Mechanical Properties of Materials

Learning objectives

- Understand the qualitative and quantitative description of mechanical properties of materials.
- Learn the logic of relating deformation to external forces.

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

August 2012 3-1

Tension Test

$$\varepsilon = \frac{\delta}{L_o}$$
 $\sigma = \frac{P}{A_o} = \frac{P}{\pi d_o^2/4}$

re 3.1 Stress-strain curve.

Definitions

- The point up to which the stress and strain are linearly related is called the proportional limit.
- The largest stress in the stress strain curve is called the ultimate stress.
- The stress at the point of rupture is called the fracture or rupture stress.
- The region of the stress-strain curve in which the material returns to the undeformed state when applied forces are removed is called the elastic region.
- The region in which the material deforms permanently is called the plastic region.
- The point demarcating the elastic from the plastic region is called the yield point. The stress at yield point is called the yield stress.
- The permanent strain when stresses are zero is called the plastic strain.
- The off-set yield stress is a stress that would produce a plastic strain corresponding to the specified off-set strain.
- A material that can undergo large plastic deformation before fracture is called a ductile material.
- A material that exhibits little or no plastic deformation at failure is called a brittle material.
- Hardness is the resistance to indentation.
- The raising of the yield point with increasing strain is called strain hardening.
- The sudden decrease in the area of cross-section after ultimate stress is called necking.

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

Material Constants

$$\sigma = E\varepsilon$$
 ------Hooke's Law

E Young's Modulus or Modulus of Elasticity

• Poisson's ratio:

$$v = -\left(\frac{\varepsilon_{lateral}}{\varepsilon_{longitudnal}}\right)$$

$$\tau = G\gamma$$

G is called the Shear Modulus of Elasticity or the Modulus of Rigidity

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

C3.1 An aluminum rectangular bar has a cross-section of 25 mm x 50 mm and a length of 500 mm. The Modulus of Elasticity of E = 70 GPa and a Poisson's ratio of v = 0.25. Determine the percentage change in the volume of the bar when an axial force of 300 kN is applied to the bar.

August 2012 3-5

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

C3.3 A roller slides in a slot by the amount $\delta_P = 0.25$ mm in the direction of the force F. Both bars have an area of cross-section of $A = 100 \text{ mm}^2$ and a Modulus of Elasticity E = 200 GPa. Bar AP and BP have lengths of $L_{AP} = 200 \text{ mm}$ and $L_{BP} = 250 \text{ mm}$ respectively. Determine the applied force F.

Fig. C3.3

Fig. C3.4

C3.4 A gap of 0.004 in. exists between a rigid bar and bar A before a force F is applied (Figure P3.4). The rigid bar is hinged at point C. Due to force F the strain in bar A was found to be $-500 \,\mu$ in/in. The lengths of bars A and B are 30 in. and 50 in., respectively. Both bars have cross-sectional areas A = 1 in.² and a modulus of elasticity E = 30,000 ksi. Determine the applied force F.

Fig. C3.4

Isotropy and Homogeneity

Linear relationship between stress and strain components:

$$\begin{split} \varepsilon_{xx} &= \, C_{11} \sigma_{xx} + C_{12} \sigma_{yy} + C_{13} \sigma_{zz} + C_{14} \tau_{yz} + C_{15} \tau_{zx} + C_{16} \tau_{xy} \\ \varepsilon_{yy} &= \, C_{21} \sigma_{xx} + C_{22} \sigma_{yy} + C_{23} \sigma_{zz} + C_{24} \tau_{yz} + C_{25} \tau_{zx} + C_{26} \tau_{xy} \\ \varepsilon_{zz} &= \, C_{31} \sigma_{xx} + C_{32} \sigma_{yy} + C_{33} \sigma_{zz} + C_{34} \tau_{yz} + C_{35} \tau_{zx} + C_{36} \tau_{xy} \\ \gamma_{yz} &= \, C_{41} \sigma_{xx} + C_{42} \sigma_{yy} + C_{43} \sigma_{zz} + C_{44} \tau_{yz} + C_{45} \tau_{zx} + C_{46} \tau_{xy} \\ \gamma_{zx} &= \, C_{51} \sigma_{xx} + C_{52} \sigma_{yy} + C_{53} \sigma_{zz} + C_{54} \tau_{yz} + C_{55} \tau_{zx} + C_{56} \tau_{xy} \\ \gamma_{xy} &= \, C_{61} \sigma_{xx} + C_{62} \sigma_{yy} + C_{63} \sigma_{zz} + C_{64} \tau_{yz} + C_{65} \tau_{zx} + C_{66} \tau_{xy} \end{split}$$

