Chuong 5: XOAN THUAN TUY

¥
pE)

5.1. BIEN DANG XOAN
5.2. MOMENT XOAN
5.3. TRUYEN DONG CONG SUAT

5.4. GOC XOAN

LTA_ Co hoc vét liéu (215004)

IS Chuong 5: XOAN THUAN TUY

5.1. BIEN DANG XOAN
Xét mot thanh c6 mét cat ngang hinh tron

circutar

Longitudinal
lines become deformed
twisted plane

undeformed

7 = plane
Radial tines x
remain straight \ T
After deformation X
® The angle of twist ¢(x) increases asx increases.

If the shaft is fixed at one end and a torque is applied to its other
end, the shaded plane in Fig, 11-2 will distort into a skewed form as
shown. Here a radial line located on the cross section at a distance x
from the fixed end of the shaft will rotate through an angle ¢(x). The
angle ¢(x), so defined, is called the angle of twist. It depends on the
position x and will vary along the shaft as shown.

Notice the deformation of the rectangular
element when this rubber bar is subjected
10 2 torgue.
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5.1. BIEN DANG XOAN

Shear sirain of clement
z

The shear strain for the
material increases linearly

with il ie., ¥= ﬁ\ﬁu F¥max

In order to understand how this distortion sirains the material, we
will now isolate a small element located at a radial distance p (rho)
from the axis of the shaft, Fig. 11-3. Due to the deformation as noted
in Fig. 11-2, the front and rear faces of the element will undergo a
rotation. The back face by ¢(x), and the front face by ¢(x) + Ad. As
a result, the difference in these rotations, A¢, causes the element to be
subjected to a shear strain. To calculate this strain, note that before
deformation the angle between the edges AB and AC is 90°; after
deformation, however, the edges of the element are AD and AC and
the angle between them is 6. From the definition of shear strain,

Eq. 8-13, we have
T .
— — lm @'
2 C—AalongCA
B—»Aalong BA
This angle, v, is indicated on the element, It can be related to the length
Ax of the element and the difference in the angle of rotation, Ag,
between the shaded faces, If we let Ax — dx and A — dd. we have

BD =pdd —=dx y

v

¥
Therefore,

_ d

Y= dx

Since dx and d¢ are the same for all elements located at points on

the cross section at x, then d¢/dx is constant, and Fq. 11-1 states that

¢ the magnitude of the shear strain for any of these elements varies only

with its radial distance p from the axis of the shaft. In other words, the

shear strain within the shaft varies linearly along any radial line, from

zero at the axis of the shaft to a maximum ., at its outer boundary,
Fig. 11-4. Since dd/dx = y/p = Ypaxfc, then

(2
£

(11--1}

(11-2)
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Shear stress varies linearly along
each radial line of the cross section.

Fig. 11-5

If the material is linear-elastic, then Hooke’s law applies, 7= G v, .mum
consequently a linear variation in shear strain, as noted in the previous
section, leads to a corresponding linear variation in shear ,...,&mmm.m_.o:m
any radial line on the cross section, Hence, like the mrmm?mﬁmﬁ <m~mmﬂonq
for a solid shaft, 7 will vary from zero at the shaft’s longitudinal axis to a
maximum value, 7., at its outer surface. This variation is shown n Fig.
115 on the front faces of a selected number of elements, located at an
intermediate radial position p and at the outer radius ¢, Due to the
proportionality of triangles, or by using Hooke'’s law (r= G v) and
Eq. 11-2 [y = (p/€)¥Ymax, We can wrile

T Alqu_ﬁmn
C

. Specifically, each element of area dA,
located at p, is subjected to a force of dF = r dA. The torque produced
by this force is dT = p(r dA). We therefore have for the entire cross

section
[ ptraay=| o)
A A c

Since 1,.5fc is constant,
2dA

T dA

P (11-4)

=T g (11-5)

C A
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5.2. MOMENT XOAN

The integral in this equation depends only on the geometry of the
shaft. It represents the polar momntent of inertia of the shaft’s cross-
sectional area computed about the shaft’s longitudinal axis. We will
symbolize its value as J, and therefore the above equation can be written
in a more compact form, namely,

