree may become imbalanced and
increase in height.

n

g
• Can we insert and delete elements from BST so that its

height is guaranteed to be O(log n)?

Dr Muhammad Hussain Lecture - AVL Tree

g g (g)
• AVL tree ensures this.

Data Structures – CSC212 6

Specification of AVL Tree ADTSpecification of AVL Tree ADTSpecification of AVL Tree ADTSpecification of AVL Tree ADT

Elements: Elements: Any data typeAny data typey ypy yp
Structure: Structure: A binary tree such that if N is any node in the tree then all A binary tree such that if N is any node in the tree then all

nodes in its left nodes in its left subtreesubtree are smaller than N, and all nodes in its are smaller than N, and all nodes in its
right right subtreesubtree are larger than N. The height difference of the are larger than N. The height difference of the
two two subtreessubtrees of any node is at the most one. of any node is at the most one.
NoteNote: A node N is larger than the node M if key value of N is : A node N is larger than the node M if key value of N is
larger than that of M and vice versa.larger than that of M and vice versa.

D iD i N b f l t i b d dN b f l t i b d dDomain: Domain: Number of elements is boundedNumber of elements is bounded
Operations:Operations:

OperationOperation SpecificationSpecification

void void emptyempty()() Precondition: Precondition: nonenone..
Process: Process: returns true if the AVL has no nodes.returns true if the AVL has no nodes.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 7

OperationOperation SpecificationSpecification

void void findkeyfindkey ((intint k) k) Precondition: Precondition: none.none.
Process: Process: searches the AVL for a node whose key = k. If found then that searches the AVL for a node whose key = k. If found then that
node will be set as the current node and returns true. And if search failed, node will be set as the current node and returns true. And if search failed,
then (1) AVL empty then just return false; or (2) AVL not empty then then (1) AVL empty then just return false; or (2) AVL not empty then e () V e p y e jus e u a se; o () V o e p y ee () V e p y e jus e u a se; o () V o e p y e
current node is the node to which a node containing k would be attached current node is the node to which a node containing k would be attached
as a child if it were added to AVL and return false.as a child if it were added to AVL and return false.

void void insertinsert((intint k, Type k, Type valval)) Precondition: Precondition: AVL not full.AVL not full.
Process:Process: (1) if we already have a node with key = k then current retain(1) if we already have a node with key = k then current retainProcess: Process: (1) if we already have a node with key = k then current retain (1) if we already have a node with key = k then current retain
its old value (the value prior to calling this operation) and return false; or its old value (the value prior to calling this operation) and return false; or
(2) insert a new node with the given key and data and setting it as current (2) insert a new node with the given key and data and setting it as current
node, return true.node, return true.

void void updateupdate(Type)(Type) Precondition/Requires : Precondition/Requires : AVLisAVLis not empty.not empty.
Process: Process: update the value of data of the current node, key remains update the value of data of the current node, key remains
unchanged.unchanged.

TypeType retrieveretrieve()() Precondition:Precondition: AVL is not emptyAVL is not empty..Type Type retrieveretrieve()() Precondition: Precondition: AVL is not emptyAVL is not empty..
Process: Process: returns data of the current node.returns data of the current node...

boolbool remove_keyremove_key((intint k)k) Precondition: Precondition: nonenone..
Process: Process: removes the node containing the key = k, and in case BST is removes the node containing the key = k, and in case BST is

t t th t th t th t d R t t f lt t th t th t th t d R t t f l

Dr Muhammad Hussain Lecture - AVL Tree

not empty then sets the root as the current node. Returns true or false not empty then sets the root as the current node. Returns true or false
depending on whether the operation was successful or not.depending on whether the operation was successful or not.