- An isotropic material has a stress-strain relationships that are independent of the orientation of the coordinate system at a point.
- A material is said to be homogenous if the material properties are the same at all points in the body. Alternatively, if the material constants C_{ij} are functions of the coordinates x, y, or z, then the material is called non-homogenous.

For Isotropic Materials: $G = \frac{E}{2(1+v)}$

Generalized Hooke's Law for Isotropic Materials

• The relationship between stresses and strains in three-dimensions is called the Generalized Hooke's Law.

$$\varepsilon_{xx} = [\sigma_{xx} - v(\sigma_{yy} + \sigma_{zz})]/E$$

$$\varepsilon_{yy} = [\sigma_{yy} - v(\sigma_{zz} + \sigma_{xx})]/E$$

$$\varepsilon_{zz} = [\sigma_{zz} - v(\sigma_{xx} + \sigma_{yy})]/E$$

$$\gamma_{xy} = \tau_{xy}/G$$

$$\gamma_{yz} = \tau_{yz}/G$$

$$\gamma_{zx} = \tau_{zx}/G$$

$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\varepsilon_{zz}
\end{cases} = \frac{1}{E} \begin{bmatrix}
1 - v - v \\
-v & 1 - v \\
-v & -v & 1
\end{bmatrix} \begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz}
\end{cases}$$

Plane Stress and Plane Strain

Plane Stress
$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Generalized Hooke's Law}} \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} & 0 \\ \gamma_{yx} & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} = -\frac{V}{E}(\sigma_{xx} + \sigma_{yy}) \end{bmatrix}$$

Plane Strain
$$\begin{bmatrix}
\varepsilon_{xx} & \gamma_{xy} & 0 \\
\gamma_{yx} & \varepsilon_{yy} & 0 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{\text{Generalized Hooke's Law}}
\begin{bmatrix}
\sigma_{xx} & \tau_{xy} & 0 \\
\tau_{yx} & \sigma_{yy} & 0 \\
0 & 0 & \sigma_{zz} = \nu(\sigma_{xx} + \sigma_{yy})
\end{bmatrix}$$

Plane Stress

Free surface $(\sigma_{zz} = 0)$ $(\varepsilon_{zz} \neq 0)$ Free surface $(\sigma_{zz} = 0)$ (a)

Plane Strain

C3.5 A 2in x 2 in square with a circle inscribed is stressed as shown Fig. C3.5. The plate material has a Modulus of Elasticity of E = 10,000 ksi and a Poisson's ratio v = 0.25. Determine the major and minor axis of the ellipse formed due to deformation assuming (a) plane stress. (b) plane strain.

Class Problem 1

The stress components at a point are as given. Determine ε_{xx} assuming (a) Plane stress (b) Plane strain

$$\sigma_{xx} = 100 \quad MPa(T)$$

$$\sigma_{yy} = 200 \quad MPa(C)$$

$$\tau_{xy} = -125 \quad MPa$$

$$E = 200 \quad GPa$$

$$v = 0.25$$

Failure and factor of safety

• Failure implies that a component or a structure does not perform the function it was designed for.

$$K_{safety} = \frac{Failure\ producing\ value}{Computed(allowable)value}$$
 3.1

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

August 2012 3-14

C3.6 An adhesively bonded joint in wood is fabricated as shown. For a factor of safety of 1.25, determine the minimum overlap length L and dimension h to the nearest 1/8th inch. The shear strength of adhesive is 400 psi and the wood strength is 6 ksi in tension.

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

- The length of the member is significantly greater (approximately 10 times) then the greatest dimension in the cross-section.
- We are away from regions of stress concentration, where displacements and stresses can be three-dimensional.
- The variation of external loads or changes in the cross-sectional area is gradual except in regions of stress concentration.
- The external loads are such that the axial, torsion and bending problems can be studied individually.

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm