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 APPENDIX A

STATICS REVIEW

Statics is the foundation course for mechanics of materials. This appendix briefly reviews statics from the perspective of this
course. It presupposes that you are familiar with the basic concepts so if you took a course in statics some time ago, then you
may need to review your statics textbook along with this brief review. Review exams at the end of this appendix can also be used
for self-assessment. 

A.1 TYPES OF FORCES AND MOMENTS

We classify the forces and moments into three categories: external, reaction, and internal.

A.1.1 External Forces and Moments

External forces and moments are those that are applied to the body and are often referred to as the load on the body. They are
assumed to be known in an analysis, though sometimes we carry external forces and moments as variables. In that way we may
answer questions such these: How much load can a structure support? What loads are needed to produce a given deformation? 

Surface forces and moments are external forces (moments), which act on the surface and are transmitted to the body by
contact. Surface forces (moments) applied at a point are called concentrated forces (moment or couple). Surface forces
(moments) applied along a line or over a surface are called distributed forces (moments).

Body forces are external forces that act at every point on the body. Body forces are not transmitted by contact. Gravi-
tational forces and electromagnetic forces are two examples of body forces. A body force has units of force per unit vol-
ume.

A.1.2 Reaction Forces and Moments

Other forces and moments are developed at the supports of a body to resist movement due to the external forces (moments). These
reaction forces (moments) are usually not known and must be calculated before further analysis can be conducted. Three princi-
ples are used to decide whether there is a reaction force (reaction moment) at the support:

1. If a point cannot move in a given direction, then a reaction force opposite to the direction acts at that support point. 
2. If a line cannot rotate about an axis in a given direction, then a reaction moment opposite to the direction acts at that

support. 
3. The support in isolation and not the entire body is considered in making decisions about the movement of a point or

the rotation of a line at the support. Exceptions to the rule exist in three-dimensional problems, such as bodies sup-
ported by balanced hinges or balanced bearings (rollers). These types of three-dimensional problems will not be cov-
ered in this book.

Table C.1  shows several types of support that can be replaced by reaction forces and moments using the principles
described above. 

A.1.3 Internal Forces and Moments

A body is held together by internal forces. Internal forces exist irrespective of whether or not we apply external forces. The
material resists changes due to applied forces and moments by increasing the internal forces. Our interest is in the resistance the
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material offers to the applied loads—that is, in the internal forces. Internal forces always exist in pairs that are equal and opposite
on the two surfaces produced by an imaginary cut. 

The internal forces are shown in Figure A.1. (In this book, all internal forces and moments are printed in bold italics:
N = axial force; Vy, Vz = shear force; T = torque; My, Mz = bending moment.) They are defined as follows:

• Forces that are normal to the imaginary cut surface are called normal forces. The normal force that points away from
the surface (pulls the surface) is called tensile force. The normal force that points into the surface (pushes the surface)
is called compressive force.

• The normal force acting in the direction of the axis of the body is called axial force.
• Forces that are tangent to the imaginary cut surface are called shear forces. 
• Internal moments about an axis normal to the imaginary cut surface are called torsional moments or torque. 
• Internal moments about an axis tangent to the imaginary cut are called bending moments.

A.2 FREE-BODY DIAGRAMS

Newton’s laws are applicable only to free bodies. By “free” we mean that if a body is not in equilibrium, it will move. If there are
supports, then these supports must be replaced by appropriate reaction forces and moments using the principles described in Sec-
tion A.1.2. The diagram showing all the forces acting on a free body is called the free-body diagram.

Additional free-body diagrams may be created by making imaginary cuts for the calculation of internal quantities. Each
imaginary cut will produce two additional free-body diagrams. Either of the two free-body diagrams can be used for calculat-
ing internal forces and moments.

A body is in static equilibrium if the vector sum of all forces acting on a free body and the vector sum of all moments
about any point in space are zero:

(A.1)

where  represents summation and the overbar represents a vector quantity. In a three-dimensional Cartesian coordinate sys-

tem the equilibrium equations in scalar form are 

(A.2)

Equations (A.2) imply that there are six independent equations in three dimensions. In other words, we can at most solve for six
unknowns from a free-body diagram in three dimensions.

In two dimensions the sum of the forces in the z direction and the sum of the moments about the x and y axes are auto-
matically satisfied, as all forces must lie in the x, y plane. The remaining equilibrium equations in two dimensions that have to
be satisfied are 

(A.3)

Equations (A.3) imply that there are three independent equations per free-body diagram in two dimensions. In other words, we
can at most solve for three unknowns from a free-body diagram in two dimensions.

The following can be used to reduce the computational effort:

Vz

Vy

My

Mz

N
Tx

y

z O

  Figure A.1 Internal forces and moments.

F∑ 0 M∑ 0==

 ∑

Fx∑ 0 Fy∑ 0 Fz∑ 0===

Mx∑ 0 My∑ 0 Mz∑ 0===

Fx∑ 0 Fy∑ 0 Mz∑ 0===
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• Balance the moments at a point through which the unknown forces passes. These forces do not appear in the moment
equation. 

• Balance the forces or moments perpendicular to the direction of an unknown force. These forces do not appear in the
equation.

A structure on which the number of unknown reaction forces and moments is greater than the number of equilibrium
equations (six in three dimensions and three in two dimensions) is called a statically indeterminate structure. Statically
indeterminate problems arise when more supports than needed are used to support a structure. Extra supports may be used for
safety considerations or for the purpose of increasing the stiffness of a structure. We define the following:

Degree of static redundancy = number of unknown reactions − number of equilibrium equations. (A.4)

To solve a statically indeterminate problem, we have to generate equations on the displacement or rotation at the support
points. A mistake sometimes made is to take moments at many points in order to generate enough equations for the unknowns.
A statically indeterminate problem cannot be solved from equilibrium equations alone. There are only three independent equa-
tions of static equilibrium in two dimensions and six independent equations of static equilibrium in three dimensions. Additional
equations must come from displacements or rotation conditions at the support. 

The number of equations on the displacement or rotation needed to solve a statically indeterminate problem is equal to the
degree of static redundancy. There are two exceptions: (i) With symmetric structures with symmetric loadings by using the argu-
ments of symmetry one can reduce the total number of unknown reactions. (ii) Pin connections do not transmit moments from one
part of a structure to another. Thus it is possible that a seemingly indeterminate pin structure may be a determinate structure. We will
not consider such pin-connected structures in this book.

A structural member on which there is no moment couple and forces act at two points only is called a two-force mem-
ber. Figure A.2 shows a two-force member. By balancing the moments at either point A or B we can conclude that the result-
ant forces at A and B must act along the line joining the two points. Notice that the shape of the member is immaterial.
Identifying two-force members by inspection can save significant computation effort.

A.3 TRUSSES

A truss is a structure made up of two-force members. The method of joints and the method of sections are two methods
of calculating the internal forces in truss members. 

In the method of joints, a free-body diagram is created by making imaginary cuts on all members joined at the pin. If a force
is directed away from the pin, then the two-force member is assumed to be in tension; and if it is directed into the pin, then the
member is assumed to be in compression. By conducting force balance in two (or three) dimensions two (or three) equations per
pin can be written. 

In the method of sections an imaginary cut is made through the truss to produce a free-body diagram. The imaginary cut can
be of any shape that will permit a quick calculation of the force in a member. Three equations in two dimensions or six equations
in three dimensions can be written per free-body diagram produced from a single imaginary cut. 

A zero-force member in a truss is a member that carries no internal force. Identifying zero-force members can save sig-
nificant computation time. Zero-force members can be identified by conducting the method of joints mentally. Usually if two
members are collinear at a joint and if there is no external force, then the zero-force member is the member that is inclined to
the collinear members.

A

B

(a)

FAB
  Figure A.2 Two-force member.

( )

A

FAB

FAB

B

(b)
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A.4 CENTROIDS

The y and z coordinates of the centroid of the two-dimensional body shown in A.3 are defined as 

(A.5)

The numerator in Equations (A.5) is referred to as the first moment of the area. If there is an axis of symmetry, then the area
moment about the symmetric axis from one part of the body is canceled by the moment from the symmetric part, and hence we
conclude that the centroid lies on the axis of symmetry.

Consider a coordinate system fixed to the centroid of the area. If we now consider the first moment of the area in this coor-
dinate system and it turns out to be nonzero, then it would imply that the centroid is not located at the origin, thus contradicting
our starting assumption. We therefore conclude that the first moment of the area calculated in a coordinate system fixed to the
centroid of the area is zero. 
The centroid for a composite body in which the centroids of the individual bodies are known can be calculated from Equations (A.6).

 (A.6)

where and are the known coordinates of the centroids of the area Ai. Table C.2  shows the locations of the centroids of

some common shapes that will be useful in solving problems in this book.

A.5 AREA MOMENTS OF INERTIA

The area moments of inertia, also referred to as second area moments, are defined as

 (A.7)

The polar moment of inertia is defined as in Equation (A.7) with the relation to Iyy and Izz deduced using A.3:

(A.8)

If we know the area moment of inertia in a coordinate system fixed to the centroid, then we can compute the area
moments about an axis parallel to the coordinate axis by the parallel-axis theorem illustrated in Figure A.4 and are given by 

(A.9)

where the subscript c refers to the axis fixed to the centroid of the body. The quantities y2, z2, r2, A, dy
2, dz

2, and d2 are always pos-
itive. From Equations (A.7) through (A.9) we conclude that Iyy, Izz, and J are always positive and minimum about the axis pass-
ing through the centroid of the body. However, Iyz can be positive or negative, as y, z, dy, and dz can be positive or negative in

yc

y dA
A

∫
dA

A
∫

----------------= zc

z dA
A

∫
dA

A
∫

----------------=

y

r z

dA

  Figure A.3 Area moments.
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  Figure A.4 Parallel-axis theorem.
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Equation (A.7). If either y or z is an axis of symmetry, then the integral in Iyz on the positive side will cancel the integral on the
negative side in Equation (A.7), and hence Iyz will be zero. We record the observations as follows:

• Iyy, Izz, and J are always positive and minimum about the axis passing through the centroid of the body.
• If either the y or the z axis is an axis of symmetry, then Iyz will be zero.

The moment of inertia of a composite body in which we know the moments of inertia of the individual bodies about its centroid
can be calculated from Equation (A.10).

(A.10)

where and are the area moments of inertia about the axes passing through the centroid of the ith body. Table

C.2  shows the area moments of inertia about an axis passing through the centroid of some common shapes that will be useful in
solving the problems in this book.

The radius of gyration  about an axis is defined by

(A.11)

where I is the area moment of inertia about the same axis about which the radius of gyration  is being calculated. 