(11-6)

where
Tmax = the maximum shear stress in the shaft, which occurs at the outer
surface
T'= the resultant internal torque acting at the cross section. Its value
is determined from the method of sections and the equation of
moment equilibrium applied about the shaft’s longitudinal axis
J = the polar moment of inertia of the cross-sectional area
¢ = the outer radius of the shaft

Using Egs. 11-3 and 11-6, the shear stress at the intermediate distance
p can be determined from a similar equation:

(11-7)
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5.2. MOMENT XOAN
Trudng hgp: Truc dac If the shaft has a solid circular cross section, the polar

moment of inertia J can be determined using an area element in the
form of a differential ring or annulus having a thickness dp and
circumference 2p, Fig. 11-6. For this ring, dA = 2mp dp, so
& [ 3 _ .N F 4
HH%. bu&hﬂs‘. pt 2mpdp) =2w | p dp=12w L4
A 0 0

[4

1]

(11-8)

Note that J is a geometric property of the circular area .&:w is always

positive. Common units used for its measurement arc mm .
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5.2. MOMENT XOAN
Trucng hop: Truc dac

The shear stress has been shown to vary linearly along each radial
line of the cross section of the shaft. However, if a volume element of
material on the cross section is isolated, them due to the
complementary property of shear, equal shear stresses must also act
on four of its adjacent faces as shown in Fig. 11-7a.Hence, not only
does the internal torque T develop a linear distribution of shear stress
along each radial line in the plane of the cross-sectional area, but also
an associated shear-stress distribution is developed along an axial
plane, Fig. 11-7b. It is interesting to note that because of this axial
distribution of shear stress, shafts made from wood tend to splif m_.on.m.
the axial plane when subjected to excessive torque, Fig. 11-8. This is
because wood is an anisotropic material. Its shear resistance parallel
to its grains or fibers, directed along the axis of the shaft, is much less
than its resistance perpendicular to the fibers, directed in the plane of
the cross section.

Shear strese varies linearly along
each radial ling of the cross section.

(b)
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Trudng hop: Truc rong
Tubular Shaft.

O

If a shaft has a tubular cross section, with inner radius

¢; and outer radius ¢, then from Eq. 11-8 we can determine its polar
moment of mertia by subtracting J for a shaft of radius ¢; from that
determined for a shaft of radius c,. The result is

Like the solid shaft, the shear stress distributed over the tube’s cross-
sectional area varies linearly along any radial line, Fig. 11-9a.
Furthermore, the shear stress varies along an axial planc in this same

manner, Fig, 11-95, Examples of the shear stress acting on typical volume
elements are shown in Fig, 11-9a.

Shear stress varies linearly along
@ each radial line of the cross section.
A,

Fig. 11-9 ®

LTA_ Co hoc vat liéu (215004)




Chuong 5: XOAN THUAN TUY

¥
pE)

5.2. MOMENT XOAN
Ung suit xoin I6n nhat:

Absolute Maximum Torsional Stress. At any given cross section
of the shaff the maximum shear stress occurs at the outer surface..
However, if the shaft is subjected to a series of external torques, or the
radius (polar moment of inertia) changes, then the maximum torsional
stress within the shaft could be different from one section to the next. If
the absolute maximum torsional stress is to be determined, then it
becomes important to find the location where the ratio Te/J is a maximum,
In this regard, it may be helpful to show the variation of the internal
torque 7' at each section along the axis of the shaft by drawing a torque
diagram. Specifically, this diagram is a plot of the internal torque T versus
its position x along the shaft’s length, As a sign convention, T will be
positive if by the right-hand rule the thumb is directed outward from the
shaft when the fingers curl in the direction of twist as caused by the
torque, Fig. 11-5. Once the internal torque throughout the shaft is
determined, the maximum ratia of T¢// can then be identified.

LTA_ Co hoc vét liéu (215004) 9
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5.2. MOMENT XOAN _

p ] The stress distribution in a solid shaft has been plotted Eoum z:.mo._
Vidu 01: arbitrary radial lines as shown in Fig, ﬁ.lwoa. Uoﬁmﬁ:ao the Tesultant.
internal torque at the section. .

