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Symmetric Bending of Beams

* A beam is any long structural member on which loads act perpendicu-
lar to the longitudinal axis.

Learning objectives

» Understand the theory, its limitations and its applications for strength
based design and analysis of symmetric bending of beams.

» Develop the discipline to visualize the normal and shear stresses in
symmetric bending of beams.
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Cé6.1 Due to the action of the external moment M_,,and force P, the

rigid plate shown in Fig. C6.1 was observed to rotate by 2° from the ver-
tical plane in the direction of the moment. The normal strain in bar 1 was
found as ¢, = 2000 p in/in. . Both bars have an area of cross-section of

A =1/2 in? and a modulus of elasticity of E = 30,000 ksi. Determine the
applied moment M., and force P.
y 7 Bar 2
b

/ 1 2 in. " Bar 1

4 in.
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Internal Bending Moment

M = —chxdi

Z
A

Jodd =0
A
Above equations are independent of material model as these equa-
tions represents static equivalency between the normal stress on the
entire cross-section and the internal moment.
* The line on the cross-section where the bending normal stress is zero
is called the neutral axis.

* Location of neutral axis is chosen to satisfy j c..d4 = 0.

A
» Origin of y 1s always at the neutral axis, irrespective of the material

model.
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C6.2 Steel (Egtee; = 30,000 ksi) strips are securely attached to a
wooden (E,,04 = 2,000 ksi) beam as shown below. The normal strain at

the cross-section due to bending about the z-axisis e . = —100y p

where y is measured in inches, and the dimensions of the cross-section
are d =2 in, hy, =4 in and hg= (1/8) in. Determine the equivalent internal

moment M, -

D

<o
=
3

l— 4 ——]
Fig. C6.2
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Theory of symmetric bending of beams

Limitations

* The length of the member is significantly greater then the greatest
dimension in the cross-section.

* We are away from the regions of stress concentration.

* The variation of external loads or changes in the cross-sectional areas
are gradual except in regions of stress concentration.

» The cross-section has a plane of symmetry.

* The loads are in the plane of symmetry.

* The load direction does not change with deformation.

» The external loads are not functions of time.

Pl P
Bending only E Bending and torsion
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Theory objectives:

 To obtain a formula for the bending normal stress ,,, and bending

shear stress T, in terms of the internal moment M, and the internal

shear force Vy

* To obtain a formula for calculation of the beam deflection v(x).

The distributed force p(x), has units of force per unit length, and is con-
sidered positive in the positive y-direction.

External force
and moments
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Mechanics of Materials: Chapter 6

Kinematics

Assumption 1

Assumption 2

Assumption 3

Assumption 4

Original Grid

Squashing, i.e., dimensional changes in the y-direction, is signif-
icantly smaller than bending.

ov _

(syy=@ 0) = v =v(x)

Plane sections before deformation remain plane after deforma-
tion. u = u —yy

\

Plane perpendicular to the beam axis remain nearly perpendicu-

0

lar after deformation. Yy ® 0.

Strains are small.

dv
tany =y = Ix

d
u = —yo(x)
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Method 1

o<§i>\ AB = CD = CD,
Ay » R
‘“i\\y %W::ABI_AB::(R—yﬁMV—RAW

%%;y AB RAy
-

&R\
v

Method 11

_ Ou _ 8( dav )
Cox Fr a_y%(x)

2
dv

By = ()
dx

* bending normal strain g, varies linearly with y and has maximum
value at either the top or the bottom of the beam.

2
I_dv
R dx2

of curvature of the deformed beam.
Material Model

(x) is the curvature of the deformed beam and R i1s the radius
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Assumption 5
Assumption 6
Assumption 7

Material is isotropic.
Material is linearly elastic.
There are no inelastic strains.