A.6 STATICALLY EQUIVALENT LOAD SYSTEMS

Two systems of forces that generate the same resultant force and moment are called statically equivalent load systems.
If one system satisfies the equilibrium, then the statically equivalent system also satisfies the equilibrium. The statically
equivalent systems simplifies analysis and is often used in problems with distributed loads.

A.6.1 Distributed Force on a Line

Let p(x) be a distributed force per unit length, which varies with x. We can replace this distributed force by a force and moment
acting at any point or by a single force acting at point xc, as shown in Figure A.5.

  Figure A.5 Static equivalency for (a) distributed force on a line. (b) uniform distribution. (c) linear distribution. 

For two systems in Figure A.5a to be statically equivalent, the resultant force and the resultant moment about any point (ori-
gin) must be the same.

(A.12)

The force F is equal to the area under the curve and xc represents the location of the centroid of the distribution. This is used in
replacing a uniform or a linearly varying distribution by a statically equivalent force, as shown in Figure A.5b and c. 
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Two statically equivalent systems are not identical systems. The deformation (change of shape of bodies) in two stati-
cally equivalent systems is different. The distribution of the internal forces and internal moments of two statically equivalent
systems is different. The following rule must be remembered: 

• The imaginary cut for the calculation of internal forces and moments must be made on the original body and not on the 
statically equivalent body.

A.6.2 Distributed Force on a Surface

Let σ(y, z) be a distributed force per unit area that varies in intensity with y and z. We would like to replace it by a single force,
as shown in Figure A.6. 

For the two systems shown in Figure A.6 to be statically equivalent load systems, the resultant force and the resultant
moment about the y axis and on the z axis must be the same.

(A.13)

The force F is equal to the volume under the curve. yc and zc represent the locations of the centroid of the distribution, which can
be different from the centroid of the area on which the distributed force acts. The centroid of the area depends only on the geom-
etry of that area. The centroid of the distribution depends on how the intensity of the distributed load σ(y, z) varies over the area.

Figure A.7 shows a uniform and a linearly varying distributed force, which can be replaced by a single force at the centroid of
the distribution. Notice that for the uniformly distributed force, the centroid of the distributed force is the same as the centroid of the
rectangular area, but for the linearly varying distributed force, the centroid of the distributed force is different from the centroid of
the area. If we were to place the equivalent force at the centroid of the area rather than at the centroid of distribution, then we would
also need a moment at that point.

dF � �(y, z) dA

�(y, z) force/area

F

yc

zc

  Figure A.6 Static equivalency for distributed force on a surface.
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  Figure A.7 Statically equivalent force for uniform and linearly distributed forces on a surface.
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Quick Test A.1 Time: 15 minutes/Total: 20 points

Grade yourself using the answers and points given in Appendix G.

1. Three pin-connected structures are shown: (a) How many two-force members are there in each structure? (b) Which
are the two-force member

2. Identify all the zero-force members in the truss shown.

3. Determine the degree of static redundancy in each of the following structures and identify the statically determinate
and indeterminate structures. Force P, and torques T1 and T2 are known external loads.

Structure 1

M

p

CB

A D

Structure 2

p

A

B

C D

E

Structure 3

P

A

B

C D

4 kN

2 kN

30�

3 m

30�

3 m3 m3 m

F

E
DCB

A

G

H

Structure 1 Structure 2

Structure 3

Rigid

P

P

Beam

Structure 4

P

Beam

T1 T2
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STATIC REVIEW EXAM 1

To get full credit, you must draw a free-body diagram any time you use equilibrium equations to calculate forces or moments. Grade yourself using the
solution and grading scheme given in Appendix D. Each question is worth 20 points.

1. Determine (a) the coordinates (yc, zc) of the centroid of the cross section shown in Figure R1.1; (b) the area moment of inertia about an axis passing
through the centroid of the cross section and parallel to the z axis. 

2. A linearly varying distributed load acts on a symmetric T section, as shown in Figure R1.2. Determine the force F and its location (xF, yF coordi-
nates) that is statically equivalent to the distributed load.

3. Find the internal axial force (indicate tension or compression) and the internal torque (magnitude and direction) acting on an imaginary cut through point E
in Figure R1.3. 

4. Determine the internal shear force and the internal bending moment acting at the section passing through A in Figure R1.4

5. A system of pipes is subjected to a force P, as shown in Figure P1.5 By inspection (or by drawing a free-body diagram) identify the zero and non-
zero internal forces and moments. Also indicate in the table the coordinate directions in which the internal shear forces and internal bending moments act

10 mm

z

50 mm

10 mm

60 mm

y

Figure R1.1

Figure R1.2

8 
in2.
5 

in

6 in

3 in

x

y

10 ksi

10 ksi

x

2 ft ki

3 ft�kips

3.5 kips

1 kip

1.5 kips

4 kips

4 kips

1.5 kips

1 kip

3.5 kips

4 ft

2 ft

3 ft

4 ft

D

C

B

A

E

Figure R1.3

2 ft�kips

4 ft�kips

3 ft�kips

5 ft�kips4 ft

2 ft

3 ft

4 ft

D

C

B

A

E

4 kips

1.5 kips

4 ft

Figure R1.4

27 kN�m
20 kN/m

1 m 2.0 m 2.5 m 1 m

x

y

A CB D

Figure R1.5
P

AA

BB
x

y

z

Internal Force/
Moment

Section AA
(zero/nonzero)

Section BB
(zero/nonzero)

Axial force ____________ ____________

Shear force ____________ in___ direction ____________ in___ direction

Shear force ____________ in___ direction ____________ in___ direction

Torque ____________ ____________
Bending moment ____________ in___ direction ____________ in___ direction

Bending moment ____________ in___ direction ____________in___ direction
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STATIC REVIEW EXAM 2

To get full credit, you must draw a free-body diagram any time you use equilibrium equations to calculate forces or moments. Discuss the solu-
tion to this exam with your instructor.

1. Determine (a) the coordinates (yc, zc) of the centroid of the cross section in Figure P1.6; (b) the area moment of inertia about an axis passing through
the centroid of the cross section and parallel to the z axis.

2. A distributed load acts on a symmetric C section, as shown in Figure P1.7. Determine the force F and its location (xF, yF coordinates) that is statically equiva-
lent to the distributed load.

3. Find the internal axial force (indicate tension or compression) and the internal torque (magnitude and direction) acting on an imaginary cut through
point E in Figure P1.8.

4. A simply supported beam is loaded by a uniformly distributed force of intensity 0.1 kip/in. applied at 60°, as shown in Figure P1.9. Also applied is a force
F at the centroid of the beam. Neglecting the effect of beam thickness, determine at section C the internal axial force, the internal shear force, and the
internal bending moment.

5. A system of pipes is subjected to a force P, as shown in Figure P1.10.By inspection (or by drawing a free-body diagram) identify the zero and non-
zero internal forces and moments. Also indicate in the table the coordinate directions in which the internal shear forces and internal bending moments act.

Figure R1.6

2 in 2 in

6 in
8 in

12 in
z

y

Figure R1.7
3 in

3 in

3 in

9 in

10
 in

8000 psi

x

y

70 kN�m

90 kN�m

150 kN�m

D

B
E

C

A

0.3 m

0.3 m

0.2 m
0.25 m

D

B
E

C

A 20 kN

20 kN 90 kN

90 kN

32 kN

32 kN

Figure R1.8

Figure R1.9

F � 10 kips0.1 kip/in

60�
30�

BC
A

72 in36 in

P

AA
BB

x

y

z

Figure R1.10

Internal Force/Moment
Section AA

(zero/nonzero)
Section BB

(zero/nonzero)
Axial force ____________ ____________

Shear force ____________ in___ direction ____________ in___ direction

Shear force ____________ in___ direction ____________ in___ direction

Torque ____________ ____________
Bending moment ____________ in___ direction ____________ in___ direction

Bending moment ____________ in___ direction ____________ in___ direction
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POINTS TO REMEMBER

• If a point cannot move in a given direction, then a reaction force opposite to the direction acts at that support point.
• If a line cannot rotate about an axis in a given direction, then a reaction moment opposite to the direction acts at that sup-

port. 
• The support in isolation and not the entire body is considered in making decisions about the reaction at the support.
• Forces that are normal to the imaginary cut surface are called normal forces.
• The normal force that points away from the surface (pulls the surface) is called tensile force.
• The normal force that points into the surface (pushes the surface) is called compressive force.
• The normal force acting in the direction of the axis of the body is called axial force.
• Forces that are tangent to the imaginary cut surface are called shear forces. 
• The internal moment about an axis normal to the imaginary cut surface is called torsional moment or torque. 
• Internal moments about axes tangent to the imaginary cut are called bending moments.
• Calculation of internal forces or moments requires drawing a free-body diagram after making an imaginary cut.
• There are six independent equations in three dimensions and three independent equations in two dimensions per free-

body diagram.
• A structure on which the number of unknown reaction forces and moments is greater than the number of equilibrium

equations (6 in 3-D and 3 in 2-D) is called a statically indeterminate structure. 
• Degree of static redundancy = number of unknown reactions − number of equilibrium equations.
• The number of equations on displacement and/or rotation we need to solve a statically indeterminate problem is equal to the

degree of static redundancy.
• A structural member on which there is no moment couple and forces act at two points only is called a two-force member.
• The centroid lies on the axis of symmetry. 
• The first moment of the area calculated in a coordinate system fixed to the centroid of the area is zero. 
• Iyy, Izz, and J are always positive and minimum about the axis passing through the centroid of the body.
• Iyz can be positive or negative. 
• If either the y or the z axis is an axis of symmetry, then Iyz will be zero.
• Two systems that generate the same resultant force and moment are called statically equivalent load systems. 
• The imaginary cut for the calculation of internal forces and moments must be made on the original body and not on the

statically equivalent body.
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 APPENDIX B

ALGORITHMS FOR NUMERICAL 
METHODS

This appendix describes simple numerical techniques for evaluating the value of an integral, determining a root of a nonlinear
equation, and finding constants of a polynomial by the least-squares method. Algorithms are given that can be programmed in
any language. Also shown are methods of solving the same problems using a spreadsheet. 

B.1 NUMERICAL INTEGRATION

We seek to numerically evaluate the integral

(B.1)

where the function f(x) and the limits a and b are assumed known. 
This integral represents the area underneath the curve f(x) in the interval defined by x = a and x = b. The interval between a

and b can be subdivided into N parts, as shown in Figure A.8. In each of the subintervals the function can be approximated by a
straight-line segment. The area under the curve in each subinterval is the area of a trapezoid. Thus in the ith interval the area is

 By summing all the areas we obtain an approximate value of the total area represented by the integral

in Equation (A.1),

(B.2)

By increasing the value of N in Equation (B.2) we can improve the accuracy in our approximation of the integral. More
sophisticated numerical integration schemes such as Gauss quadrature may be needed with increased complexity of the function
f(x). For the functions that will be seen in this book, integration by the trapezoidal rule given by Equation (B.2) will give adequate
accuracy. 

B.1.1 Algorithm for Numerical Integration

Following are the steps in the algorithm for computing numerically the value of an integral of a function, assuming that the func-
tion value f(xi) is known at N + 1 points xi, where i varies from 0 to N. 

I f x( ) xd
a

b

∫=

Δxi( ) f xi( ) f xi 1–( )+[ ]/2.

I Δxi( ) 
f xi( ) f xi−1( )+

2
---------------------------------

i =1

N

∑≅

 Figure A.8 Numerical integration by trapezoidal rule

f (x)
f (xi)

f (xi�1)

x

�xi � xi � xi�1

xi�1 xix0 � a xN � bx1 
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1. Read the value of N.
2. Read the values of xi and f(xi) for i = 0 to N.
3. Initialize I = 0.
4. For i = 1 to N, calculate I = I + (xi − xi−1)[ f(xi) + f(xi−1)]/2.
5. Print the value of I.

B.1.2 Use of a Spreadsheet for Numerical Integration

Figure A.9 shows a sample spreadsheet that can be used to evaluate an integral numerically by the trapezoidal rule given by
Equation (B.2). The data xi and f (xi) can be either typed or imported into columns A and B of the spreadsheet, starting at row
2. In cells A2 and B2 are the values of x0 and f (x0), and in cells A3 and B3 are the values of x1 and f (x1). Using these values,
the first term (i = 1) of the summation in Equation (B.2) can be found, as shown in cell C2. In a similar manner the second
term of the summation in Equation (B.2) can be found and added to the result of the first term in cell C2. On copying the for-
mula of cell C3, the spreadsheet automatically updates the column and row entries. Thus in all but the last entry we add one
term of the summation at a time to the result of the previous row and obtain the final result. 

B.2 ROOT OF A FUNCTION

We seek the value of x in a function that satisfies the equation
(B.3)

We are trying to find that value of x at which f(x) crosses the x axis. Suppose we can find two values of x for which the function
f(x) has different signs. Then we know that the root of Equation (B.3) will be bracketed by these values. Let the two values of x
that bracket the root from the left and the right be represented by xL and xR. Let the corresponding function values be fL = f(xL)

  Figure A.9 Numerical integration algorithm on a spreadsheet.

A B C D

1

2

3

4

5

6

�(A3�A2)*(B3�B2)�2

�C2�(A4�A3)*(B4�B3)�2

Copy formula in cell C3

7

Comment rowxi f (xi) I

f x( ) 0=
Iteration 1

f(x)
fL

xL

fN
xN

xR

fR

x

Iteration 2
f(x)

fL
xL

xR

fR

x

Iteration 3
f(x)

(c)

fL

fN

fN

xL

xN

xN

xR

fR

x

(b)

(a)

  Figure A.10 Roots of an equation by halving the interval.
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and fR = f(xR), as shown in Figure A.10a. We can find the mean value xN = (xL + xR)/2 and calculate the function value  fN = f(xN).
We compare the sign of fN to those of fL and fR and replace the one with the same sign, as elaborated below.

In iteration 1, fN has the same sign as fL; hence in iteration 2 we make the xL value as xN and the fL value as fN. In so doing we
ensure that the root of the equation is still bracketed by xL and xR, but the size of the interval bracketing the root has been halved.
On repeating the process in iteration 2, we find the mean value xN, and the corresponding value fN has the same sign as fR. Thus
for iteration 3, xR and fR are replaced by xN and fN found in iteration 2. In each iteration the root is bracketed by an interval that is
half the interval in the previous iteration. When fN reaches a small enough value, the iteration is stopped and xN is the approxi-
mate root of Equation (B.3). This iterative technique for finding the root is called half interval method or bisection method.

B.2.1 Algorithm for Finding the Root of an Equation

The steps in the algorithm for computing the root of Equation (B.3) numerically are listed here. The computation of f(x) should
be done in a subprogram, which is not shown in the algorithm. It is assumed that the xL and xR values that bracket the root are
known, but the algorithm checks to ensure that the root is bracketed by xL and xR. Note that if two functions have the same sign,
then the product will yield a positive value. 

1. Read the values of xL and xR. 
2. Calculate fL = f(xL) and fR = f(xR).
3. If the product fL fR > 0, print “root of equation not bracketed” and stop. 
4. Calculate xN = (xL + xR)/2 and fN = f(xN).
5. If the absolute value of fN is less than 0.0001 (or a user-specified small number), then go to step 8.
6. If the product fL fN > 0, then replace xL by xN, and fL by fN. Go to step 4.
7. If the product fR fN > 0, then replace xR by xN, and fR by fN. Go to step 4.
8. Print the value of xN as the root of the equation and stop.

B.2.2 Use of a Spreadsheet for Finding the Root
of a Function

Finding the roots of a function on a spreadsheet can be done without the algorithm described. The method is in essence a digital
equivalent to making a plot to find the value of x where the function f(x) crosses the x axis. 

To demonstrate the use of a spreadsheet for finding the root of a function, consider the function f(x) = x2 − 28.54x + 88.5.
We guess that the root is likely to be a value of x between 0 and 10.
Trial 1: In cell A2 of Figure A.11a we enter our starting guess as x = 0. In cell A3 we increment the value of cell A2 by 1, then
copy the formula in the next nine cells (copying into more cells will not be incorrect or cause problems). In cell B2 we write our
formula for finding f(x) and then copy it into the cells below. The results of this trial are shown in Figure A.11b. We note that the
function value changes sign between x = 3 and x = 4 in trial 1.

Trial 2: Based on our results of trial 1, we set x = 3 as our starting guess in cell D2. In cell D3 we increment the value of
cell D2 by 0.1 and then copy the formula into the cells below. We copy the formula for f (x) from cell B2 into the column start-
ing at cell E2. The results of this trial are given in Figure A.11b. The function changes sign between x = 3.5 and x = 3.6.

Trial 3: Based on our results of trial 2, we set x = 3.5 as our starting guess in cell G2. In cell G3 we increment the value
of cell G2 by 0.01 and then copy the formula into the cells below. We copy the formula for f (x) from cell B2 into the column
starting at cell H2. The results of this trial are given in Figure A.11b. The function value is nearly zero at x = 3.54, which
gives us our root of the function.

The starting value and the increments in x are all educated guesses that will not be difficult to make for the problems in
this book. If there are multiple roots, these too can be determined and, based on the problem, the correct root chosen.
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B.3 DETERMINING COEFFICIENTS OF A POLYNOMIAL

We assume that at N points xi we know the values of a function fi. Often the values of xi and fi are known from an experiment. We
would like to approximate the function by the quadratic function

(B.4)

If N = 3, then there is a unique solution to the values of a0, a1, and a2. However, if N > 3, then we are trying find the coefficients
a0, a1, and a2 such that the error of approximation is minimized. One such method of defining and minimizing the error in
approximation is the least-squares method elaborated next. 

If we substitute x = xi in Equation (B.4), the value of the function f(xi) may be different than the value fi. This difference is
the error ei, which can be written as

(B.5)

In the least-squares method an error E is defined as  This error E is then minimized with respect to the coeffi-

cients a0, a1, and a2 and to generate a set of linear algebraic equations. These equations are then solved to obtain the coef-
ficients.

Minimizing E implies setting the first derivative of E with respect to the coefficients equal to zero, as follows. In these equa-
tions all summations are performed for i = 1 to N.

(B.6)

(B.7)

  Figure A.11 Roots of an equation using spreadsheet.

A B C D E F G H

1

2

3

4

5

6

7

(a)

(b)

Trial 1 Trial 2 Trial 3

x f (x)

�A2*A2�28.54*A2�88.5

�D2�0.1 �G2�0.01

0

�A2�1

Copy formula
from cell B2 

Copy formula
from cell B2 

Copy formula
from cell A3

Copy formula
from cell D3

Copy formula
from cell D3

Copy formula
from cell B2 

f (x) f(x)x x

3.53

x

0
1
2
3
4
5
6
7
8
9

10

   f (x)

   88.5
   60.96
   35.42
   11.88
  �9.66
�29.2
�46.74
�62.28
�75.82
�87.36
�96.9

  x

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4

   f (x)

 11.88
   9.636
   7.412
   5.208
   3.024
   0.86
�1.284
�3.408
�5.512
�7.596
�9.66

Trial 1 Trial 2

  x

3.5
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.6

   f (x)

   0.86
   0.6447
   0.4296
   0.2147
   2.84217E-14
�0.2145
�0.4288
�0.6429
�0.8568
�1.0705
�1.284

Trial 3

f x( ) a0 a1x a2x2+ +=

ei fi f xi( )– fi a0 a1xi a2xi
2+ +( )–= =

E ei
2.

i=1

N
∑=

∂E
∂a0
-------- 0  or 2ei

∂ei

∂a0
--------∑ 0  or = 2 fi a0 a1xi a2xi

2+ +( )–[ ] 1–[ ] 0=∑=

∂E
∂a1
-------- 0  or 2ei

∂ei

∂a1
-------- 0  or  2 fi a0 a1xi a2xi

2+ +( )–[ ] xi–[ ] 0=∑=∑=
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(B.8)

The equations on the right can be rearranged and written in matrix form,

(B.9)

The coefficients of the b matrix and the r vector can be determined by comparison to the matrix form of the equations on the left.
The coefficients a0, a1, and a2 can be determined by Cramer’s rule. Let D represent the determinant of the b matrix. By Cramer’s
rule, we replace the first column in the matrix of b’s by the right-hand side, find the determinant of the constructed matrix, and
divide by D. Thus, the coefficients a0, a1, and a2 can be written as

(B.10)

Evaluating the determinant by expanding about the r elements, we obtain the values of a0, a1, and a2

(B.11)

(B.12)

(B.13)

(B.14)

where

(B.15)

It is not difficult to extend these equations to higher order polynomials. However, a numerical method for solving the algebraic
equations will be needed as the size of the b matrix grows. For problems in this book a quadratic representation of the function is
adequate.

B.3.1 Algorithm for Finding Polynomial Coefficients 

The steps in the algorithm for computing the coefficients of a quadratic function numerically by the least-squares method are
listed here. It is assumed that xi  and fi, are known values at N points.

1. Read the value of N.
2. Read the values of xi and fi for i = 1 to N. 
3. Initialize the matrix coefficients b and r to zero.
4. Set b11 = N.
5. For i = 1 to N, execute the following computations:

6. Set b21 = b12, b22 = b13, b31 = b13, b32 = b23.
7. Determine D using Equation (B.11).
8. Determine the coefficients a0, a1, and a2 using Equations (B.12), (B.13), and (B.14).