Data Structures – CSC212 8

Representation of AVL Tree ADTRepresentation of AVL Tree ADT
Since AVL is a special binary tree, it can be represented using Since AVL is a special binary tree, it can be represented using

-- Linked ListLinked List

NoteNote : Array is not suitable for AVL: Array is not suitable for AVL

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 9

Implementation of AVL
public class AVLNodeAVLNode <T> {

public int key bal;

Implementation of AVL

public int key, bal;
public T data;
public AVLNode<T> left, right;

public AVLNode(int k, T val) {
key = k; bal = 0;
data = val;
left = right = null;left right null;

}
public AVLNode (int k, AVLNode<T> l, AVLNode<T> r) {

key = k; bal = 0;
l f lleft = l;
right = r;

}
}

Dr Muhammad Hussain Lecture - AVL Tree

}

Data Structures – CSC212 10

Implementation of AVL
public class Flag Flag {

boolean value;

Implementation of AVL

boolean value;
/** Creates a new instance of Flag */
public Flag() {

value = false;
}
public Flag(boolean v){

value = v;
}}
public boolean get_value (){

return value;
}

bli id l (b l){public void set_value(boolean v){
value = v;

}
}

Dr Muhammad Hussain Lecture - AVL Tree

}

Data Structures – CSC212

Implementation of AVL
public class AVLAVL <T> {

AVLNode<T> root current;

Implementation of AVL

AVLNode<T> root, current;
public BST()

private AVLNode<T> findparent (AVLNode<T> p)
private AVLNode<T> find_min(AVLNode<T> p)
private AVLNode<T> remove_aux(int key, AVLNode<T> p, Flag
flag)

public boolean empty()
public T retrieve ()
public boolean findkey(int tkey)
public boolean insert (int k, T val)
public boolean remove_key (int tkey)
public boolean update(int key, T data)

}

Dr Muhammad Hussain Lecture - AVL Tree

}

Data Structures – CSC212 12

NoteNote
There is always a unique path from the root to the new node. It is There is always a unique path from the root to the new node. It is
called the called the search pathsearch path..

NoteNote

pp
A A pivot nodepivot node is a node closest to the new node on the search path, is a node closest to the new node on the search path,
whose balance factor is either whose balance factor is either ––1 1 or +or +11..

0 Insert 40 +1
20

3010

0

00

Insert 40 +1
20

3010
+10

303010 3010

40

0
30

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 13

30
+1No Pivot node

30

0-1

0

5020
+1-1

0 0
Insert 55

5020
0

60

0

4010

0 0 60

-1

4010

0 0

0
604010

55

30
+1

30
+1

5020
+1-1

-10 0
Insert 655020

+1-1

10 0

60

-1

4010
0

60

-1

4010

0 0

0

Dr Muhammad Hussain Lecture - AVL Tree

55Pivot node55 65

Data Structures – CSC212 14

• If, after an insert operation or a delete operation, an AVL tree , p p ,
becomes imbalanced, adjustments must be made to the tree to
change it back into an AVL tree.

• These adjustments are called rotationsrotationsThese adjustments are called rotationsrotations.
• Rotations are either singlesingle or doubledouble rotations.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212Data Structures – CSC212 15

Insert OperationInsert Operationpp
• Step 1: Insert a node into the AVL tree as it is inserted

in a BSTin a BST
• Step 2: Examine the search path to see if there is a pivot pivot

nodenode. Three cases may arise.y
Case 1: There is no pivot node. No adjustment required.
Case 2: The pivot node exists and the subtree of theCase 2: The pivot node exists and the subtree of the

pivot node to which the new node is added has
smaller height. No adjustment required

Case 3: The pivot node exists and the subtree to which
the new node is added has the larger height.

Dr Muhammad Hussain Lecture - AVL Tree

Adjustment required.

Data Structures – CSC212 16

Insert: Case Insert: Case 1 1 –– No pivot nodeNo pivot nodepp

20
0

00

Insert 40 +1
20

10

3010
00

3010
+10

0
30

40

30
+1

30

0-1

0

5020
+1-1

10 0
Insert 55

5020
0

00 0 60

-1

4010

0 0

0

Dr Muhammad Hussain Lecture - AVL Tree

604010 55

Data Structures – CSC212 17

Insert: Case Insert: Case 2 2 –– Pivot node exits Pivot node exits

+1
20

0
20Pivot Node

New node added to the shorter subtree of the Pivot node .