2
dv

From Hooke’s Law:c, = = Eg _, we obtainc, = = —Ey—2(x)

XX’

dx
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Location of neutral axis

2
dv
Jo,d4 = 0or [-Ey*—(x)dd = 0 or [Eydd = 0
y 4 dx Y
Assumption 8 Material 1s homogenous across the cross-section of the beam.
j ydA = 0
A

* Neutral axis 1.e, the origin, is at the centroid of the cross-section con-
structed from linear-elastic, 1sotropic, homogenous material.

» The axial problem and bending problem are de-coupled if the origin is
at the centroid for linear-elastic, isotropic, homogenous material

* bending normal stress o, varies linearly with y and is zero at the cen-

troid.
* bending normal stress G, 1s maximum at a point farthest from the

neutral axis (centroid).
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C6.3 The cross-section of a beam with a coordinate system that has
an origin at the centroid C of the cross-section is shown. The normal
strain at point A due to bending about the z-axis, and the Modulus of
Elasticity are as given.

(a) Plot the stress distribution across the cross-section.
(b) Determine the maximum bending normal stress in the cross-section.
(c) Determine the equivalent internal bending moment M, by integration.

4 in

| \ |
&, = 200 p A fiin
E = 8000 ksi ¢ jm
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Sign convention for internal bending moment

y Compressive o,

 The direction of positive internal moment M, on a free body diagram

must be such that it puts a point in the positive y direction into com-
pression.
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Sign convention for internal shear force

Internal Forces and Moment necessary for equilibrium

vV

v

)

=
2[R >

» Recall Assumption 3: Plane perpendicular to the beam axis remain
nearly perpendicular after deformation. Yy ™ 0.

* From Hooke’s Law:rxy = Gny

» Bending shear stress is small but not zero.
 Check on theory: The maximum bending normal stress ¢, in the

beam should be nearly an order of magnitude greater than the maxi-
mum bending shear stress t,,.

» The direction of positive internal shear force on a free body diagram is
in the direction of positive shear stress on the surface.
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C6.4 A beam and loading in three different coordinate system is
shown. Determine the internal shear force and bending moment at the
section containing point A for the three cases shown using the sign con-
vention.

5 kN/m 5 kN/m 5 kN/m
‘ | } ! { ‘ | {
—> X -A 'A —> X -A X <—
—0.5 m —~—0.5 m — — 0.5 m ——0.5 m —> ~— 0.5 m —>~—0.5 m —
y y y

Case 1 Case 2 Case 3
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Flexure Formulas

2
dv
Oy = ~Ey—=(%)
dx
2
M_ = —chs dA = —J.y{—Ey—(x)}dA . —(x)(IEyszJ
3 XX
y, dx’ 4
For homogenous cross-sections
2
: B dv
* Moment-curvature equation: Mz = EIZZ—2
dx
* [ _1s the second area moment of inertia about z-axis.

zz

* The quantity E7, is called the bending rigidity of a beam cross-sec-
tion.

« Fl f la: _ [My
exure stress formula: o o | T

A4
Two options for finding M,
* On a free body diagram M, is drawn as per the sign convention irre-
spective of the loading.
positive values of stress o, are tensile
negative values of o,, are compressive.
* On a free body diagram M, is drawn at the imaginary cut in a direction
to equilibrate the external loads.
The tensile and compressive nature of o,, must be determined by inspec-
tion.
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C6.3 The cross-section of a beam with a coordinate system that has
an origin at the centroid C of the cross-section is shown. The normal
strain at point A due to bending about the z-axis, and the modulus of elas-
ticity are as given.

(d) Determine the equivalent internal bending moment M, by flexure for-
mula.

[ 4in—

R ey e

X

E = 8000 ksi

N
a
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Class Problem 1

The bending normal stress at point B is 15 ksi.
(a) Determine the maximum bending normal stress on the cross-section.
(b) What is the bending normal strain at point A if E = 30,000 ksi.