Solution i

The same result can be omﬁ.ﬁ& by mm_&:m %..85,% H&%&. E_ the
stress distribution about the centroidal axis of the shaft. First we must
express 1= ﬁ u dmam E%o%g& Smumwm mm Kazv we H:a

Solution |

The polar moment of Emmm.m.mﬁ the e.omm..,o..na_aﬂ_ ﬂg.. I
Hn.ﬁﬁmo E:Q» - @.mmﬁ%u m.E._& L T ﬁob.n_zo is
&4 u _%. T&b ﬁ anvmsu % u mf% d

~ For Em 85@ wmmm 9@ ﬁzow T. moa we: _.3_.5@
: 0

Applying the forsion. nogémm. EE qa& = mm _Eum = mm z\a_u
Fig. 11-10a, we Esw e

T | _ qao_e_a

_ e, 1,
o =7 mm Z\BE TR | .. ~_‘ mm?ﬁ % mﬁi v
| T=10KNm e A = 1L0kNm _

LTA_ Co hoc vat liéu (215004) 10
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5.2. MOMENT XOAN

Vidu 02: The solid shaft of radius ¢ is subjected to a torque T, Fig, 11-11a.
‘Determine the fraction of T that is resisted by the material contained
within the outer region of the shaft, which Wmm an Eso_. HmaEw & cf?
mm&oﬁw:m&:mo. . ceten

¥
pE)

The stress in the shaft varies lineatly, such that 7 = (#¢) 7ap 0. 11-3.
Therefore, the torque dT’ on the ring (area) —on&nn_ é&us :5 rmﬁﬁ. .
shaded region, mm 11-11b, is S
= p{1 dA) = plplc) qé@é %v
For the extire __mw.mﬁ.mgmaﬁ_ area the torque is

[+ cf2
_ Nﬁﬂamn W 4 ¢
- . a 4
Substituting this into Eq. { vields ‘So that ¢ @ : D
15 1507 . .
s Ans. y - AT 3 1
T I T 0 TyaxC ( v

Here, approximately 94% of the torque is resisted by the lighter-  “This torque 7" can be cxpressed in terms of the applied torque T
shaded amé_,ma the remaining 6% of T {or 1) is resisted by the inner by first using the torsion formula to determine the maximum stress
%cqre” of the shaft, p = 0 10 p = ¢/2. As a result, the material located in the shaft. We have o

at the ouler region of the shaft is highly effective in resisting torque, Toac = i - Hn
which justifies the use of fubular shafls as an efficient means 5 of J Ts,wun
transmitting torque, and {hereby saves material. . o o 2T
Tmax ™ 3
7c
LTA_ Co hoc vét liéu (215004) 11
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Vidu 02: ‘The shaft shown in Fig. 11-12q is supported by two _umwdbmm and is
4250 KIN-m ~ - subjected to three torques, Determine the shear stress awdm_ouoa m:

points A and B, located at section a—a of the shaft, Fig. 11-125. .

Internal Torque. The cnmﬂum reactions on the shaft are zero,
provided the shaft's weight is neglected. Furthermore, the applied
torques satisfy moment equilibrium about the shaft's axis. =

2)
3000 kN-m

The internal torque at section a—a will be determined from the
free-body diagram of the left segment, Fig, 11-12b, We have

2M,. =0, 4250 kN-mm — 3000 kN-mm —~ T=0 T=1250kNmm
Section Property. The polar moment of inertia for the shaft is .

J= mam mm)* = 4.97(107) mm*

Shear Stress.  Since point A is at p = ¢ = 75 mm,

_ Te (1250 kN-mm)(75 mm) B -
ST 40yt 19 Nmm® = 189 MPa

Likewise for point B, at p = 15 mm, we have

T, (1250 kN-mm)(15 mm) .
i%n 497(10) mm* ncuﬂ MPa .»E.