3010
+10

0

3010
+1-1

0
30

0

Insert 5

40
0

405
0

+1
30 30 +1

5020
+1-1

10 0

30

5020
0-1

0

+1

Insert 45

70

60
+1

4010

0 0

0 60
+1

4010

0 +1

0
0

Dr Muhammad Hussain Lecture - AVL Tree

70 7045
0

Pivot Node

Data Structures – CSC212Data Structures – CSC212 18

NoteNote
In this case In this case

If balance factor of the pivot node is +If balance factor of the pivot node is +11 the new node is insertedthe new node is inserted

NoteNote

If balance factor of the pivot node is +If balance factor of the pivot node is +11, the new node is inserted , the new node is inserted
in the left in the left subtreesubtree
If balance factor of the pivot node is If balance factor of the pivot node is --11, the new node is inserted , the new node is inserted
in the right in the right subtreesubtree

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 19

Insert: Case Insert: Case 3 3 –– Pivot node exits Pivot node exits

-1
60

New node added to the longer subtree of the Pivot node.

1

8040
+1-2

0 0Pivot Node

-1
60

8040
+1-1 Insert 5

100
0

5020

0

0 0

0Pivot Node 8040

100
0

5020

0 0

10 30
10 30

0 0

5

Note: AVL Tree is no more an AVL Tree after insertion.

Dr Muhammad Hussain Lecture - AVL Tree

Note: AVL Tree is no more an AVL Tree after insertion.

Data Structures – CSC212 20

NoteNote
Case Case 3 3 has further has further 4 4 cases:cases:
LeftLeft--left case: left case: An insertion in the left An insertion in the left subtreesubtree of the left child of the left child

ff th i t dth i t dof of the pivot nodethe pivot node
RightRight--left case:left case: An insertion in the right An insertion in the right subtreesubtree of the left child of the left child

ofof pivot nodepivot nodeof of pivot nodepivot node
LeftLeft--right case: right case: An insertion in the left An insertion in the left subtreesubtree of the right of the right

child of pivot nodechild of pivot node
RightRight--right case: right case: An insertion in the right An insertion in the right subtreesubtree of the right of the right

child of pivot nodechild of pivot node
In the casesIn the cases leftleft leftleft andand rightright rightright single rotationsingle rotation is appliedis appliedIn the cases In the cases leftleft--leftleft and and rightright--rightright, , single rotation single rotation is applied is applied
after new node is inserted.after new node is inserted.
In the cases In the cases rightright--leftleft and and rightright--leftleft, , double rotation double rotation is applied is applied

Dr Muhammad Hussain Lecture - AVL Tree

gg gg ,, pppp
after new node is inserted.after new node is inserted.

Data Structures – CSC212 21

Insert: LeftInsert: Left--left left subcasesubcase
Remainder of
the tree

Remainder of
the tree

B Pivot A
Single Rotation

A

B

T3

Pivot

B

A

h

T3

T1 T2 T3

T1

T2

h h
T1

New Node

T3

New Node

T2

Dr Muhammad Hussain Lecture - AVL Tree

Note: Rotation is applied about pivot node.

Data Structures – CSC212Data Structures – CSC212 22

B Pivot A

A
T3

B

A

Single RotationT3

T1 T2 T3

T1

T2

Single Rotation

New Node New Node

public void public void rotateLeftChildrotateLeftChild((AVLNodeAVLNode<T> B)<T> B)
{{

AVLNodeAVLNode<T> A =<T> A = B.leftB.left;;AVLNodeAVLNode<T> A <T> A B.leftB.left;;
B.leftB.left = = A.rightA.right;;
A.rightA.right = B;= B;
B = A;B = A;

}}

Dr Muhammad Hussain Lecture - AVL Tree

}}

Data Structures – CSC212 23
-1

60-1Example 1

8040
+1-2

0
0 0

60

8040
+1-1 Insert 5

100
0

5020
0 0

08040

100
0

5020

0 0

5

10 30
10 30

0 0

-1
60

5

8020
+10

0
-1 0 Single rotation

100
0

4010
0 0 0

Dr Muhammad Hussain Lecture - AVL Tree

5 30 50

Data Structures – CSC212 24

Insert: RightInsert: Right--right right subcasesubcase

Remainder of
the tree

Remainder of
the tree the tree

A
Single RotationBPivot

B

T1

h

h h

A
T3

T3

New Node

T2T1

N N d

T2

Dr Muhammad Hussain Lecture - AVL Tree

New NodeNew Node

Data Structures – CSC212Data Structures – CSC212 25

ABPivot

B

A

Si l R i
h A

B

T3

Pivot

T3

T1

T2

Single Rotation
h h

T3

T1T2 T3

New Node

T2

New Node

public void public void rotateRightChildrotateRightChild((AVLNodeAVLNode<T> B)<T> B)
{{