I 4 in I
: AY |
A 1in
& 1.51n
z |lc| )
) 2.51n
1 1in — «
p| lii
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C6.5 Fig. C6.5(a) shows four separate wooden strips that bend
independently about the neutral axis passing through the centroid of each
strip. Fig. C6.5(b) shows the four strips are glued together and bend as a
unit about the centroid of the glued cross-section. (a) Show that

I, = 161, where I 1s the area moment of inertias for the glued cross-
section and Ig 1s the total area moment of inertia of the four separate
beams. (b) Also show 6, = 6¢/4, where 65 and og are the maximum

bending normal stress at any cross-section for the glued and separate
beams, respectively.

(a) Separate beams . (b)

Glued beams

Neutral axis
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C6.6 For the beam and loading shown, draw an approximate
deformed shape of the beam. By inspection determine whether the bend-
ing normal stress is tensile or compressive at points A and B.

— v

Class Problem 2

C6.7 For the beam and loading shown, draw an approximate
deformed shape of the beam. By inspection determine whether the bend-
ing normal stress is tensile or compressive at points A and B.
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C6.8 The beam, loading and the cross-section of the beam are as
shown. Determine the bending normal stress at point A and the maxi-
mum bending normal stress in the section containing point A

5 kKN/m

=
*A
—3m —+—3m —

}* 80 mm *{
=~ 100 mm —~|

August 2012




M. Vable Mechanics of Materials: Chapter 6

Printed from: http://www.me.mtu.edu/~mavable/MoM2nd.htm

C6.9 A wooden (E = 10 GPa) rectangular beam, loading and cross-
section are as shown in Fig. C6.9. The normal strain at point A in Fig.

C6.9 was measured ase . = —600 p. Determine the distributed force w

that is acting on the beam.
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Shear and Moment by Equilibrium

pAx

M. “\}/p\fn“ M, + AM, M, i\ M.+ AM.
ae_ab = G _ap

Vile—Ax—{V, + AV, Vile—Ax —{V, + AV,

Differential Beam Element

dVv dM
z

Differential Equilibrium Equations: —~ = —p i —Vy

» The above equilibrium equations are applicable at all points on the
beam except at points where there is a point (concentrated) force or
point moment.

Two Options for finding V|, and M, as a function of x

* Integrate equilibrium equations and find integration constants by using
boundary conditions or continuity conditions. This approach is pre-
ferred if p not uniform or linear.

* Make an imaginary cut at some location x, draw free body diagram
and use static equilibrium equations to find V5, and M. Check results

using the differential equilibrium equations above. This approach is
preferred if p is uniform or linear.
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C6.10 (a) Write the equations for shear force and bending moments
as a function of x for the entire beam. (b) Show your results satisfy the
differential equilibrium equations.

LY

5 kN/m

p X

Ion -

Fig. C6.10

=

Y
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C6.11 For the beam shown in Fig. C6.11, (a) write the shear force
and moment equation as a function of x in segment CD and segment DE.
(b) Show that your results satisfy the differential equilibrium equations.
(c) What are the shear force and bending moment value just before and
just after point D.

AY
12 kN/m 10 kN-m 12 kN

16 kN-m * —
A'_*x _M D E

_—Ct 4+ % 1 H12kN/m

S i 41‘ L e
2 3m iEm' 4m " 3111%{
Fig. C6.11

Class Problem 3

Write the shear force and moment equation as a function of x in segment
AB.
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Shear and Moment Diagrams

* Shear and Moment diagrams are a plots of internal shear force ¥}, and
internal bending moment M, vs. X.

Distributed force

* An integral represent area under the curve.
To avoid subtracting positive areas and adding negative areas, define

V=V,
Xy Y2
Vy =V +[pdx M, =M+ | Vix

Xq

X1

ﬁ (a) (b) (©) (d)
W
(o vy R
X X X X X1 2
A A A
Vi V=K rwixyex)|
|I|/ V2=VI+W(X2-X]) |I|/ X1 X2 |IT % | | VI X1 X9

o

v ! -V, ~ -V ¥

" x ) vy ViV rtw(xgxy) V=Vi-w(xp-xy
nerehsing inclife of tangent X1 Decreasing inclirie of tangen Increasing inclin¢ of tangent
M, Di creasing incline of tangent M, M -

M 5, M, My M, M "

% M. ‘ 22
X X3 2 X1 X5 X b)

Xl x2

* If W is linear in an interval then M, will be a quadratic function in that

interval.
 Curvature rule for quadratic M, curve.
The curvature of the M, curve must be such that the incline of the tangent
to the M, curve must increase (or decrease) as the magnitude of the V'
increases (or decreases).
or

The curvature of the moment curve is concave if p is positive, and convex
if p 1s negative.
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Point Force and Moments

 Internal shear force jumps by the value of the external force as one
crosses the external force from left to right.

 Internal bending moment jumps by the value of the external moment
as one crosses the external moment from left to right.

» Shear force & moment templates can be used to determine the direc-
tion of the jump in ¥ and M,

A template 1s a free body diagram of a small segment of a beam created
by making an imaginary cut just before and just after the section where
the a point external force or moment is applied.

Shear Force Template Moment Template

il (]

+ Mext Template Equations

* The jump in V'is in the direction of F
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3 kN/m

g

4 3 A

16 kN*m *
(I—-—P-x

4
4ka 2 kN/m
-3 1]1—»{4—4 m—>}~—4 II‘I—*‘

T

CMext

C6.12 Draw the shear and moment diagram and determine the val-
ues of maximum shear force V| and bending moment M,

)Mz
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C6.13 Two pieces of lumber are glued together to form the beam
shown Fig. C6.13. Determine the intensity w of the distributed load, if
the maximum tensile bending normal stress in the glue limited to 800 psi
(T) and maximum bending normal stress is wood is limited to 1200 psi.

2 in
w (Ib/in) [~
y y Y ] 1
(;‘ 4in
—— . 1 1 in
|« 30 in > 70 in I k3
Fig. C6.13
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Table C.1 Wide-flange sections (FPS units)

C.6 Geometric Properties Of Structural Steel Members

y y
tp_—
Fx T

< ty ‘f Flange 7 Axis y Axis

— Web
+—br — Depth Area Thickness Width Thickness
Designation d A ty bp tp I, S, F, I, S, ry
(in. x Ib/ft) (in.) (in.%) (in.) (in.) (in.) (in%) @in?)  (in) @ (@) (n)
WI2 %35 12.50 10.3 0.300 6.560 0.520 285.0 45.6 5.25 245 T.47 1.54
W12 x 30 12.34 8.79 0.260 6.520 0.440 238 38.6 5.21 20.3 6.24 1.52
W10 x 30 10.47 8.84 0.300 5.81 0.510 170 324 4.38 16.7 5.75 1.37
W10 x 22 10.17 6.49 0.240 5.75 0.360 118 23.2 4.27 11.4 3.97 133
W8 x 18 8.14 5.26 0.230 5.250 0.330 61.9 15.2 343 7.97 3.04 1.23
W8 x 15 8.11 4.44 0.245 4.015 0.315 48 11.8 3.29 3.41 1.70 0.876
W6 x 20 6.20 5.87 0.260 6.020 0.365 41.4 13.4 2.66 133 4.41 1.50
W6 x 16 6.28 4.74 0.260 4.03 0.405 32.1 10.2 2.60 443 2.20 0.967
Table C.2 Wide-flange sections (metric units)

| y
tp——
P Z

z

N Flange
Wi # 7 Axis y Axis
by Web
F Depth Area Thickness | Width  Thickness
3re1;ilg>r<12:(ti(/m d A X ty br tr GIzz . S, r, GIyy . §S‘y s ry
g/m) (mm) (mm~) (mm) (mm) (mm) (10°mm~) (10°mm’) (mm) [(10°mm®) (10°mm’) (mm)

