Data Structures — CSC212 1

AVL Trees

« A binary tree iIs a height-balanced-p-tree if for
each node In the tree, the difference in height of its
two subtrees Is at the most p.

 AVL treeisaBST that is height-balanced-1-tree.

¢
ot

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 2

AVL Trees

A binary tree is an AVL tree if

e Each node satisfies BST property — key of
the node Is grater than the key of each node In
Its left subtree and is smaller than the key of
each node in its right subtree

e Each node satisfies height-balanced-1-tree
property — the difference between the heights
of the left subtree and right subtree of the node
does not exceed one.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 3

An Imbalanced Tree A Balanced Tree

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 4

Insert 1, 2, 3, 4 and 5 in the given order

(2
3 ()

@@ o

BST after insertions AVL Tree after insertions

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 5

Why AVL Trees ?

 \When data elements are inserted in a BST iIn sorted
order: 1, 2, 3, ...

BST becomes a degenerate tree.
Search operation FindKey takes O(n),
which is as inefficient as in a list.

e [tis possible that after a number of insert and delete |
operations a binary tree may become imbalanced and
Increase in height.

e Can we Insert and delete elements from BST so that its
height Is guaranteed to be O(log n)?

e AVL tree ensures this.

Dr Muhammad Hussain Lecture - AVL Tree

Specification of AVL Tree ADT

Elements: Any data type

Structure: A binary tree such that if N is any node in the tree then all
nodes in its left subtree are smaller than N, and all nodes in its
right subtree are larger than N. The height difference of the
two subtrees of any node is at the most one.
Note: A node N is larger than the node M if key value of N is
larger than that of M and vice versa.

Domain: Number of elements is bounded

Operations:
Operation Specification
void empty() Precondition: none.
Process: returns true if the AVL has no nodes.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 7

Operation Specification

void findkey (int k) Precondition: none.

Process: searches the AVL for a node whose key = k. If found then that
node will be set as the current node and returns true. And if search failed,
then (1) AVL empty then just return false; or (2) AVL not empty then
current node is the node to which a node containing k would be attached
as a child if it were added to AVL and return false.

void insert(int k, Type val) | Precondition: AVL not full.

Process: (1) if we already have a node with key = k then current retain
its old value (the value prior to calling this operation) and return false; or
(2) insert a new node with the given key and data and setting it as current
node, return true.

void update(Type) Precondition/Requires : AVLis not empty.
Process: update the value of data of the current node, key remains
unchanged.

Type retrieve() Precondition: AVL is not empty.

Process: returns data of the current node..

bool remove_key(int k) Precondition: none.

Process: removes the node containing the key = k, and in case BST is
not empty then sets the root as the current node. Returns true or false
depending on whether the operation was successful or not.

Dr Muhammad Hussain Lecture - AVL Tree

Representation of AVL Tree ADT

Since AVL is a special binary tree, it can be represented using
- Linked List

Note : Array Is not suitable for AVL

Dr Muhammad Hussain Lecture - AVL Tree

Implementation of AVL

public class AVLNode <T> {
public 1nt key, bal;
public T data;
public AVLNode<T> left, right;

public AVLNode(int k, T val) {

key = k; bal = O;
data = val;
left = right = null;
¥
public AVLNode (int k, AVLNode<T> 1, AVLNode<T> r) {
key = k; bal = 0;
left = 1;
right = r;

Dr Muhammad Hussain

Lecture

- AVL Tree

Data Structures — CSC212

Implementation of AVL

10

public class Flag {
boolean value;
/** Creates a new instance of Flag */

public Flag(Q) {
value = false;
}

public Flag(boolean v){
value = v;

ks

public boolean get value (){
return value;

ks

public void set value(boolean v){
value = v;

}

Dr Muhammad Hussain

Lecture - AVL Tree

Implementation of AVL

public class AVL <T> {
AVLNode<T> root, current;
public BST()

private AVLNode<T> findparent (AVLNode<T> p)

private AVLNode<T> find_min(AVLNode<T> p)

private AVLNode<T> remove_ aux(int key, AVLNode<T> p, Flag
flag)

public boolean empty()

public T retrieve ()

public boolean findkey(int tkey)
public boolean 1nsert (int k, T val)
public boolean remove key (int tkey)
public boolean update(int key, T data)

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 12

Note

» There is always a unique path from the root to the new node. It is
called the search path.