The directions of these siresses on each element at A and m
Fig. 11-12c, are established from the direction of the resultant Eﬁﬂ.b&

: torque T, shown in Fig. 11-12). Note carefully how the shear mz.mmm .
. 0317 MPa. acts on the planés of each of these elements, .

B

LTA_ Co hoc vat liéu (215004) 12
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5.2. MOMENT XOAN

Viduo3: . ... . “The pipe shown in Fig. 11-13a has an inner diameier of 80- u:u.m.pa..._
BRI 7N ‘an outer diameter of 100 mm. Ifits end is tightened against the mn—%o:

at A using a torque wrench at B, determine .the shéar :siress

developed in the material at the inner and outer walls &oum the nmsmnmw :

portion of the pipe when the 80-N forces are applied to the iqo ich.

80N

. Internal u.azmam. A section is taken at an intermediate location C -
- along the pipe’s axis, Fig. 11-13b, The only unknown at the section is -
the internal torque T. Force nmﬁbcn:ﬁ and .Eon..o:ﬁ moﬁEd::B
_about the x and z axes are satisfied. We require
M?@ =0, = 80N(3 m) +80 ZGN Ev uan 0

: : T Aoz m S

Section m.&ﬁﬁ.@ The polar BoBma of Enm:w mow. mu_m Ewm s nucm. ..
mmnaoum_ area is : o

Ro cm Eun

pP=c,= oom ‘m, we have . .
Hno ao N - BB om Eu

| T TS0 mt o
And for any point located on nﬁ Emam.. m:&mnnu = nn .

so that
Te; 40N -m(0.04 :o

_u.mull

S .. : . 7= S8000° JE
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5.2. MOMENT XOAN
Vi du 03: “The pipe shown in Fig. 11-13a has an inner &mﬁﬂﬂn.ﬂ 80 mm. -and
SON ‘an outer diameter of 100 mm. If its end is tightened against the mngon

at A using a torque wrench at B, determine the .umw_.mmﬂ ‘stress
developed in the material at the inner and outer walls ﬂoum the nmsﬁ,mw :
portion of the pipe when the 80-N forces are applied to the iqﬂEF .

*"To show how these stresscs act at nnﬁnmmwﬁmcqm points D.and
on the cross-sectional area, we will first view the cross section from
the front of segment CA of the pipe, mﬁ. 11-13a. On this section,’
Fig. 11-13c, the resultant internal torque i is equal but opposite to that.
shown in Fig. 11-13b. The shear stresses at D and E ooan_uﬁo.ﬁo this”
‘torque and therefore act on the shaded faces of the elements in ‘the-
directions shown. As a consequence, “notice .roﬁ ‘the mwmﬂ.m:omm_.
components act on the other three faces. Furthermore, sinc:
face of D and the inner face of E are in stress- Wmo.HmmSam Bwﬁu from"
the pipe’s outer and inner walls, no mwoma m.w.nmmm can exist on ‘these:
faces or on the other non_.nmmonmﬁm mmnmm cm a:... mHmEam.

LTA_ Co hoc vat liéu (215004) 14
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5.3. TRUYEN DPONG CONG SUAT

Shafts and tubes having circular cross sections are often used to transmit
power developed by a machine. When used for this purpose, they are
subjected to torques that depend on the power generated by the
machine and the angular speed of the shaft. Power is defined as the
work performed per unit of time. The work transmitted by a rotating
shaft equals the torque applied times the angle of rotation. Therefore,
if during an instant of time df an applied torque T causes the shaft to
rotate d@, then the instantaneous power is

Tde

P= "
Since the shaft’s angular velocity o = d0/dr, we can also express the
pOWer as . -

e _ (11-10)

In the S1 system, power is expressed in watts when torque is measured
in newton-meters (N-m) and w is in radians per second (rad’s)
(I W =1N"-mf).