∂E
∂a2
-------- 0  or  2ei

∂ei

∂a2
-------- 0  or  2 fi a0 a1xi a2xi

2+ +( )–[ ] xi
2–[ ] 0=∑=∑=

N xi∑ xi
2∑

xi∑ xi
2∑ xi

3 ∑
xi

2∑ xi
3∑ xi

4∑

a0

a1

a2⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

fi∑
xi fi∑
xi

2 fi∑⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

or
b11 b12 b13

b21 b22 b23

b31 b32 b33

a0

a1

a2⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ r1

r2

r3⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

==

a0

r1 b12 b13

r2 b22 b23

r3 b32 b33
D

----------------------------------- a1

b11 r1 b13

b21 r2 b23

b31 r3 b33
D

----------------------------------- a2

b11 b12 r1

b21 b22 r2

b31 b32 r3
D

-----------------------------------===

D b11C11 b12C12 b13C13+ +=

a0 C11r1 C12r2 C13r3+ +[ ]/D=

a1 C21r1 C22r2 C23r3+ +[ ]/D=

a2 C31r1 C32r2 C33r3+ +[ ]/D=

C11  b= 22b33   b23– b32 C12  C21=  b21b33 b23b31–[ ]–=
C13  C31=  b21= b32 b22b31– C22  b= 11b33   b13– b31

C23  C32 b11b23 b13b21–[ ]–== C33  b= 11b22   b12– b21

b12 b12 xi+= b13 b13 xi
2+= b23 b23 xi

3+= b33 b33 xi
4+=

r1 r1 fi+= r2 r2 xi fi+= r3 r3 xi
2fi+=
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B.3.2 Use of a Spreadsheet for Finding
Polynomial Coefficients

Figure A.12 shows a sample spreadsheet that can be used to evaluate the coefficients in a quadratic polynomial numerically.
The data xi and f(xi) can be either typed or imported into columns A and B of the spreadsheet, starting at row 2. In cells C2
through G2, the various quantities shown in row 1 can be found and the formulas copied to the rows below. We assume that the
data fill up to row 50, that is, N = 49. In cell A51 the sum of the cells between cells A2 and A50 can be found using the summa-
tion command in the spreadsheet. By copying the formula to cells B51 through G51, the remaining sums in Equation (B.9) can
be found. The coefficients in the b matrix and the right-hand-side r vector in Equation (B.9) can be identified as shown in com-
ment row 52. The formulas in Equations (B.11) through (B.14) in terms of cell numbers can be entered in row 53, and D, a0, a1,
and a2 can be found.

  Figure A.12 Numerical evaluation of coefficients in a quadratic function on a spreadsheet.

A B C D

1

2

3

4

5

6

xi f (xi) xi f (xi) x2
i f (xi)

7

x2
i x3

i x4
i

E F G H

�A2*A2

Copy formula
from cell C2

Copy formula
from cell D2

Copy formula
from cell E2

Copy formula
from cell F2

Copy formula
from cell G2

Copy formula
from cell A51

�C2*A2 �D2*A2 �A2*B2 �C2*B2

50

51

52

53

54

55

�SUM(A2:A50)

Comment row

Comment rowb12�b21
b13�b22
     �b31

b23�b32 b33r1 r2 r3

Calculate D using
Equation (B.7) and
entries in row 52

Calculate a0 using
Equation (B.8) and
entries in row 52

Calculate a1 using
Equation (B.9) and
entries in row 52

Calculate a2 using
Equation (B.10) and
entries in row 52

49

48
August 2012



C  545Mechanics of Materials: Reference InformationM. Vable
Pr

in
te

d 
fr

om
: h

ttp
://

w
w

w.
m

e.
m

tu
.e

du
/~

m
av

ab
le

/M
oM

2n
d.

ht
m

 APPENDIX C

REFERENCE INFORMATION

C.1  SUPPORT REACTIONS

TABLE  C.1  Reactions at the support

Type of Support Reactions Comments

Only downward translation is prevented. 
Hence the reaction force is upward.

Translation in the horizontal and vertical 
directions is prevented. Hence the reac-
tion forces Rx and Ry can be in the direc-
tions shown, or opposite.

Beside translation in the horizontal and 
vertical directions, rotation about the z 
axis is prevented. Hence the reactions Rx 
and Ry and Mz can be in the directions 
shown, or opposite. 

Translation perpendicular to slot is pre-
vented. The reaction force R can be in 
the direction shown, or opposite.

Translation in all directions is prevented. 
The reaction forces can be in the direc-
tions shown, or opposite.

Except for rotation about the hinge axis, 
translation and rotation are prevented in 
all directions. Hence the reaction forces 
and moments can be in the directions 
shown, or opposite.

Translation and rotation are prevented in 
all directions, except in the direction of 
the shaft axis. Hence the reaction forces 
and moments can be in the directions 
shown, or opposite.

Translation in the z direction 
and rotation about any axis are pre-
vented. Hence the reaction force Rz and 
reaction moments can be in the 
directions shown, or opposite. Transla-
tion in the x direction into the slot is pre-
vented but not out of it. Hence the 
reaction force Rx should be in the direc-
tion shown.

Roller on smooth surface
R

Smooth pin
Ry

Rx

Fixed support
RyMz

Rx

Roller in smooth slot

R

Ball and socket
RyRz

Rx

Hinge

Ry

My

Mx

Rx

Rz

Journal bearing
Ry

My

Mz

Rz

Smooth slot

Rx

My

Mz

Mx

Rz
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C.2  GEOMETRIC PROPERTIES OF COMMON SHAPES

TABLE  C.2  Areas, centroids, and second area moments of inertia

Shapesa

a. C-location of centroid. 

Areas
Second Area Moments
of Inertia

 

Cz

a�2 a�2

h�2
h�2

Rectangle A ah= Izz
1

12
------ah3=

C

r
z

Circle A πr2= Izz
1
4
---πr4 J 1

2
---πr4==

C
z

a

2h�3
h�3

Triangle A ah
2

------= Izz
1

36
------ah3=

C

rz

4r
3�

Semicircle
A πr2

2
--------= Izz

1
8
---πr4=

Cz

a

b

h(2a � b)

3(a � b)
h(a � 2b)

3(a � b)

Trapezoid

h

A h a b+( )
2

--------------------=
Izz

h3 a2 4ab b2+ +( )
36 a b+( )

----------------------------------------------=

C2
C1A2

A1

3a�4
z

3a�8 5a�8

3h�5

2h�5

3h�10

7h�10

a�4

Quadratic curve A1
ah
3

------=

A2
2ah

3
---------=

Izz( )1
1

21
------ah3=

Izz( )2
2
7
---ah3=

C2
C1A2

A1

4a�5

z

2a�5 3a�5

4h�7

3h�7

2h�7

5h�7

a�5

Cubic curve A1
ah
4

------=

A2
3ah

4
---------=

Izz( )1
1

30
------ah3=

Izz( )2
3

10
------ah3=
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C.3 FORMULAS FOR DEFLECTION AND SLOPES OF BEAMS

C.4 CHARTS OF STRESS CONCENTRATION FACTORS

The stress concentration factor charts given in this section are approximate. For more accurate values the reader should consult a
handbook. From Equation (3.25), the stress concentration factor is defined as 

(C.1)

where σmax and τmax are the maximum normal and shear stress, respectively; σnom and τnom are the nominal normal and shear
stress obtained from elementary theories.

TABLE  C.3  Deflections and slopes of beamsa

a.These equations can be used for composite beams by replacing the bending rigidity EI by the sum of bending rigidities 

Case Beam and Loading Maximum Deflection and Slope Elastic Curve

1 for 

for 

2
for 

for 

3
for 

for 

4
for 

5

6
 @ 

EiIi .∑

vmax�max

P

y

x

a b

vmax
Pa2

6EI
--------- 2a 3b+( )=

θmax
Pa2

2EI
---------=

v Px2

6EI
--------- 3a x–( )= 0 x a≤ ≤

v Pa2

6EI
--------- 3x a–( )= x a≥

vmax�max
y

x

a b
M

vmax
Ma a 2b+( )

2EI
-----------------------------=

θmax
Ma
EI
--------=

v Mx2

2EI
----------= 0 x a≤ ≤

v Ma
2EI
--------- 2x a–( )= x a≥

vmax�max

p0

y

x

a b

vmax
p0a3 3a 4b+( )

24EI
------------------------------------=

θmax
p0a3

6EI
-----------=

v
p0x2

24EI
------------ x2 4ax– 6a2+( )= 0 x a≤ ≤

v
p0a3

24EI
------------ 4x a–( )= x a≥

vmax

�maxy

x

L�2 L�2
P

vmax
PL3

48EI
------------=

θmax
PL2

16EI
------------=

v Px
48EI
------------ 3L2 4x2–( )= 0 x L

2
---≤ ≤

vmax

�maxy

x

L�2 L�2
p0

vmax
5p0L4

384EI
---------------=

θmax
p0L3

24EI
------------=

v
p0x

24EI
------------ x3 2Lx2– L3+( )=

vmax

�1y

x
L

�2

M

vmax
ML2

9 3EI
-----------------= x 0.4226L=

θ1
ML
3EI
---------=

θ2
ML
6EI
---------=

v Mx
6EIL
------------- x2 3Lx– 2L2+( )=

K
σmax

σnom
----------= or K
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C.4.1 Finite Plate with a Central Hole

Figure A.13 shows two stress concentration factors that differ because of the cross-sectional area used in the calculation of the
nominal stress. If the gross cross-sectional area Ht of the plate is used, then we obtain the nominal stress 

 (C.2a)

and the top line in Figure A.13 should be used for the stress concentration factor. If the net area at the hole (H − d)t is used, then
we obtain the nominal stress 

(C.2b)

and the bottom line in Figure A.13 should be used for the stress concentration factor. The two stress concentration factors are
related as

(C.2c)

C.4.2 Stepped axial circular bars with shoulder fillet

The maximum axial stress in a stepped circular bar with shoulder fillet will depend on the values of the diameters D and d of the
two circular bars and the radius of the fillet r. From these three variables we can create two nondimensional variables D/d and r/
d for showing the variation of the stress concentration factor, as illustrated in Figure A.14. The maximum nominal axial stress
will be in the smaller diameter bar and, from Equation (4.8), is given by

(C.3)

  Figure A.13 Stress concentration factor for plate with a central hole.

  Figure A.14 Stress concentration factor for stepped axial circular bars with shoulder fillet.
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C.4.3 Stepped circular shafts with shoulder fillet in torsion

The maximum shear stress in a stepped circular shaft with shoulder fillet will depend on the values of the diameters D and d of
the two circular shafts and the radius of the fillet r. From these three variables we can create two nondimensional variables D/d
and r/d to show the variation of the stress concentration factor, as illustrated in Figure A.15. The maximum nominal shear stress
will be on the outer surface of the smaller diameter bar and, from Equation (5.10), is given by

(C.4)

C.4.4 Stepped circular beam with shoulder fillet in bending

The maximum bending normal stress in a stepped circular beam with shoulder fillet will depend on the values of the diameters D
and d of the two circular shafts and the radius of the fillet r. From these three variables we can create two nondimensional vari-
ables D/d and r/d to show the variation of the stress concentration factor, as illustrated in Figure A.16. The maximum nominal
bending normal stress will be on the outer surface in the smaller diameter bar and, from Equation (6.12), is given by

(C.5)

  Figure A.15 Stress concentration factor for stepped circular shaft with shoulder fillet.

  Figure A.16 Stress concentration factor for stepped circular beam with shoulder fillet.
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C.5 PROPERTIES OF SELECTED MATERIALS

Material properties depend on many variables and vary widely. The properties given here are approximate mean values. Elastic
strength may be represented by yield stress, proportional limit, or offset yield stress. Both elastic strength and ultimate strength
refer to tensile strength unless stated otherwise.

TABLE  C.4  Material properties in U.S. customary units

Material

Specific 
Weight
(lb/in.3)

Modulus of 
Elasticity

E
(ksi)

Poisson’s
Ratio

ν

Coefficient 
of Thermal 
Expansion

α
(μ/°F)

Elastic 
Strength

(ksi)

Ultimate 
Strength

(ksi)
Ductility

(% elongation)
Aluminum 0.100 10,000 0.25 12.5 40 45 17
Bronze 0.320 15,000 0.34 9.4 20 50 20
Concrete 0.087 4000 0.15 6.0 2*
Copper 0.316 15,000 0.35 9.8 12 35 35
Cast iron 0.266 25,000 0.25 6.0 25* 50*
Glass 0.095 7500 0.20 4.5 10
Plastic 0.035 400 0.4 50 9 50
Rock 0.098 8000 0.25 4 12* 78*
Rubber 0.041 0.3 0.5 90 0.5 2 300
Steel 0.284 30,000 0.28 6.6 30 90 30
Titanium 0.162 14,000 0.33 5.3 135 155 13
Wood 0.02 1800 0.30 5*

*Compressive strength.

TABLE  C.5  Material properties in metric units

Material
Density
(mg/m3)

Modulus of 
Elasticity

E
(GPa)

Poisson’s 
Ratio

ν

Coefficient of 
Thermal 

Expansion
α

(μ/°C)

Elastic 
Strength
(MPa)

Ultimate 
Strength
(MPa)

Ductility
(% elongation)

Aluminum 2.77 70 0.25 12.5 280 315 17
Bronze 8.86 105 0.34 9.4 140 350 20
Concrete 2.41 28 0.15 6.0 14*
Copper 8.75 105 0.35 9.8 84 245 35
Cast iron 7.37 175 0.25 6.0 175* 350*
Glass 2.63 52.5 0.20 4.5 70 0
Plastic 0.97 2.8 0.4 50 63 50
Rock 2.72 56 0.25 4 84* 546*
Rubber 1.14 2.1 0.5 90 3.5 14 300
Steel 7.87 210 0.28 6.6 210 630 30
Titanium 4.49 98 0.33 5.3 945 1185 13
Wood 0.55 12.6 0.30 35*

*Compressive strength.
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C.6 GEOMETRIC PROPERTIES OF STRUCTURAL STEEL MEMBERS

 
TABLE  C.6  Wide-flange sections (FPS units)

Designation
(in. × lb/ft)

Depth
d

(in.)

Area
A

(in.2)

Web
Thickness

tW
(in.)

Flange z Axis y Axis

Width
bF

(in.)

Thickness
tF

(in.)
Izz

(in.4)
Sz

(in.3)
rz

(in.)
Iyy

(in.4)
Sy

(in.3)
ry

(in.)
W12 × 35 12.50 10.3 0.300 6.560 0.520 285.0 45.6 5.25 24.5 7.47 1.54
W12 × 30 12.34 8.79 0.260 6.520 0.440 238 38.6 5.21 20.3 6.24 1.52
W10 × 30 10.47 8.84 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W10 × 22 10.17 6.49 0.240 5.75 0.360 118 23.2 4.27 11.4 3.97 1.33
W8 × 18 8.14 5.26 0.230 5.250 0.330 61.9 15.2 3.43 7.97 3.04 1.23
W8 × 15 8.11 4.44 0.245 4.015 0.315 48 11.8 3.29 3.41 1.70 0.876
W6 × 20 6.20 5.87 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50
W6 × 16 6.28 4.74 0.260 4.03 0.405 32.1 10.2 2.60 4.43 2.20 0.967

TABLE  C.7  Wide-flange sections (metric units)

Designation
(mm × kg/m)

Depth
d

(mm)

Area
A

(mm2)

Web 
Thickness

tW
(mm)

Flange
z Axis y Axis

Width
bF

(mm)

Thickness
tF

(mm)
Izz

(106 mm4)
Sz

(103 mm3)
rz

(mm)
Iyy

(106 mm4)
Sy

(103 mm3)
ry

(mm)

W310 × 52 317 6650 7.6 167 13.2 118.6 748 133.4 10.20 122.2 39.1
W310 × 44.5 313 5670 6.6 166 11.2 99.1 633 132.3 8.45 101.8 38.6
W250 × 44.8 266 5700 7.6 148 13.0 70.8 532 111.3 6.95 93.9 34.8
W250 × 32.7 258 4190 6.1 146 9.1 49.1 381 108.5 4.75 65.1 33.8
W200 × 26.6 207 3390 5.8 133 8.4 25.8 249 87.1 3.32 49.9 31.2
W200 × 22.5 206 2860 6.2 102 8.0 20.0 194.2 83.6 1.419 27.8 22.3
W150 × 29.8 157 3790 6.6 153 9.3 17.23 219 67.6 5.54 72.4 28.1
W150 × 24 160 3060 6.6 102 10.3 13.36 167 66 1.844 36.2 24.6

TABLE  C.8  S shapes (FPS units)

Designation
(in. × lb/ft)

Depth
d

(in.)

Area
A

(in.2)

Web 
Thickness

tW
(in.)

Flange z Axis y Axis

Width
bF

(in.)

Thickness
tF

(in.)
Izz

(in.4)
Sz

(in.3)
rz

(in.)
Iyy

(in.4)
Sy

(in.3)
ry

(in.)

S12 × 35 12 10.3 0.428 5.078 0.544 229 38.4 4.72 9.87 3.89 0.98
S12 × 31.8 12 9.35 0.350 5.000 0.544 218 36.4 4.83 9.36 3.74 1.0
S10 × 35 10 10.3 0.594 4.944 0.491 147 29.4 3.78 8.36 3.38 0.901
S10 × 25.4 10 7.46 0.311 4.661 0.491 124 24.7 4.07 6.79 2.91 0.954
S8 × 23 8 6.77 0.411 4.171 0.426 64.9 16.2 3.10 4.31 2.07 .798
S8 × 18.4 8 5.41 0.271 4.001 0.426 57.6 14.4 3.26 3.73 1.86 0.831
S7 × 20 7 5.88 0.450 3.860 0.392 42.4 12.1 2.69 3.17 1.64 0.734
S7 × 15.3 7 4.50 0.252 3.662 0.392 36.9 10.5 2.86 2.64 1.44 0.766

y

z

tF

tW
d

bF

y

z

tF

tW
d

bF

z

tF

tW
d

bF

y
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C.7 GLOSSARY

The terms used in this book are given in alphabetic order. The third column gives the chapter number in which the term is first
introduced, with A representing Appendix A. 

TABLE  C.9  S shapes (metric units)

Designation
(mm × kg/m)

Depth
d

(mm)

Area
A

(mm2)

Web 
Thickness

tW
(mm)

Flange
z Axis y Axis

Width
bF

(mm)

Thickness
tF

(mm)
Izz

(106 mm4)
Sz

(103 mm3)
rz

(mm)
Iyy

(106 mm4)
Sy

(103 mm3)
ry

(mm)

S310 × 52 305 6640 10.9 129 13.8 95.3 625 119.9 4.11 63.7 24.9
S310 × 47.3 305 6032 8.9 127 13.8 90.7 595 122.7 3.90 61.4 25.4
S250 × 52 254 6640 15.1 126 12.5 61.2 482 96.0 3.48 55.2 22.9
S250 × 37.8 254 4806 7.9 118 12.5 51.6 406 103.4 2.83 48.0 24.2
S200 × 34 203 4368 11.2 106 10.8 27.0 266 78.7 1.794 33.8 20.3
S200 × 27.4 203 3484 6.9 102 10.8 24 236 82.8 1.553 30.4 21.1
S180 × 30 178 3794 11.4 97 10.0 17.65 198.3 68.3 1.319 27.2 18.64
S180 × 22.8 178 2890 6.4 92 10.0 15.28 171.7 72.6 1.099 23.9 19.45

z

tF

tW
d

bF

y

Term Definition Chapter

Anisotropic material: A material that has a stress-strain relationships that changes with orientation of the coor-
dinate system at a point.

3

Axial force diagram: A plot of the internal axial force N versus x. 4

Axial force: Normal force acting on a surface in the direction of the axis of the body. A

Axial member: A long straight body on which the forces are applied along the longitudinal axis. 4

Axial rigidity: The product of modulus of elasticity (E) and cross-sectional area (A). 4

Axial stress: The normal stress acting in the direction of the axis of a slender member. 1

Axial template: An infinitesimal segment of an axial bar constructed by making an imaginary cuts on 
either side of a supposed external axial force. 

4

Axisymmetric body: A body whose geometry, material properties, and loading are symmetric with respect to 
an axis. 

1

Bauschinger effect: Material breaking at stress levels smaller than the ultimate stress due to load cycle rever-
sal in the plastic region. 

3

Beam template: An infinitesimal segment of a beam constructed by making an imaginary cuts on either 
side of a supposed external force or moment.

6

Beam: A long structural member on which loads are applied perpendicular to the axis. 6

Bearing stress: The compressive normal stress that is produced when one surface presses against 
another.

1

Bending moment: Moments about an axis tangent to a surface of a body. A

Bending rigidity: The product of modulus of elasticity (E) and the second area moment of inertia (Izz) about 
the bending axis.

6

Bifurcation point: The point at which more then one equilibrium configuration may exist. 11

Body forces: External forces that act at every point on the body. A
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Boundary-value problem: The mathematical statement listing of all the differential equations and all the necessary 
conditions to solve them.