W310 x 52 317 6650 7.6 167 13.2 118.6 748 133.4 10.20 122.2 39.1
W310 x 44.5 313 5670 6.6 166 11.2 99.1 633 132.3 8.45 101.8 38.6
W250 x 44.8 266 5700 7.6 148 13.0 70.8 532 111.3 6.95 93.9 34.8
W250 x 32.7 258 4190 6.1 146 9.1 49.1 381 108.5 4.75 65.1 33.8
W200 x 26.6 207 3390 5.8 133 8.4 25.8 249 87.1 3.32 499 31.2
W200 x 22.5 206 2860 6.2 102 8.0 20.0 194.2 83.6 1.419 27.8 22.3
W150 x 29.8 157 3790 6.6 153 9.3 17.23 219 67.6 5.54 72.4 28.1
W150 x 24 160 3060 6.6 102 10.3 13.36 167 66 1.844 36.2 24.6
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Shear Stress in Thin Symmetric Beams

* Motivation for gluing beams

Separate beams Glued beams

Neutral axis

Glued Beams

Separate Beams

No Relati
Sliding

« Assumption of plane section perpendicular to the axis remain perpen-

dicular during bending requires the following limitation.
Maximum bending shear stress must be an order of magnitude
less than maximum bending normal stress.
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Shear stress direction

Free surface

Free surface

N + dN

V =r1,0Ax

Shear Flow: g = 1, ¢

* The units of shear flow ‘q’ are force per unit length.

a direction as to satisfy the following rules:

* the resultant force in the z-direction is zero.

direction as one crosses the y-axis on the center-line.

August 2012

The shear flow along the center-line of the cross-section is drawn in such
* the resultant force in the y-direction is in the same direction as V.

* it is symmetric about the y-axis. This requires shear flow will change
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C6.14 Assuming a positive shear force V), (a) sketch the direction of

the shear flow along the center-line on the thin cross-sections shown.(b)

At points A, B, C, and D, determine if the stress component 1s Ty, Or Ty,

and 1f it is positive or negative.

AY
B | D]
-

V4 ‘|C
A
A ]

Class Problem 4

C6.15 Assuming a positive shear force V), (a) sketch the direction of

the shear flow along the center-line on the thin cross-sections shown.(b)

At points A, B, C, and D, determine if the stress component is T,y or Ty,

and if it 1s positive or negative.

AY
A B D
r—®& ——@&|— —| — @ — -~
| | | |
| | | |
| |- | | |
| |Z | $C |
| | | |
| | | |
| | | |
L1 | L1 | L1 | L1 |
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Bending Shear Stress Formula

Free surface

Free su\rface y \
A —L
Q

st

(Ng+dN)—N +1 tdx =0 Tsxt:_E
_d _d (Mz _d M
A A A

N N N

A, s the area between the free surface and the point where shear stress
is being evaluated.

Define: Q_ = I dA T .t = 4 o
' z Y SX dx| 1
zZ
AS
Assumption 9 The beam is not tapered.

qg = tt =Q—Zﬂ4z=—QZVy T.. =1 =—VyQZ
SX I )dx I, sx xs I_t
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Calculation of Q,
0, = I ydA
A

N

A, 1s the area between the free surface and the point where shear stress

is being evaluated.
* Q, 1is zero at the top surface as the enclosed area A is zero.

* Q. 1s zero at the bottom surface (4,=A4) by definition of centroid.

A, Centroid of 4
0, = A,

Line along which
Shear stress_is y
being found. S

- Neutral Axis

Z \ Y2

Centroid of 4, Q, = 4y,
4;

¢ Q. 1s maximum at the neutral axis.
* Bending shear stress at a section is maximum at the neutral axis.
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Co.16 For the beam, loading and cross-section shown, determine: (a)
the magnitude of the maximum bending normal and shear stress. (b) the
bending normal stress and the bending shear stress at point A. Point A 1s
on the cross-section 2 m from the right end. Show your result on a stress
cube. The area moment of inertia for the beam was calculated to be

L, =453 (10% mm®*

30 kN 8 kN y s
pY l TKN-m o el
> X - 74— IB()() mm
AA A A o)
} 1‘ 6 kN/m 120 mmI % 25 mm
3m < |
l*—** 4m 4m-~ 300 mm

20 kN
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Class Problem 5

Identify the area A, that will be used in calculation of shear stress at points 4,8, D

and the maximum shear stress. Also show direction of's.