AVLNodeAVLNode<T> A =<T> A = B.rightB.right;;AVLNodeAVLNode<T> A <T> A B.rightB.right;;
B.rightB.right = = A.leftA.left;;
A.leftA.left = B;= B;
B = A;B = A;

}}

Dr Muhammad Hussain Lecture - AVL Tree

}}

Data Structures – CSC212Data Structures – CSC212 26

-1Example 2 -1
60

8040
+1-1 Insert 135

60

8040
+2-1

8040

100
0

7020

0 0
8040

100
+1

7020

0 0

110 130 110 130-1
60

+1

135

10040
0-1

+1
0 0

Single rotation130
+1

8020

135

Dr Muhammad Hussain Lecture - AVL Tree

110 13570

Data Structures – CSC212Data Structures – CSC212 27

Insert: LeftInsert: Left--right right subcasesubcase

Remainder of
the tree

Remainder of
the tree

Double Rotation

A

B Pivot

h A

C Pivot

B

Double Rotation

A
T4

T1
Ch

h

A B

T2 T3
h-1 h-1 h

T2 T3
h-1 h-1 T4T1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212Data Structures – CSC212 28

B Pivot C Pivot

A
T4

h

h A B

D bl R i
T1

C

T3

h

h-1 h-1

h

T4T1
T2 T3

h-1 h-1 hDouble Rotation

T2 T3

public void public void doubleRotateleftChilddoubleRotateleftChild((AVLNodeAVLNode<T> B)<T> B)
{{

rotateRightChildrotateRightChild((B.leftB.left););rotateRightChildrotateRightChild((B.leftB.left););
rotateleftChildrotateleftChild(B);(B);

}}

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 29
-1

60-1Example 3

8040
+1-2

0
0 0

60

8040
+1-1 Insert 25

100
0

5020
0 0

08040

100
0

5020

0 0

10 30
10 30

0 0

-1
60

25

8030
+10

0
-1 0 Double rotation

100
0

4020
0 0 0

Dr Muhammad Hussain Lecture - AVL Tree

10 25 50

Data Structures – CSC212Data Structures – CSC212 3030

Insert: LeftInsert: Left--right right subcasesubcase

Remainder of
the tree

Remainder of
the tree

Double Rotation

A

B Pivot

h A

C Pivot

B

Double Rotation

A
T4

T1
Ch

h

A B

T2 T3
h-1 h-1 h

T2 T3
h-1 h-1 T4T1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 31
-1

60-1Example 4
31

8040
+1-2

0
0 0

60

8040
+1-1 Insert 35

100
0

5020
0 0

08040

100
0

5020

0 0

35

10 30
10 30

0 0

-1
60

35

8030
+10

0
-1 0 Double rotation

100
0

4020
0 0 0

Dr Muhammad Hussain Lecture - AVL Tree

10 35 50

Data Structures – CSC212 32
Insert: RightInsert: Right-- Left Left subcasesubcase

Remainder of
the tree

Remainder of
the tree

BPivot
Double Rotation

A

B

T4

Pivot

h A

CPivot

BT4

T1
C h

h

T4 T1
T2T3

h-1h-1h

T2T3
h-1h-1 T4 T1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212Data Structures – CSC212 33

BPivot CPivot

A
T4

h

h AB

T1
C h

h-1h-1

h

T4 T1
T2T3

h-1h-1h

Double Rotation
T2T3

h 1h 1

public void public void doubleRotateRightChilddoubleRotateRightChild((AVLNodeAVLNode<T> B)<T> B)
{{

rotateLeftChildrotateLeftChild((B.rihgtB.rihgt););rotateLeftChildrotateLeftChild((B.rihgtB.rihgt););
rotatRightChildrotatRightChild(B);(B);