» A pivot node is a node closest to the new node on the search path,
whose balance factor is either —1 or +1.

/'\ Insert 40 1

o0 &6 q”

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 13

No Pivot node /‘\+1

-1 1

Insert 55) ‘ O/Q }
W ‘0

/ S +1
@

Pivot node

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 14

o |f, after an insert operation or a delete operation, an AVL tree
becomes imbalanced, adjustments must be made to the tree to

change it back into an AVL tree.
» These adjustments are called rotations.
* Rotations are either single or double rotations.

Lecture - AVL Tree

Dr Muhammad Hussain

Data Structures — CSC212 15

Insert Operation

e Step 1: Insert a node into the AVL tree as it Is inserted
Ina BST

o Step 2: Examine the search path to see if there is a pivot
node. Three cases may arise.

Case 1: There is no pivot node. No adjustment required.

Case 2. The pivot node exists and the subtree of the
pivot node to which the new node Is added has
smaller height. No adjustment required

Case 3: The pivot node exists and the subtree to which
the new node Is added has the larger height.
Adjustment required.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 16

Insert: Case 1 — No pivot node

0 Insert 40 /'\+1
0 ' 0

ONON
0

0

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 17

Insert: Case 2 — Pivot node exits

New node added to the shorter subtree of the Pivot node .

»A«

Pivot Node

Insert 5

Insert 45

Pivot Nod ‘b

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 18

Note

In this case

» If balance factor of the pivot node is +1, the new node is inserted
In the left subtree

» If balance factor of the pivot node is -1, the new node is inserted
In the right subtree

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 19

Insert: Case 3 — Pivot node exits

New node added to the longer subtree of the Pivot node.

A-l
-2 +1

Insert 5

Pivot Node

O

Note: AVL Tree is no more an AVL Tree after insertion.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 20

Note
Case 3 has further 4 cases:
L_eft-left case: An 1nsertion In the left subtree of the left child

of the pivot node

Right-left case: An insertion in the right subtree of the left child
of pivot node

Left-right case: An insertion in the left subtree of the right
child of pivot node

Right-right case: An insertion in the right subtree of the right
child of pivot node

O In the cases left-left and right-right, single rotation is applied
after new node Is inserted.

O In the cases right-left and right-left, double rotation is applied
after new node Is inserted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

Insert: Left-left subcase

Pivot Single Rotation

New Node

Note: Rotation is applied about pivot node.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 22

I}II.L\PhKH

AN Single Rotation T1 VRN
New Node New Node
public void rotateLeftChild(AVLNode<T> B)
{
AVLNode<T> A = B.left;
B.left = A_.right;
A.right = B;
B = A;
+

Lecture - AVL Tree

Dr Muhammad Hussain

Data Structures — CSC212

Example 1

Single rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 24

Insert: Right-right subcase

Pivot ! Single Rotation

A
Ah

New Node

AA
New Node

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 25

F%vot

Slngle Rotation

® A
L=

New Node New Node

public void rotateRightChild(AVLNode<T> B)
{

AVLNode<T> A = B.right;

B.right = A_left;

A_left = B;

B = A;
+

Lecture - AVL Tree

Dr Muhammad Hussain

Data Structures — CSC212 26

-1 -1
/ \ Insert 135 -1 / \
0 /‘\ 0 /‘\ +1

&i o *
08,

Example 2

Single rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 27
Insert: Left-right subcase

Double Rotation
Pivot - Pivot

& A
A

/

h% ‘1-1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 28

/‘\Pivot /@;)\Pivot
& A ol N
A A

N

Double Rotation N h-1= h

public void doubleRotateleftChild(AVLNode<T> B)
{
rotateRightChild(B.left);
rotateleftChild(B);
+