1.5 1n.

2.5 1n.

1 in.
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Top or

Bottom
P
I o
Z
(@)
_ Gxx _
b TR Gy T T
_ Yy _t
Ty = '5 Yxz =

(b)

Point in

Bending stresses and strains

Point in
Flange

' Tyx
. .
------------ > x
(©
(v Gxx) e
E

(d)
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C6.17 A wooden cantilever box beam is to be constructed by nailing
four 1 inch x 6 inch pieces of lumber in one of the two ways shown. The
allowable bending normal and shear stress in the wood are 750 psi and
150 psi, respectively. The maximum force that the nail can support is
100 Ibs. Determine the maximum value of load P to the nearest pound,
the spacing of the nails to the nearest half inch, and the preferred nailing
method.

Joining Method 1 Joining Method 2

V

} P 1 T _1in Y P Y

|
H
>

|

— —6in—
lin | ir

N

A
| —a—| |-
|
Tr—o

lin fe——20 ft
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C6.18 A cantilever, hollow-circular aluminum beam of 5 feet length
is to support a load of 1200-1bs. The inner radius of the beam is 1 inch. If
the maximum bending normal stress is to be limited to 10 ksi, determine
the minimum outer radius of the beam to the nearest 1/16th of an inch.

e.mtu.edu/~mavable/MoM2nd.htm
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	Symmetric Bending of Beams
	. A beam is any long structural member on which loads act perpendicular to the longitudinal axis.
	Learning objectives
	. Understand the theory, its limitations and its applications for strength based design and analysis of symmetric bending of beams.
	. Develop the discipline to visualize the normal and shear stresses in symmetric bending of beams.

	C6.1 Due to the action of the external moment Mext and force P, the rigid plate shown in Fig. C6.1 was observed to rotate by 2o ...
	Fig. C6.1


	Internal Bending Moment
	. Above equations are independent of material model as these equations represents static equivalency between the normal stress on the entire cross-section and the internal moment.
	. The line on the cross-section where the bending normal stress is zero is called the neutral axis.
	. Location of neutral axis is chosen to satisfy .
	. Origin of y is always at the neutral axis, irrespective of the material model.
	C6.2 Steel (Esteel = 30,000 ksi) strips are securely attached to a wooden (Ewood = 2,000 ksi) beam as shown below. The normal st...
	Fig. C6.2


	Theory of symmetric bending of beams
	Limitations
	. The length of the member is significantly greater then the greatest dimension in the cross-section.
	. We are away from the regions of stress concentration.
	. The variation of external loads or changes in the cross-sectional areas are gradual except in regions of stress concentration.
	. The cross-section has a plane of symmetry.
	. The loads are in the plane of symmetry.
	. The load direction does not change with deformation.
	. The external loads are not functions of time.

	Theory objectives:
	. To obtain a formula for the bending normal stress sxx, and bending shear stress txy in terms of the internal moment Mz and the internal shear force Vy.
	. To obtain a formula for calculation of the beam deflection v(x).
	The distributed force p(x), has units of force per unit length, and is considered positive in the positive y-direction.
	Kinematics
	Assumption 1 Squashing, i.e., dimensional changes in the y-direction, is significantly smaller than bending.
	Assumption 2 Plane sections before deformation remain plane after deformation.
	Assumption 3 Plane perpendicular to the beam axis remain nearly perpendicular after deformation. .
	Assumption 4 Strains are small.
	. bending normal strain exx varies linearly with y and has maximum value at either the top or the bottom of the beam.
	. is the curvature of the deformed beam and R is the radius of curvature of the deformed beam.