}}

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 3434

-1Example 5
60

8040
+1-1 Insert 83

-1
60

+2-1
8040

100
0

7020

0 0 8040

100
-1

7020

0 0

85 110
85

1007020

110-1
60

83
8540

0-1

0 0
Double rotation100

+1
8020

0 0

Dr Muhammad Hussain Lecture - AVL Tree

83 11070

Data Structures – CSC212 35

Insert: RightInsert: Right-- Left Left subcasesubcase

Remainder of
the tree

Remainder of
the tree

Double Rotation

A

B

T4

Pivot

h A

CPivot

BT4

T1
C h

h

AB

T2T3
h-1h-1h

T2T3
h-1h-1 T4 T1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 3636

-1Example 6
60

8040
+1-1 Insert 87

-1
60

+2-1
8040

100
0

7020

0 0 8040

100
-1

7020

0 0

85 110
85

1007020

110-1
60

87
8540

0-1

0 -1
Double rotation100

0
8020

0 -1

Dr Muhammad Hussain Lecture - AVL Tree

87 11070

Data Structures – CSC212Data Structures – CSC212 37

Delete OperationDelete OperationDelete OperationDelete Operation

•• Step Step 11: Delete the node as in BST. Leaf node will always be : Delete the node as in BST. Leaf node will always be pp yy
deleted.deleted.

•• Step Step 22: : Check each Check each node node pp on on the path from the root to the path from the root to the parent the parent
nodenode WW of the deleted node. Start from the node on theof the deleted node. Start from the node on thenode node WW of the deleted node. Start from the node on the of the deleted node. Start from the node on the
path closest to path closest to W.W. Three Three cases cases are possible.are possible.

Case Case 11: Node : Node pp has balance factor has balance factor 00. No rotation needed.. No rotation needed.
CC 22 N dN d h b l f f +h b l f f +11 ((11)) d dd dCase Case 22:: Node Node pp has balance factor of +has balance factor of +1 1 (or (or ––11)) and a node and a node

was was deleted from deleted from right subright sub--tree (or left tree (or left subtreesubtree).). No No
rotation neededrotation needed..

Case Case 33:: Node p has balance factor of +Node p has balance factor of +1 1 (or (or ––11)) and a node was and a node was
deleted deleted from from left subleft sub--tree (right subtree (right sub--tree). tree). Rotation Rotation
needed. Four subneeded. Four sub--cases are possible. cases are possible.

Dr Muhammad Hussain Lecture - AVL Tree

pp

Data Structures – CSC212 38

Let
• q be the child of p with larger height
• r be the child of q with larger height

Sub-case -1 (left-left)
Remainder of
the treeSub case 1 (left left)

r is left child of q, and q is left child of p
Apply Single rotation

Sub-case -2 (right-right)

the tree

p -2
h(g g)

r is right child of q, and q is right child of p
Apply Single rotation

Sub-case -3 (left-right)
q

+1

+1

T4

h

(g)
r is left child of q, and q is right child of p
Apply double rotation

Sub-case -4 (right-left)

h-1

h-1 h

r
T1

(g)
r is right child of q, and q is left child of p
Apply Single rotation

h 1 h

T3T2

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 39

Case 1
Balance factor of p is 0

Remainder of
the tree

Remainder of
the tree

0p +1p

hh-1 hh-1

Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 40

Case 2
Balance factor of p is -1 and node is deleted from left subtree

Remainder of
the tree

Remainder of
the tree

-1p 0p

hh hh

Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 4141

Case 2
Balance factor of p is +1 and node is deleted from right subtree

Remainder of
the tree

Remainder of
the tree

+1p 0p

hh hh

Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212Data Structures – CSC212 42

Case 3 – Subcase 1 (left-left)()
r is left child of q, and q is left child of p

Remainder of
the tree

Remainder of
the tree

Single Rotation

-2
p

-1
q0

0Single Rotation

r

q
-1

T4 h

r p-1
h

h-1

h h-1

r

T1
h-1

h h-1
T1T3T2 T4

Dr Muhammad Hussain Lecture - AVL Tree

T3T2

Data Structures – CSC212 4343

Case 3 – Subcase 2 (right-right)
r is right child of q, and q is right child of p