For machinery, the frequency of a shaft’s rotation, f, is often reported.
This is a measure of the number of revolutions or cycles the shaft makes
per second and is expressed in hertz (1 Hz = 1 cycle/s). Since 1 cycle =
27r rad, then w = 27/, and the above equation for power becomes

(11-11)

LTA_ Co hoc vét liéu (215004)
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5.3. TRUYEN DONG CONG SUAT
Thiét ké truc truyén don

Shaft Design. When the power transmitted by a shaft and its
frequency of rotation are known, the torque developed in the shaft can
be determined from Eq. 11-11, that is, T = P2+ f. Knowing T and the
allowable shear stress for the material, 7,4, We can determine the size
of the shaft’s cross section using the torsion formuia, provided the
material behavior is linear-elastic. Specifically, the design or geometric

parameter J/c becomes

L. T (11-12)

C  Tailow

For a solid shaft,J = (w/2)c*, and thus, upon substitution, a unigue value
for the shaft’s radius ¢ can be determined. If the shaft is twbular, so
that J = (wi2){(c} — ¢*), design permits a wide range of possibilities for
the solution. This is because an arbitrary choice can be made for either
¢, or ¢; and the other radius can then be determined from Eq. 11-12.

LTA_ Co hoc vét liéu (215004)
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5.3. TRUYEN DPONG CONG SUAT

Vi du 01: ‘A solid steel shaft AB shown in Fig; 11-14 is to. be used to transmit

- - 3750 'W from the motor M to which it is attached. If the shaft _.onmﬂnm
I at @ = 175 rpm and the stee] has an allowable shear stress of Tougw = -
100 MPa, mmﬁwn.bﬁn the Hmns:mn_ ngmﬁu om aum mrm@ to :6
nearest mm.

The torque on the shaft is aoﬁoﬂﬁbmm mSE mb HTS that is, m. He

Expressing P in Newton-meters per second and w in nm&mu&wnnona
. we have

P = 3750 N-m/s
o 175 .Rd h 24 rad v A 1 BFV 1833 radss
~min 1rev 60s o
Thus, -
P="Tw, 3750 N-m/s = T(18.33) rad/s
T =2046N-m
Applving Eq. 11-12 yields
J_met T
€ 2 C  Taow
2

. 27\ (204.6 N-m)(1000 mm/m) VS .
T Aﬂq&oav - A (100 N/mm”) -
¢ =10.92 mm .
Since 2¢ = 21.84 mm, sclect a shaft having a diameter of

d =722 mm Ans.

LTA_ Co hoc vét liéu (215004) 17 |
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5.3. TRUYEN DONG CONG SUAT

Vi du 02: A tubular:shaft, having an inner diameter of 30 mm and an outer

diameter of 42 mm, is to be used to transmit 90 kW of power.

Uﬂmnﬁﬁb@ﬁmmﬂoﬁmg@0mmo»mﬂo=om zwn mrmﬁ woﬁwm:gmwnma
stress will not exceed 50 MPa., Ul

Solution

The maximum torque that can be mw_ubo& to the shaft is n_mnmﬁﬁana
WoE mum EEEH moEEHm

-
¢ N 7(0.021 m)
SO(10°) Nfm® = “C531(0.621 m)! — (0.015 m)']
T=538N'm a
Applying Eq. 11-11, the frequency of rotation is
P=2ufT
90(10%) N - m/s = 2f(538 N - m)
f=26.6Hz Ans,

LTA_ Co hoc vét liéu (215004)
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5.4. GOC XOAN

In this section we will develop a formula for determining the
angle of twist ¢ (phi) of one end of a shaft with respect to its other end.
The shaft is assumed to have a circular cross section that can gradually
vary along its length, Fig, 11-15a, and the material is assumed to be
homogenecous and to behave in a linear-elastic manner when the torque
is applied. As in the case of an axially loaded bar, we will neglect the
localized deformations that occur at points of application of the torques
and where the cross section changes abruptly. By Saint-Venant's
principle, these mm@na oceur within small regions of the shaft’s length
and generally havé only a slight effect on the final result.