7

Brittle material: A material that exhibits little or no plastic deformation at failure. 3

Buckling load: The force (or moment) at which buckling occurs. Also called critical load. 11

Buckling modes: The deformed shape at buckling load. 11

Buckling: An instability of equilibrium in structures that occurs from compressive loads or stresses. 11

Centroid:  An imaginary point on a body about which the first area moment is zero. A

Characteristic equation: The equation whose roots are the eigenvalues of the problem. 11

Columns: Axial members that support compressive axial loads. 11

Compatibility equations: Geometric relationships between the deformations or strains. 4

Complimentary strain energy den-
sity:

Complimentary strain energy per unit volume. It is the area between the stress axis and 
the stress-strain curve at a given value of stress or strain.

3

Complimentary strain energy: Energy stored in a body due to forces acting on it. 3

Compressive stress: Normal stress that pushes the imaginary surface into the rest of the material. 1

Concentrated forces (moment). Surface forces (moments) applied at a point. A

Continuity conditions: Conditions that ensure continuity of deformations. 7

Critical load: The force (or moment) at which buckling occurs. Also called buckling load. 11

Critical slenderness ratio: The slenderness ratio at which material failure and buckling failure can occur simulta-
neously. Separates the long from the short columns. 

11

Deformation: The relative movement of a point with respect to another point on the body. 2

Degree of freedom: The minimum number of displacements / rotations that are necessary to describe the 
deformed geometry.

4

Degree of static redundancy: The number of unknown reactions minus the number of equilibrium equations. A

Delta function: A function that is zero everywhere except in a small interval where it tends to infinity in 
such a manner that the area under the curve is 1. It is also called the Dirac delta function. 

7

Discontinuity functions: A class of functions that are zero before a point and are non-zero after a point or are sin-
gular at the point. 

7

Displacement: The total movement of a point on a body with respect to fixed reference coordinates. 2

Distributed forces (moments): Surface forces (moments) applied along a line or over a surface. A

Ductile material: A material that can undergo a large plastic deformation before fracture. 3

Eccentric loading: Compressive axial force that is applied at a point that is not on the axis of the column. 11

Elastic curve: Curve describing the deflection of the beam. 7

Elastic region: The region of the stress-strain curve in which the material returns to the undeformed state 
when applied forces are removed.

3

Elastic-plastic boundary: The set of points forming the boundary between the elastic and plastic regions. 3

Endurance limit: The highest stress level for which the material would not fail under cyclic loading. Also 
called fatigue strength.

3

Eulerian strain: Strain computed from deformation by using the final deformed geometry as the reference 
geometry.

2

Failure envelope: The surface (or curve) that separates the acceptable design space from the unacceptable 
values of the variables affecting design.

10

Term Definition Chapter
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Failure theory: A statement on the relationship of the stress components to the characteristic value of 
material failure

10

Failure: A component or a structure does not perform the function for which it was designed. 3

Fatigue strength: The highest stress level for which the material would not fail under cyclic loading. Also 
called endurance limit.

3

Fatigue: Failure due to cyclic loading at stress levels significantly lower than the static ultimate 
stress.

3

Finite element method: A numerical method used in stress analysis in which the body is divided into elements of 
finite size.

4

Flexibility coefficient: The coefficient multiplying internal forces / moments in an algebraic equation. 4

Flexibility matrix: The matrix multiplying the unknown internal forces / moments in a set of algebraic equa-
tions.

4

Fracture stress: The stress at the point where material breaks. 3

Free surface: A surface on which there are no forces. Alternatively, a surface that is stress free. 1

Free-body diagram: A diagram showing all the forces acting on a free body. A

Gage length: Length between two marks on a tension test specimen in the central region of uniform 
axial stress.

3

Generalized Hooke’s law: The equations relating stresses and strains in three dimensions. 3

Global coordinate system: A fixed reference coordinate system in which the entire problem is described. 8

Hardness: The resistance of material to indentation and scratches. 3

Homogeneous material: A material that has same the material properties at all points in the body. 3

Hooke’s law: Equation relating normal stress and strain in the linear region of a tension test. 3

In-plane maximum shear strain: The maximum shear strain in coordinate systems that can be obtained by rotating about 
the z axis. 

9

In-plane maximum shear stress: The maximum shear stress on a plane that can be obtained by rotating about the z axis. 8

Isotropic material: A material that has a stress-strain relationships independent of the orientation of the coor-
dinate system at a point.

3

Lagrangian strain: Strain computed from deformation by using the original undeformed geometry as the ref-
erence geometry. 

2

Load cells: Any device that measures, controls, or applies a force or moment. 9

Loads: External forces and moments that are applied to the body. A

Local buckling: Buckling that occurs in thin plates or shells due to compressive stresses. 11

Local coordinate system: A coordinate system that can be fixed at any point on the body and has an orientation that 
is defined with respect to the global coordinate system. 

8

Maximum normal stress theory: A material will fail when the maximum normal stress at a point exceeds the ultimate nor-
mal stress obtained from a uniaxial tension test.

10

Maximum octahedral shear stress 
theory: 

A material will fail when the maximum octahedral shear stress exceeds the octahedral 
shear stress at the yield obtained from a uniaxial tensile test.

10

Maximum shear strain: The maximum shear strain at a point in any coordinate system. 9

Maximum shear stress theory: A material will fail when the maximum shear stress exceeds the shear stress at yield that 
is obtained from a uniaxial tensile test.

10

Maximum shear stress: The maximum shear stress at a point that acts on any plane passing through the point. 8

Method of joints: Analysis is conducted by making imaginary cuts through all the members a the joint. A

Term Definition Chapter
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Method of sections: Analysis is conducted by making an imaginary cut (section) through a member or a struc-
ture. 

A

Modulus of elasticity: The slope of the normal stress-strain line in the linear region of a tension test. Also called 
Young’s modulus.

3

Modulus of resilience: Strain energy density at the yield point. 3

Modulus of rigidity: Same as shear modulus of elasticity. 3

Modulus of toughness: The strain energy density at rupture. 3

Mohr’s failure theory: A material will fail if a stress state is on the envelope that is tangent to the three Mohr’s 
circles corresponding to uniaxial ultimate stress in tension, uniaxial ultimate stress in 
compression, and pure shear.

10

Moment diagram: A plot of the internal bending moment Mz versus x. 6

Monotonic functions: Functions that either continuously increases or decreases. 7

Necking: The sudden decrease in cross-sectional area after ultimate stress. 3

Negative normal strains: Normal strains from contraction of a line. 2

Negative shear strain: Shear strain due to a increase of angle between orthogonal lines. 2

Neutral axis: The line on the cross section where the bending normal stress is zero. 6

Nominal stress: The stress predicted by theoretical models away from the regions of stress concentration. 3

Normal stress: Internal distributed forces that are normal to an imaginary cut surface. 1

Offset yield stress: Stress that would produce a plastic strain corresponding to the specified offset strain. 3

Pitch: The distance between two adjoining peaks on the threads of a bolt. It is the distance 
moved by the nut in one full rotation. 

4

Plane stress: A state of stress in which all stress components on the z-plane are zero. 1

Plastic region: The region in which the material deforms permanently. 3

Plastic strain: The permanent strain when stresses are zero. 3

Poisson’s ratio: The negative ratio of lateral normal strain to longitudinal normal strain. 3

Positive normal strains: Normal strains from elongation of a line. 2

Positive shear strain: Shear strain due to a decrease of angle between orthogonal lines. 2

Principal angle 1: Angle principal direction one makes with the global coordinate direction x. Counter-
clockwise rotation from the x axis is defined as positive.

8

Principal angles: The angles the principal directions makes with the global coordinate system. 8

Principal angles: The angles the principal axes make with the global coordinate system. 9

Principal axes for strain: The coordinate axes in which the shear strain is zero. 9

Principal axis for stress: The normal direction to the principal planes. Also referred to as the principal direction. 8

Principal direction: The normal direction to the principal planes. Also referred to as the principal axis. 8

Principal planes: Planes on which the shear stresses are zero. 8

Principal strain 1: The greatest principal strain. 9

Principal strains: Normal strains in the principal directions. 9

Principal stress 1: The greatest principal stress. 8

Principal stress element: A properly oriented wedge constructed from the principal planes and the plane of maxi-
mum shear stress showing all the stresses acting on the respective planes. 

8

Term Definition Chapter
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Principal stress: Normal stress on a principal plane. Also referred to as maximum or minimum normal 
stress at a point.

8

Proportional limit: The point up to which stress and strain are related linearly. 3

Ramp function: A function whose value is zero before a point and is a linear function after the point. 7

Reaction forces: Forces developed at the supports that resist translation in a direction. A

Reaction moment: Moments developed at the support that resist rotation about an axis. A

Rupture stress: The stress at the point where material breaks. 3

Secant modulus: The slope of the line that joins the origin to the point on the normal stress-strain curve at 
a given stress value.

3

Second order tensor: A quantity that requires two directions and obeys certain coordinate transformation prop-
erties.

1

Section modulus: The ratio of the second area moment of inertia about bending axis to the maximum dis-
tance from the neutral axis.

6

Shaft: A long structural member that transmits torque from one plane to another parallel plane. 5

Shear flow: The product of thickness and tangential shear stress along the center line of a thin cross 
section.

6

Shear force diagram: A plot of the internal shear force Vy versus x. 6

Shear force: Tangential force acting on a surface of a body. A

Shear modulus of elasticity: The slope of the shear stress-strain line in the linear region of a torsion test. Also called 
modulus of rigidity.

3

Shear stress: Internal distributed forces that are parallel to an imaginary cut surface. 1

Singularity functions: A class of functions that are zero everywhere except in a small region where they tend 
towards infinity. 

7

Slenderness Ratio: The ratio of the effective column length to the radius of gyration of the cross section 
about the buckling axis.

11

SN curve: A plot of stress versus the number of cycles to failure. 3

Snap buckling: A structure suddenly jumping (snapping) from one equilibrium position to another very 
different equilibrium position.

11

Statically equivalent load systems: Two systems of forces that generate the same resultant force and moment. A

Statically indeterminate structure: A structure on which the number of unknown reaction forces and moments is greater than 
the number of equilibrium equations.

A

Step function: A function whose value is zero before a point and equal to 1 after the point. 7

Stiffness coefficient: The coefficient multiplying displacements / rotations in an algebraic equation. 4

Stiffness matrix: The matrix multiplying the unknown displacements / rotations in a set of algebraic equa-
tions.

4

Strain energy density: Strain energy per unit volume. It is the area under the stress-strain curve at a given value 
of stress or strain.

3

Strain energy: Energy stored in a body due to deformation. 3

Strain hardening: The increase of yield point each time the stress value exceeds the yield stress. 3

Stress concentration: Large stress gradients in a small region. 3

Stress element: An imaginary object representing a point that has surfaces with outward normals in the 
coordinate directions.