	Material Model
	Assumption 5 Material is isotropic.
	Assumption 6 Material is linearly elastic.
	Assumption 7 There are no inelastic strains.
	From Hooke’s Law:, we obtain

	Location of neutral axis
	or or
	Assumption 8 Material is homogenous across the cross-section of the beam.
	. Neutral axis i.e, the origin, is at the centroid of the cross-section constructed from linear-elastic, isotropic, homogenous material.
	. The axial problem and bending problem are de-coupled if the origin is at the centroid for linear-elastic, isotropic, homogenous material
	. bending normal stress sxx varies linearly with y and is zero at the centroid.
	. bending normal stress sxx is maximum at a point farthest from the neutral axis (centroid).


	C6.3 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point A due to bending about the z-axis, and the Modulus of Elasticity are as given.
	(a) Plot the stress distribution across the cross-section.
	(b) Determine the maximum bending normal stress in the cross-section.
	(c) Determine the equivalent internal bending moment Mz by integration.
	Sign convention for internal bending moment
	. The direction of positive internal moment Mz on a free body diagram must be such that it puts a point in the positive y direction into compression.

	Sign convention for internal shear force
	. Recall Assumption 3: Plane perpendicular to the beam axis remain nearly perpendicular after deformation. .
	. From Hooke’s Law:
	. Bending shear stress is small but not zero.
	. Check on theory: The maximum bending normal stress sxx in the beam should be nearly an order of magnitude greater than the maximum bending shear stress txy.
	. The direction of positive internal shear force on a free body diagram is in the direction of positive shear stress on the surface.


	C6.4 A beam and loading in three different coordinate system is shown. Determine the internal shear force and bending moment at the section containing point A for the three cases shown using the sign convention.
	Flexure Formulas
	For homogenous cross-sections
	. Moment-curvature equation:
	. is the second area moment of inertia about z-axis.
	. The quantity EIzz is called the bending rigidity of a beam cross-section.
	. Flexure stress formula:

	Two options for finding Mz
	. On a free body diagram Mz is drawn as per the sign convention irrespective of the loading.
	positive values of stress sxx are tensile
	negative values of sxx are compressive.

	. On a free body diagram Mz is drawn at the imaginary cut in a direction to equilibrate the external loads.
	The tensile and compressive nature of sxx must be determined by inspection.




	C6.3 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point A due to bending about the z-axis, and the modulus of elasticity are as given.
	(d) Determine the equivalent internal bending moment Mz by flexure formula.
	Class Problem 1
	The bending normal stress at point B is 15 ksi.
	(a) Determine the maximum bending normal stress on the cross-section.
	(b) What is the bending normal strain at point A if E = 30,000 ksi.


	C6.5 Fig. C6.5(a) shows four separate wooden strips that bend independently about the neutral axis passing through the centroid ...
	Fig. C6.5

	C6.6 For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points A and B.
	Class Problem 2

	C6.7 For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points A and B.
	C6.8 The beam, loading and the cross-section of the beam are as shown. Determine the bending normal stress at point A and the maximum bending normal stress in the section containing point A
	C6.9 A wooden (E = 10 GPa) rectangular beam, loading and cross- section are as shown in Fig. C6.9. The normal strain at point A in Fig. C6.9 was measured as. Determine the distributed force w that is acting on the beam.
	Fig. C6.9


	Shear and Moment by Equilibrium
	Differential Equilibrium Equations:
	. The above equilibrium equations are applicable at all points on the beam except at points where there is a point (concentrated) force or point moment.

	Two Options for finding Vy and Mz as a function of x
	. Integrate equilibrium equations and find integration constants by using boundary conditions or continuity conditions. This approach is preferred if p not uniform or linear.
	. Make an imaginary cut at some location x, draw free body diagram and use static equilibrium equations to find Vy and Mz. Check results using the differential equilibrium equations above. This approach is preferred if p is uniform or linear.

	C6.10 (a) Write the equations for shear force and bending moments as a function of x for the entire beam. (b) Show your results satisfy the differential equilibrium equations.
	Fig. C6.10

	C6.11 For the beam shown in Fig. C6.11, (a) write the shear force and moment equation as a function of x in segment CD and segme...
	Fig. C6.11
	Class Problem 3
	Write the shear force and moment equation as a function of x in segment AB.



	Shear and Moment Diagrams
	. Shear and Moment diagrams are a plots of internal shear force Vy and internal bending moment Mz vs. x.
	Distributed force
	. An integral represent area under the curve.
	To avoid subtracting positive areas and adding negative areas, define
	. If Vy is linear in an interval then Mz will be a quadratic function in that interval.
	. Curvature rule for quadratic Mz curve.
	The curvature of the Mz curve must be such that the incline of the tangent to the Mz curve must increase (or decrease) as the magnitude of the V increases (or decreases).



	or
	The curvature of the moment curve is concave if p is positive, and convex if p is negative.
	Point Force and Moments
	. Internal shear force jumps by the value of the external force as one crosses the external force from left to right.
	. Internal bending moment jumps by the value of the external moment as one crosses the external moment from left to right.
	. Shear force & moment templates can be used to determine the direction of the jump in V and Mz.
	. The jump in V is in the direction of Fext


	C6.12 Draw the shear and moment diagram and determine the values of maximum shear force Vy and bending moment Mz.
	C6.13 Two pieces of lumber are glued together to form the beam shown Fig. C6.13. Determine the intensity w of the distributed lo...
	Fig. C6.13
	C.6 Geometric Properties Of Structural Steel Members
	Table C.1 Wide-flange sections (FPS units)
	Table C.2 Wide-flange sections (metric units)



	Shear Stress in Thin Symmetric Beams
	. Motivation for gluing beams
	.
	. Assumption of plane section perpendicular to the axis remain perpendicular during bending requires the following limitation.
	Maximum bending shear stress must be an order of magnitude less than maximum bending normal stress.

	Shear stress direction
	Shear Flow:
	. The units of shear flow ‘q’ are force per unit length.

	The shear flow along the center-line of the cross-section is drawn in such a direction as to satisfy the following rules:
	. the resultant force in the y-direction is in the same direction as Vy.
	. the resultant force in the z-direction is zero.
	. it is symmetric about the y-axis. This requires shear flow will change direction as one crosses the y-axis on the center-line.


	C6.14 Assuming a positive shear force Vy, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) At points A, B, C, and D, determine if the stress component is txy or txz and if it is positive or negative.
	Class Problem 4

	C6.15 Assuming a positive shear force Vy, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) At points A, B, C, and D, determine if the stress component is txy or txz and if it is positive or negative.

	Bending Shear Stress Formula
	. As is the area between the free surface and the point where shear stress is being evaluated.
	Define:
	Assumption 9 The beam is not tapered.


	Calculation of Qz
	. As is the area between the free surface and the point where shear stress is being evaluated.
	. Qz is zero at the top surface as the enclosed area As is zero.
	. Qz is zero at the bottom surface (As=A) by definition of centroid.
	. Qz is maximum at the neutral axis.
	. Bending shear stress at a section is maximum at the neutral axis.
	C6.16 For the beam, loading and cross-section shown, determine: (a) the magnitude of the maximum bending normal and shear stress...
	Class Problem 5
	Identify the area As that will be used in calculation of shear stress at points A,B, D
	and the maximum shear stress. Also show direction of s.



	Bending stresses and strains
	C6.17 A wooden cantilever box beam is to be constructed by nailing four 1 inch x 6 inch pieces of lumber in one of the two ways ...
	C6.18 A cantilever, hollow-circular aluminum beam of 5 feet length is to support a load of 1200-lbs. The inner radius of the bea...