Using the method of sections, a differential disk of thickness dx,
located at position x, is isolated from the shaft, Fig. 11-15b. The internal
resultant torque is represented as 7(x), since the external loading may
cause it to vary along the axis of the shaft. Due to T(x), the disk will
twist, such that the relative rotation of one of its faces with respect to the
other face is dob, Fig. 11-15b. As a result an element of material located
at an arbitrary radius p within the disk will undergo a shear strain . The

values of y and d¢ are telated by Eq. 11-1, namely,

A= %W (11-13)

LTA_ Co hoc vét liéu (215004)
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5.4. GOC XOAN

z

[GH

Using the method of sections, a differential disk of thickness dx,
located at position x, is isolated from the shaft, Fig. 11-15b. The internal
resuitant torque is Hm?nmo_:nm as T(x), since the external loading may
cause it to vary along the axis of the shaft. Due to 7(x), the disk will
twist, such that the relative rotation of one of its faces with respect to the
other face is d¢, Fig. 11~15b. As a result an element of material located
at an arbitrary radius p within the disk will undergo a shear strain . The
values of y and d¢ are related by Eq. 11-1, namely,

dé= %W (11-13)
Since Hooke's iaw, y= 4/CG, applies and the shear stress can be
expressed in terms of the applied torque using the torsion formula
7= T(x)plT{x), then y = T(x)p/I(x)G. Substituting this into Eq. 11-13,
the angle of twist for the disk is
Ty

Dw -
¢ = J QVQ
Integrating over the entire length L of the shaft, we obtain the angle of
twist for the entire shaft, namely,

dx

(11-14)

¢ = the angle of twist of one end of the shaft with respect to the other
end, measured in radians
T(x) = the internal torque at the arbitrary position x, found from the
method of sections and the equation of moment equilibrium
applied about the shaft’s axis
J{(x) = the shaft's polar moment of inertia expressed as a function of
position x
G = the shear modulus of elasticity for the material

LTA_ Co hoc vat liéu (215004)
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5.4. GOC XOAN

Fig, 11-16

Constant Torque and Cross-Sectional Area. Usually in engincering
practice the material is homogeneous so that G is constant. Also, the
shaft’s cross-sectional area and the applied torque are constant along the
length of the shaft, Fig, 11-16. If this is the case, the internal torque 7(x} =

T, the polar moment of inertia J(x) = J, and Eq. 11-14 can be integrated,
which gives

(11-15)

The similarities between the above two me__mmoum and those for an axially
loaded bar (8 = [ P(x) dx/A(x)E and & = PL/AE) should be noted.

We can use Eq. 11-15 to determine the shear modulus of &.mmmnm@. Q
of the material. To do so, a specimen of known length and diameter is
placed in a torsion testing machine like the one shown in Fig. 11-17. The
applied torque T and angle of twist ¢ are then Bmmmnnnnm between a gauge
length L. Using Eq. 11-15, G = TL/J¢. Usually, to obtain a more reliable
value of G, several of these tests are performed and the average value
is used.

If the shaft is subjected to several different torques, or the cross-
sectional arca or shear modulus changes abruptly from one region of the
shaft to the next, Eq. 11~15 can be applied to each segment of the shaft
where these quantities are all constant. The angle of twist of one end of
the shaft with respect to the other is then found .WOB the vector
addition of the angles of twist of each segment. For this case,

(11-16)

LTA_ Co hoc vét liéu (215004)
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5.4. GOC XOAN

Sign Convention. In order to apply the above equation, we must
develop a sign convention for the internal torque and the mhmm.m of g_.ﬂ
of one end of the shaft with respect to the other end.To do this, we will
use the right-hand rule, whereby both the torque and angle will be
positive, provided the thumb is directed outiward from the shaft when the
fingers curl to give the tendency for rotation, Fig. 11-18.

Positive sign convention
for T and ¢

LTA Co hoc vét liéu (215004)
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5.4. GOC XOAN

To illusirate the use of this sign convention, consider the shaft shown
in Fig. 11194, which is subjected to four torques. The angle of twist of
end A with respect to end D is to be determined. For this problem, three
segments of the shaft must be considered, since the internal torque

changes at B and C. Using the method of sections, the internal toerques
are found for each segment, Fig. 11-19b. By the right-hand rule, with
positive torques directed away from the secticned end of the shaft, we
have Typ= +80 N 'm, Tge = —70N ' m, and Tep = —10 N - m. These
results are also shown on the torgue diagram for the shaft, Fig. 11-19¢.
Applying Eq. 11-16, we have