1

Tangent modulus: The slope of the tangent drawn to the normal stress-strain curve at a given stress value. 3

Term Definition Chapter
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Tensile stress: Normal stress that pulls the imaginary surface away from the rest of the material. 1

Tension test: A test conducted to determine mechanical properties by applying tensile forces on a spec-
imen.

3

Thin body: The thickness of the body is an order of magnitude (factor of 10) smaller than the other 
dimensions.

1

Timoshenko beam: Beam in which shear is accounted for by dropping the assumption that planes originally 
perpendicular remain perpendicular.

6

Torque Diagram: A plot of the internal torque T versus x. 5

Torque: Moment about an axis normal to a surface of a body. A

Torsion template: An infinitesimal segment of a shaft constructed by making an imaginary cuts on either 
side of a supposed external torque.

5

Torsional rigidity: The product of shear modulus of elasticity (G) and the polar moment of inertia (J) of a 
shaft.

5

Truss: A structure made up of two-force members. A

Two-force member: A structural member on which there is no moment couple and forces act at two points 
only.

A

Ultimate stress: The largest stress in the stress-strain curve. 3

Warping: Axial deformation of shaft cross section due to torque. 5

Yield point: The point demarcating the elastic from the plastic region. 3

Yield stress: The stress at yield point. 3

Young’s modulus:  Same as modulus of elasticity. 3

Zero-force member: A two-force member that carries no internal force. A

Term Definition Chapter
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C.8 CONVERSION FACTORS BETWEEN U.S. CUSTOMARY SYSTEM (USCS) 
AND THE STANDARD INTERNATIONAL (SI) SYSTEM

C.9 SI PREFIXES

C.10 GREEK ALPHABET

Quantity USCS to SI SI to USCS
Length 1 in = 25.400 mm

1 ft = 0.3048
1 m = 39.37 in
1 m = 3.281 ft

Area 1 in2 = 645.2 mm2

1 ft2 = 0.0929 m2
1 mm2 = 1.550(10-3) in2

1 m2 = 10.76 ft2

Volume 1 in3 = 16.39(103) mm3

1 ft3 = 0.028 m3
1 mm3 = 61.02(10-6) in3

1 m3 = 35.31 ft3

Area Moment of Inertia 1 in4 = 0.4162(106) mm4 1 m4 = 2.402(10-6) in4

Mass 1 slug = 14.59 kg 1 kg = 0.06852 slugs
Force 1 lb = 4.448 N

1 kip = 4.448 kN
1 N = 0.2248 lb
1 kN = 0.2248 kip

Moment 1 in-lb = 0.1130 N-m
1 ft-lb = 1.356 N-m

1 N-m = 8.851 in-lb 
1 N-m = 0.7376 ft-lb

Force per unit length 1 lb/ft = 14.59 N/m 1 N/m = 0.06852 lb/ft
Pressure; Stress 1 psi = 6.895 kPa

1 ksi = 6.895 MPa
1 lb/ft2 = 47.88 Pa

1 kPa = 0.1450 psi
1 MPa = 0.1450 ksi
1 kPa = 20.89 lb/ft2

Work; Energy 1 lb.ft = 1.356 J 1 J = 0.7376 lb.ft
Power 1 lb.ft/s = 1.356 W

1 hp = 745.7 W
1 W = 0.7376 lb.ft/s
1 kW = 1.341 hp

Prefix Word Prefix Symbol
Multiplication 
Factor

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10-3

micro μ 10-6

nano n 10-9

pico p 10-12

Lowercase Uppercase
Pronunciatio
n Lowercase Uppercase

Pronunciatio
n

α Α Alpha ν Ν Nu
β Β Beta ξ ξ Xi
γ Γ Gamma ο Ο Omicron
δ Δ Delta π Π Pi
ε Ε Epsilon ρ Ρ Rho
ζ Ζ Zeta σ Σ Sigma
η Η Eta τ Τ Tau
θ Θ Theta υ Υ Upsilon
ι Ι Iota φ Φ Phi
κ Κ Kappa χ Χ Chi
λ Λ Lambda ψ Ψ Psi
μ Μ Mu ω Ω Omega
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 APPENDIX D

SOLUTIONS TO STATIC 
REVIEW EXAM

D.1 REVIEW EXAM 1

1. As the y axis is the axis of symmetry, the centroid will lie on the y axis. Thus zc = 0. 1 point

Equations (A.6) and (A.9) can be used to find the y coordinate of the centroid and the area moment of inertia. Figure A.17 and
Table D.4 show the calculations. 

From Equations (A.6) and (A.9)we obtain

2. We can replace each linear loading by an equivalent force, as shown in Figure A.7, then replace it by a single force. Using Fig-
ure A.18 we obtain

TABLE D.4 Calculation of centroid and area moment of inertia.

Section

Centroids Area moment of inertia

(mm)
Ai

(mm2) (mm3) (mm) (mm4) (mm4)

1 30 60 x 10 = 600 18,000 15.9 10 x 603/12 = 180 ¥ 103 331.7 x 103

2 65 50 x 10 = 500 32,500 19.1 50 x 103/12 = 4.2 ¥ 103 186.6 x 103

Total 1100 50,500

1 point for each correct entry for a total of 7 points. 1 point for each correct entry. 2 points for each correct entry. 1 point for each correct entry.

50 mm

10 mm

10 mm

60 mm

A

yc
yc1

dy1yc2

dy2

A

2

1

  Figure A.17

yci
yci

Ai
dzi

yc yci
–= Izizi

1
12
------aibi

3= Izizi
Aidzi

2+

1 point for each correct answer with units. yc
50,500
1100

----------------  = 45.9  mm= IAA 331.7 186.6+( ) 103( ) 518.3 103( ) mm4= =

3 points/force for correct calculation. F1
10 2.5 6××

2
----------------------------- 75 kips== F2

10 8 3××
2

------------------------= 120 kips=

2 in 4 in

2 in 1 in

O

F1

F2

yF

O

F

8 
in2.
5 

in

6 in

3 in

x

y

10 ksi

10 ksi

x

  Figure A.18 For correct location of forces F1 and F2 3 points/force.
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The resultant forces for the two systems on the right in Figure A.18 must be the same. We thus obtain

The resultant moments about any point (point O) for the two systems on the right of Figure A.18 must also be the same. We
obtain

3.We make an imaginary cut at E and draw the free-body diagrams shown in Figures A.19 and A.20.
Internal axial force calculations (Figure A.19).

Internal torque calculations (Figure A.20)

4. We can draw the free-body diagram of the entire beam as shown in Figure A.21a. 

By balancing the moment at D we find the reaction at B,

We can then make an imaginary cut at A on the original beam and draw the free-body diagram in Figure A.21b.We can find
the intensity of the distributed force at A by similar triangles (Figure A.22a),

We can then replace the distributed force on the beam that is cut at A and draw the free-body diagram shown in Figure A.22b.

2 points for correct answer
1 point for correct units.

F F1 F2+ 75 120+ 195 kips= = =

2F1 8F2+ yFF=
1 point for each correct

entry in this equation

or
yF

150 960+
195

------------------------ 5.69 in= =

1 point for correct answer

1 point for correct units

3.5 kips

1 kip

1 kip

3.5 kips

B

A

E NE

or

NE

1.5 kips

1.5 kips

4 kips

4 kips

D

C

E

 Figure A.19

Either FBD is acceptable. 
For drawing: 

2 kips at B or 3 kips at C ----2 marks 
Normal force at E---2 marks

7 kip force at A or 8 kips at D--2 marks

1 point for correct equation NE 7– 2+ 0 or NE 8– 3+ 0==

1 point for correct answer
1 point for correct units
1 point for reporting tension

NE 5 kips (T)=

or
2 ft�kips

3 ft�kips

B

A

E

TE

5 ft�kips

4 ft�kips
TE

D

C

E

Either FBD is acceptable. 
For drawing: 

torque at B or at C ----2 marks 
torque at E (either direction) ---2 marks

torque at A or D--2 marks

  Figure A.20

2 points for correct equation TE 3– 2+ 0 or TE 5– 4+ 0==

1 point for correct answer
1 point for correct units

TE 1 ft·kips=

RD

B D

RB

27 kN�m

F �  � 20 � 4.5 � 45 kN1
2

3.0 m 2.5 m

(a) (b)

B A

RB

27 kN�m

VA

pA

2 m

MA

  Figure A.21

1 mark for each force
or moment and 1 mark 
for correct location of F
Total 5 marks.

1 point for each term in the equation

for a total of 3 points.
5.5RB 27– 45 2.5×– 0 or RB 25.36 kN==

pA

2
----- 20

4.5
------- or pA 8.89 kN/m==
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Balancing the forces in the y direction we obtain

Balancing moments about point A, we obtain

5. By inspection we can write the following answers.

Internal
Force/Moment

Section AA
(zero/nonzero)

Section BB
(zero/nonzero)

Axial force Nonzero Zero

Shear force Nonzero in y direction Nonzero in y direction

Shear force Zero in x direction Nonzero in z direction

Torque Zero Nonzero

Bending moment Nonzero in x direction Nonzero in y direction

Bending moment Zero in y direction Nonzero in z direction
1 point for each correct zero/non-zero entry. 

1 point for each correct direction. Total 20 points.

pA
20 kN/m

AB C
2 m

4.5 m

(a)

VA

MA

2
3

m

B A

RB

27 kN�m

FA �  � pA � 2 � 8.89 kN
1
2

2 m

(b)  Figure A.22

1 mark for correct value of FA
1 mark for correct location of FA

3 marks for correct 
calculation of pA.

2 marks for
showing VA
and MA

irrespective
of direction.

VA 25.36 8.89–+ 0=
1 point for correct equation correponding

to your direction of  VA

or VA 16.5 kN–=
1 point for correct answer

MA 27 25.36 2×– 8.89 2× 3⁄+ + 0=
2 point for correct equation correponding

to your direction of  MA

or MA 17.8 kN·m=
1 point for correct answer
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 APPENDIX E

ANSWERS TO QUICK TESTS

QUICK TEST 1.1

1. False. Stress is an internal quantity that can only be inferred but cannot be measured directly.
2. True. A surface has a unique normal, and normal stress is the internally distributed force in the direction of the

normal.
3. True. Shear stress is an internally distributed force, and internal forces are equal and opposite in direction on

the two surfaces produced by an imaginary cut.
4. False. Tension implies that the normal stress pulls the imaginary surface outward, which will result in opposite

directions for the stresses on the two surfaces produced by the imaginary cut.
5. False. kips are units of force, not stress.
6. False. The normal stress should be reported as tension.
7. False. 1 GPa equals 109 Pa.
8. False. 1 psi nearly equals 7 kPa not 7 Pa.
9. False. Failure stress values are in millions of pascals for metals.
10. False. Pressure on a surface is always normal to the surface and compressive. Stress on a surface can be normal

or tangential to it, and the normal component can be tensile or compressive. 