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

Example 3

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 30
Insert: Left-right subcase

Double Rotation
Pivot l

h ‘C’;‘“ |

h-1 h-1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

-1
-1 /‘\ +1 Insert 35
.-
&%
0

Example 4

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

Insert: Right- Left subcase

Double Rotation

)

Dr Muhammad Hussain Lecture - AVL Tree

33

Data Structures — CSC212

Vo

h
(©) :
Double Rotation

A

public void doubleRotateRightChild(AVLNode<T> B)
{
rotateLeftChild(B.rihgt);
rotatRightChild(B);
ks

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 34

Lo 0
.o =

Example 5

Pud oA-l
A‘l“ °s e

0/‘\ +1 ‘

’\“ Double rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 35

Insert: Right- Left subcase

Double Rotation

‘ Pivot
@ ¢
A A

1 =h-1

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 36

Lo 0
.0 =

Example 6

8.0
A‘l“ db

Double rotation

<o A
cb

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 37

Delete Operation

o Step 1: Delete the node as in BST. Leaf node will always be
deleted.

o Step 2: Check each node p on the path from the root to the parent
node W of the deleted node. Start from the node on the
path closest to W. Three cases are possible.

Case 1. Node p has balance factor 0. No rotation needed.

Case 2: Node p has balance factor of +1 (or —1) and a node

was deleted from right sub-tree (or left subtree). No
rotation needed.

Case 3: Node p has balance factor of +1 (or —1) and a node was
deleted from left sub-tree (right sub-tree). Rotation
needed. Four sub-cases are possible.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 38

Let
 (be the child of p with larger height
* r be the child of q with larger height

Sub-case -1 (left-left)
> ris left child of g, and q is left child of p
» Apply Single rotation

Sub-case -2 (right-right) h
» risright child of g, and q is right child of p +1
» Apply Single rotation

Sub-case -3 (left-right) rl
» risleftchild of g,and g isrightchildof p h-
» Apply double rotation /
Sub-case -4 (right-left) h-1 h
» risright child of q, and q is left child of p
» Apply Single rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 39

Casel

Balance factor of pisO

i ! : —
h-1 h
Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 40

Case 2

Balance factor of p is -1 and node is deleted from left subtree

-1

=)

P P
A
Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 41

Case 2

Balance factor of p is +1 and node is deleted from right subtree

+1

P
A
Node to be
deleted.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 42

Case 3 — Subcase 1 (left-left)
r is left child of g, and g is left child of p

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 43

Case 3 — Subcase 2 (right-right)
r is right child of g, and q is right child of p

<

Single Rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 44

Case 3 — Subcase 3 (left-right)
r is right child of q, and q is left child of p

<

-2 Double Rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 45

Case 3 — Subcase 4 (right-left)
r is left child of g, and q is right child of p

<

Single Rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 46

Deletion: Example

Delete p

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 47

Deletion: Example

Delete p

Sub-Case 1
Single Rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 48

Deletion: Example

Sub Case 8
Double Rotation

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 49

Deletion: Example

After

Double Rotation 0 ~

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

(i) Is the following tree an AVL tree? If not, convert it into an
AVL tree.

G &

(29

(i) Insert the nodes 70, 125, 65, 72, and 61 In the tree given
In part (i), one at a time, and show the result of each
Insertion Iin a separate diagram. Ensure that the resulting
tree satisfies AVL condition.

(i11) Delete node 120 from the AVL tree you get in part (ii)
and show the result in a separate diagram. Make sure the
resulting tree is an AVL tree.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212

1. What is an AVL tree and when is it used?

2. What is the time complexity for inserting N keys
Into an AVL tree?

3. Insert the following keys into an empty AVL tree 5,
1,2,6,8,3,9

4. Delete 88 and then 33.

Dr Muhammad Hussain Lecture - AVL Tree

Data Structures — CSC212 52
6. Delete 38 from the following AVL tree

Dr Muhammad Hussain Lecture - AVL Tree