ﬁ& . Au_uwoz -HBU .H.lw + AE\MOZ.EV h\mﬁ + A|HO N - Ev hﬁ@
AID JG JG JG

If the other data is substituted and the answer is found as a positive
quantity, it means that end A will rotate as indicated by the curl of the
right-hand fingers when the thumb is directed away from the shaft,
Fig. 11-19a. The double subscript notation is used to indicate this relative
angle of twist {¢,4,5); however, if the angle of twist is to be determined
relative to a fixed point, then only a single subscript will be used. For
example, i D is located at a fixed support, then the computed angle of
twist will be denoted as ¢,

(5) ¥ig. 11-19

Tep = I0N-m

)

()

o
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5.4. GOC XOAN

Vi du 01:
The gears attached to the fixed-end steel shaft arc subjected to the
torques shown in Fig. 11-20a. If the shear modulus of elasticity is G -
80 GPa and the shaft has a diameter of 14 BE,..&Q@H.E@ . mun
displacement of the SOE m on gear h H_uw mrmm Enwm W.mm_u. within
bearing at B.

Tyc= 150 N'-m
- B0MNm

Solution

Internal Torque. By inspection, the torques in segments AC, CD,
and DE are different yet consfant throughout each segment. Free- .
body diagrams of appropriate segments of the shaft along with the -
calculated internal torques are shown in Fig. 11-2056. Using the nmEl.
hand rule and the established sign convention that positive 85_.5 is -
directed away from the sectioned end of H_,_m mumm we. rm.._d

Tyc=+150N'm T =—~130N- E
These results are also shown on the torque nrmmnmuu m_, .w E mon.

. Hcml
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5.4. GOC XOAN
Vidu 01:

Angle of Twist, 'The polar moment of mboﬁmm.mow Eo..mﬁ. is.

J= [8 007 m)* = -3 dao mv m!

Applying Eq. 11-16 to mmow wmmd..ma EE ma&mm Ea _.mmz_ﬂm
algebraically, we have

TL (+ 150N EVB 4 Bv
ba = JG T 3.77(107%) mY[R0(109) N/im?]
(=130 N m)(03 m)

3.77(107%) m*[80(10%) N/m?)] -

(=170 N - m){0.5 m)
3.77(107%) m*[80(10%) ZBQ
Since the answer is negative, by the right-hand rule ”_ua zEE,U is
dirccted toward the end E of En mwmﬁ munw zumnnmow.n mmmn A will
rotate as shown in Fig. 11-20d, - -
Hum &mmwmnmﬁma of tooth P ou mmﬁ .m Hm .
sp=dr = (0212 rad)(100 aav E m mm

Remember that this analysis is valid DH&N R mﬁ wmmn w nmm de mm.
not exceed the proportional limit of the material.

4

+
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5.4. GOC XOAN

Vidu 02: [he two solid steel shafts shown in Fig. 11-21a are coupled together

using the meshed gears. Determine the angle of twist of end A of shaft
AB when the torque T == 45 N - m is applied. Take G = 80 GPa. Shaft
AB is free to rotate within bearings E and F, whereas shaft DC is
fixed at D. Each shaft has a diameter of 20 mm. .

715 mm

. 4. Internal Torgue. Free-body diagrams for each shaft are shown in

A B el Fig. 11-21h and 11-21c. Summing moments along the x axis of
\r i shaft AB yields the tangential reaction between the gears of F=
45 N-m/0.15 m = 300 N. Summing moments about the x axis of
shaft PC, this force then creates a torque of {Tp), = 300 N(0.075 m) =
22.5 N - m on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of 22.5 N -m in shaft DC,
Fig. 11-21b. This angle of twist is

(Tp),=225N-m

_ TLpe (+22.5 N - m){1.5 m)
P = JG  (#/2)(0.010 m)*[80(107) N/m?*]
Since the gears at the end of the shaft are in mesh, the rotation ¢¢
of gear (7 causes gear B to rotate ¢g, Fig. 11-21c, where
$e(0.15 m) = (0.0269 rad)(0.075 m)

de = 00134 rad
We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the 45 N - m torque, Fig. 11-21e. We
have

= +0.0269 rad

Tapl. (+45 N - m)(2 m)

— LABTAR _

bam JG (#/2)(0.010 m)*[80(10%) N/m:
The rotation of end A is therefore determined by adding ¢y and

&5, since both angles are in the same direcrion, Fig. 11-21e. We have

by = g + ap = 0.0134 rad + 0.0716 rad = +0.0850 rad  Ans.