QUICK TEST 1.2

1. False. Stress at a point is a second-order tensor.
2. True. Each of the two subscripts can have three values, resulting in nine possible combinations.
3. True. The remaining three components can be found from the symmetry of shear stresses. 
4. True. The fourth component can be found from the symmetry of shear stresses.
5. False. A point in plane stress has four nonzero components; thus only five components are zero in general.
6. False. The sign of stress incorporates both the direction of the force and the direction of the imaginary surface.
7. True. A stress element is an imaginary object representing a point.
8. False. The normals of the surface of a stress element have to be in the direction of the coordinate system in

which the stress at a point is defined.
9. True. Stress is an internally distributed force system that is equal and in opposite directions on the two surfaces

of an imaginary cut. 
10. False. The sign of stress incorporates the direction of the force and the direction of the imaginary surface. Alter-

natively, the sign of stress at a point is independent of the orientation of the imaginary cut surface.
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QUICK TEST 2.1

1. Displacement is the movement of a point with respect to a fixed coordinate system, whereas deformation is the
relative movement of a point with respect to another point on the body.

2. The reference geometry is the original undeformed geometry in Lagrangian strain and the deformed geometry
in Eulerian strain. 

3. The value of normal strain is 0.3/100 = 0.003.
4. The value of normal strain is 2000 × 10−6 = 0.002.
5. Positive shear strain corresponds to a decrease in the angle from right angle.
6. The strain will be positive as it corresponds to extension and is independent of the orientation of the rod. 
7. No. We have defined small strain to correspond to strains less than 1%.
8. There are nine strain nonzero components in three dimensions.
9. There are four nonzero strain components in plane strain. 
10. There are only three independent strain components in plane strain, as the fourth strain component can be deter-

mined from the symmetry of shear strains.

QUICK TEST 3.1

1. The modulus of elasticity has units of pascals or newtons per square meter. For metals it is usually gigapascals
(GPa). Poisson’s ratio has no units as it is dimensionless.

2. Offset yield stress is the stress value corresponding to a plastic strain equal to a specified offset strain.
3. Strain hardening is the increase in yield stress that occurs whenever yield stress is exceeded. 
4. Necking is the sudden decrease in cross-sectional area after the ultimate stress.
5. Proportional limit defines the end of the linear region, whereas yield point defines the end of the elastic region.
6. A brittle material exhibits little plastic deformation before rupture, whereas a ductile material can undergo large

plastic deformation before rupture. 
7. A linear material behavior implies that stress and strain be linearly related. An elastic material behavior implies

that when the loads are removed, the material returns to the undeformed state but the stress–strain relationship
can be nonlinear, such as in rubber.

8. Strain energy is the energy due to deformation in a volume of material, whereas strain energy density is the
strain energy per unit volume.

9. The modulus of resilience is a measure of recoverable energy and represents the strain energy density at yield
point. The modulus of toughness is a measure of total energy that a material can absorb through elastic as well
as plastic deformation and represents the strain energy density at ultimate stress. 

10. A strong material has a high ultimate stress, whereas a tough material may not have high ultimate stress but has
a large strain energy density at ultimate stress. 
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QUICK TEST 3.2

1. In an isotropic material the stress–strain relationship is the same in all directions but can differ at different
points. In a homogeneous material the stress–strain relationship is the same at all points provided the directions
are the same. 

or 
In an isotropic material the material constants are independent of the orientation of the coordinate system but can
change with the coordinate locations. In a homogeneous material the material constants are independent of the
locations of the coordinates but can change with the orientation of the coordinate system. 

2. There are only two independent material constants in an isotropic linear elastic material.
3. 21 material constants are needed to specify the most general linear elastic anisotropic material.
4. There are three independent stress components in plane stress problems.
5. There are three independent strain components in plane stress problems.
6. There are five nonzero strain components in plane stress problems.
7. There are three independent strain components in plane strain problems.
8. There are three independent stress components in plane strain problems.
9. There are five nonzero stress components in plane strain problems.
10. For most materials E is greater than G as Poisson’s ratio is greater than zero and G = E/2(1 + ν). In composites,

however, Poisson’s ratio can be negative; in such a case E will be less than G.

QUICK TEST 4.1

1. True. Material models do not affect the kinematic equation of a uniform strain.
2. False. Stress is uniform over each material but changes as the modulus of elasticity changes with the material in a

nonhomogeneous cross section.
3. True. In the formulas A is the value of a cross-sectional area at a given value of x. 
4. False. The formula is only valid if N, E, and A do not change between x1 and x2. For a tapered bar A is changing

with x. 
5. True. The formula does not depend on external load. External loads affect the value of N but not the relationship

of N to σxx. 
6. False. The formula is valid only if N, E, and A do not change between x1 and x2. For a segment with distributed

load, N changes with x. 
7. False. The equation represents static equivalency of N and σxx, which is independent of material models. 
8. True. The equation represents static equivalency of N and σxx over the entire cross section and is independent of

material models.
9. True. The uniform axial stress distribution for a homogeneous cross section is represented by an equivalent

internal force acting at the centroid which will be also collinear with external forces. Thus no moment will be
necessary for equilibrium. 

10. True. The equilibrium of a segment created by making an imaginary cut just to the left and just to the right of
the section where an external load is applied shows the jump in internal forces.
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QUICK TEST 5.1

1. True. Torsional shear strain for circular shafts varies linearly.
2. True. The shear strain variation is independent of material behavior across the cross section. 
3. False. If the shear modulus of a material on the inside is significantly greater than that of the material on the out-

side, then it is possible for the shear stress on the outer edge of the inside material to be higher than that at the
outermost surface. 

4. True. The shear stress value depends on the J at the section containing the point and not on the taper.
5. False. The formula is obtained assuming that J is constant between x1 and x2.
6. True. The shear stress value depends on the T at the section. The equilibrium equation relating T to external

torque is a separate equation. 
7. False. The formula is obtained assuming that T is constant between x1 and x2, but in the presence of distributed

torque, T is a function of x. 
8. False. The equation represents static equivalency and is independent of material models.
9. True. Same reasoning as in question 8.
10. True. Equilibrium equations require that the difference between internal torques on either side of the applied

torque equal the value of the applied torque.

QUICK TEST 6.1

1. True. Bending normal strain varies linearly and is zero at the centroid of the cross section. If we know the strain
at another point, the equation of a straight line can be found.

2. True. Bending normal stress varies linearly and is zero at the centroid and maximum at the point farthest from
the centroid. Knowing the stress at two points on a cross section, the equation of a straight line can be found. 

3. False. The larger moment of inertia is about the axis parallel to the 2-in. side, which requires that the bending
forces be parallel to the 4-in. side.

4. True. The stresses are smallest near the centroid. Alternatively, the loss in moment of inertia is minimum when
the hole is at the centroid.

5. False. y is measured from the centroid of the beam cross section.
6. True. The formula is valid at any cross section of the beam. Izz has to be found at the section where the stress is

being evaluated. 
7. False. The equations are independent of the material model and are obtained from static equivalency principles,

and the bending normal stress distribution is such that the net axial force on a cross section is zero. 
8. True. The equation is independent of the material model and is obtained from the static equivalency principle.
9. True. The equilibrium of forces requires that the internal shear force jump by the value of the applied transverse

force as one crosses the applied force from left to right.
10. True. The equilibrium of moments requires that the internal moment jump by the value of the applied moment

as one crosses the applied moment from left to right.
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QUICK TEST 8.1

1. θ = 115° or 295° or −65° 2.  θ = 245° or 65° or −115°
3. θ = 155° or −25° or 335° 4.  σ1 = 5 ksi (T)
5. σ1 = 5 ksi (C) 6.  τmax = 10 ksi
7. τmax = 12.5 ksi 8.  τmax = 10 ksi
9. θ1 = 55° or −125° 10.  θ1 = −35°

QUICK TEST 8.2

1. D
2. A
3. E
4. 12° ccw or 168° cw
5. 102° ccw or 78° cw 
6. 78° ccw or 102° cw
7. D
8. A
9. B
10. σ = 30 MPa (T), τ = −40 MPa

QUICK TEST 8.3

1. False. There are always three principal stresses. In two-dimensional problems the third principal stress is not inde-
pendent and can be found from the other two. 

2. True.
3. False. Material may affect the state of stress, but the principal stresses are unique for a given state of stress at a

point.
4. False. The unique value of the principal stress depends only on the state of stress at the point and not on how

these stresses are measured or described. 
5. False. Planes of maximum shear stress are always at 45° to the principal planes, and not 90°.
6. True. 
7. True. 
8. False. Depends on the value of the third principal stress. 
9. False. Each plane is represented by a single point on Mohr’s circle.
10. False. Each point on Mohr’s circle represents a single plane
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QUICK TEST 9.1

1. D
2. C
3. B
4. C
5. D
6. 108° ccw or 72° cw 
7. 18° ccw or 162° cw
8. ε1 = 1300 μ, γmax = 2000 μ
9. ε1 = 2300 μ, γmax = 2300 μ
10. ε1 = −300 μ, γmax = 2300 μ

QUICK TEST 9.2

1. (a) εyy = 800 μ; (b) εyy = 800 μ
2. θ = +115° or −65° 
3. θ = +155° or −25° 
4. θ = +25° or −155° 
5. γmax = 2100 μ
6. γmax = 3100 μ
7. γmax = 1700 μ
8. False. There are always three principal strains. In two-dimensional problems the third principal strain is not

independent and can be found from the other two. 
9. False. The unique value of principal strains depends only on the state of strain at the point and not on how these

strains are measured or described.
10. False. Only for isotropic materials are the principal coordinates for stresses and strains the same, but for any

anisotropic materials the principal coordinates for stresses and strains are different.
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QUICK TEST 11.1

1. False. Only compressive axial forces can cause column buckling.
2. True.
3. False. There are infinite buckling loads. The addition of supports changes the buckling mode to the next higher

critical buckling load.
4. True.
5. False. The critical buckling load does not change with the addition of uniform transverse distributed forces, but

the increase in normal stress may cause the column to fail at lower loads.
6. False. Springs and elastic supports in the middle increase the critical buckling load.
7. False. The critical buckling load does not change with eccentricity, but an increase in normal stress causes the

column to fail at lower loads with increasing eccentricity. 
8. False. The critical buckling load decreases with increasing slenderness ratio. 
9. True.
10. True.

QUICK TEST A.1

1. Structure 1: One; AB.
Structure 2: Three; AC, CD, CE.
Structure 3: Three; AC, BC, CD.

2. DF, CF, HB.
3. Structure 1: Two; indeterminate.

Structure 2: One; indeterminate.
Structure 3: Zero; determinate.
Structure 4: One; indeterminate.
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