Remainder of
the tree

Remainder of
the tree

Single Rotation
q

0

0
+2

p
+1 +1

h
h 1

p r0

r

q

+1T4

h

h-1
h h-1

T2T1T4 T3h-1

h-1 h

r

T1

Dr Muhammad Hussain Lecture - AVL Tree

T3T2

Data Structures – CSC212 4444

Case 3 – Subcase 3 (left-right)
r is right child of q, and q is left child of p

Remainder of
the tree

Remainder of
the tree

Double Rotation r

0

0-2 p

+1 +1

h
h 1

q p0

h 1 r

q

-1 T4

h

h-1
h-1 h

T3T2T1 T4
h-1

h h-1

r
T1

Dr Muhammad Hussain Lecture - AVL Tree

T3T2

Data Structures – CSC212 454545

Case 3 – Subcase 4 (right-left)
r is left child of q, and q is right child of p

Remainder of
the tree

Remainder of
the tree

Single Rotation
r

1

0
+2

p
-1 0

h 1h

p q-1

h 1r

q

+1
T4

h

h-1h
h h-1

T3T2T4 T1
h-1

h-1 h

r
T1

+1

Dr Muhammad Hussain Lecture - AVL Tree

T3T2

Data Structures – CSC212 46

Deletion: ExampleDeletion: Example

1

p

m

e
+1

-1
+1

+1

Delete p

njc s
-1

1 0

-1
+1

+1

0

hdb k uo r
-1

0

0
-1 +1 0

0
-1

a g i tl
0

-1

0
0 0

0

Dr Muhammad Hussain Lecture - AVL Tree

f0

Data Structures – CSC212 47

Deletion: Example

1

Deletion: Example

o

m

e
+1

-1
+2

+1

Delete p

njc s
-1

1 0

-1
0

+1

0

hdb k ur
-1

0

0
-1 +1

0
-1

Sub-Case 1
Single Rotation

a g i tl
0

-1

0
0 0

0

Dr Muhammad Hussain Lecture - AVL Tree

f0

Data Structures – CSC212 48

Deletion: ExampleDeletion: Example

-2

s

m

e
+1 0

1

ojc u
-1

-1
0

-1

0

hdb k r tn

-1

0

0
-1 +1

0

00

a g i l
0

-1

0 0

00

Sub Case 8
Double Rotation

Dr Muhammad Hussain Lecture - AVL Tree

f0

Data Structures – CSC212 49

Deletion: ExampleDeletion: Example

0

m

j

e
0 +1

0

After
Double Rotation

khc s
-1

-1
+1

0

0

gdb i l o u

-1

0

0
-1 0

0

0

-1

a f
0

0
0

0 rn t0
0

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures – CSC212 50

((ii)) Is the following tree an AVL tree? If not, convert it into an Is the following tree an AVL tree? If not, convert it into an
Exercise Exercise 11

60

AVL tree.AVL tree.

30 80

120

((iiii)) Insert the nodes Insert the nodes 7070, , 125125, , 6565, , 7272, and , and 61 61 in the tree given in the tree given
in part (i), one at a time, and show the result of each in part (i), one at a time, and show the result of each
insertion in a separate diagram. Ensure that the resulting insertion in a separate diagram. Ensure that the resulting
tree satisfies AVL condition. tree satisfies AVL condition. ff

((iiiiii)) Delete node Delete node 120 120 from the AVL tree you get in part (ii) from the AVL tree you get in part (ii)
and and show the result in a separate diagram. Make sure the show the result in a separate diagram. Make sure the
resulting tree is an AVL treeresulting tree is an AVL tree

Dr Muhammad Hussain Lecture - AVL Tree

resulting tree is an AVL tree.resulting tree is an AVL tree.

Data Structures – CSC212 51

11 What is an AVL tree and when is it used?What is an AVL tree and when is it used?

Exercise Exercise 11

1.1. What is an AVL tree and when is it used?What is an AVL tree and when is it used?
2.2. What is the time complexity for inserting N keys What is the time complexity for inserting N keys

into an AVL tree?into an AVL tree?into an AVL tree?into an AVL tree?
3.3. Insert the following keys into an empty AVL tree Insert the following keys into an empty AVL tree 55, ,

11,, 22,, 66,, 88,, 33,, 9911, , 22, , 66, , 88, , 33, , 99
4.4. Delete Delete 88 88 and then and then 3333. .

4444

17 78

8832 50

48 62

Dr Muhammad Hussain Lecture - AVL Tree

48 62

Data Structures – CSC212 52

6.6. Delete Delete 38 38 from the following AVL treefrom the following AVL tree

35
+1

-1
+1

38

36235

8

45

+1

-1
1

+1
+1

36235 45

2172 33 4737 41
-1 0

-1

1 +1 0
0

-1
2172

1 20 22

33 4737 41

4634
0

-1

-1

1 0

0
1 20

9

22

0
0 0

Dr Muhammad Hussain Lecture - AVL Tree