= 40,0716 rad
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5.4. GOC XOAN
Vi du 02: The 50-mm-diameter solid cast-iron post shown in Fig. 11-224 is buried
* : 600 mm in soil. If a torque is applied to its top using « rigid wrench,
determine the maximum shear stress in the post and the angle of twist
at its top. Assume that the torque is about to turn the post, and the soil
exerts a uniform torsional resistance of ¢ N-mm/mm along its 600 mm
buried length. G = 40(10%) MPa.
Inrernal Torgue. The internal torque in segment AB of the post is
constant. From the free-body diagram, Fig. 11-22b, we have
M, =0, Tap = 100 N(300 mm) = 30(10°) N\mm
The magnitude of the uniform distribution of torque along the buried
segment BC can be determined from equilibrium of the entire post,”
Fig 11-22c¢, Here
=M, =0, 100 N(300 mm) — #(600 mm) = 0
t = 50 N-mm/mm
Hence, from a free-body diagram of a section of the post located at the
position x within region BC, Fig. 11-22d, we have
M, =G Tge—50x =0
m..wﬁu = 50x
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5.4. GOC XOAN
Vi du 02:

Mavxinimm Shear Siress.  The largest shear stress occurs in region AB,
since the torque is largest there and J is constant for the post. Applying
the torsion formula, we have

30 X10° N-mm (25 mm)

m,.} BC
Toax = 7 = (r12)(25 SE% =122 N/mm® Ans.
Angle of Tiwist, The angle of twist at the top can be determined rel-
i 900 min ative to the bottom of the post, since it is fixed and yet is about to turn.
_ / Both segments AB and BC twist, and so in this case we have
D
¥ S by = TagLas .ﬁnmn Tpc dx
g 600 ATIG JG
/ _ (30(10%) N - mm){900 mm) n 50x dx
() N JIG ¢ JG
_27(010°) N-mm® N 50[(600)*/2] N - mm?
TS e IG iG
x 1@ 36(10°) N- mm?
St =50 N = =0.00147rad
9 =30 Nmmimm (7/2)(25 mm) 20(10°) N/mm?
(]
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5.4. GOC XOAN
Vi du 02:

The tapered shaft shown in Fig. 11-23a is made of a material having
a shear modulus G. Determine the angle of twist of its end B when
subjected to the torque. - Cor e B L

Internal Torque. By inspection or from the free-body diagram of a
scction located at the arbitrary position x, Fig. 11-23b, the internal,
torque is 7. . g . T i

Angle of Twist. FHere the polar moment of inertia varies along the
shaft’s axis and therefore we must express itin m.w.._.Bm of the coordinate

x. The radius ¢ of the shaft at x can be determined in terms of x by
proportion of the slope of line AB in Fig. 11-23c, We have "~ .

Cy — Cy €3 — C

L X

c = NN.HAHMMG._.V

Thus, at x, : e \H
o327

Applying Hq. 11-14, we have .
T dx 2T .ﬁ dx

b e

LTA_ Co hoc vét liéu (215004)

29

& Chuang 5: XOAN THUAN TUY
5.4. GOC XOAN
Vi du 02:

Performing the integration using an integral table, the result becomes
- ) . o

o[ uﬁmuT_.Ai_w___

_ar(_ L ,w-J
lamﬁmﬁ&ln_uvﬁqw M

Rearranging ferms yields -, -
5 L
sttt .
b= ATL {2 T Gl Hu  Ams
3nG €1C2 ” ,
© To partially check this result, note that when ¢ = = ¢, then
TL TL -

?= w6 IG

which is Eq. 1115
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